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Abstract

Part of speech tagging accuracy deterio-

rates severely when a tagger is used out

of domain. We investigate a fast method

for domain adaptation, which provides ad-

ditional in-domain training data from an

unannotated data set by applying POS tag-

gers with different biases to the unanno-

tated data set and then choosing the set

of sentences on which the taggers agree.

We show that we improve the accuracy

of a trigram tagger, TnT, from 85.77%

to 86.10%. In order to improve perfor-

mance on unknown words, we investigate

using active learning for learning ambi-

guity classes of domain specific words,

yielding an accuracy of 89.15% for TnT.

1 Introduction

Part of speech (POS) tagging for English is often

considered a solved problem. There are well es-

tablished approaches such as Markov model tri-

gram taggers (Brants, 2000), maximum entropy

taggers (Ratnaparkhi, 1996), or Support Vector

Machine based taggers (Giménez and Màrquez,

2004), and accuracy reaches approximately 97%.

However, most experiments in POS tagging for

English have concentrated on data from the Penn

Treebank (Marcus et al., 1993). If POS taggers

trained on the Penn Treebank are used to tag data

from other domains, accuracy deteriorates signif-

icantly. Blitzer et al. (2006) apply structural cor-

respondence learning for learning pivot features to

increase accuracy in the target domain. However,

their approach is restricted to discriminative ap-

proaches to POS tagging.

In this paper, we investigate a simple and fast

method for domain adaptation that is usable with

any POS tagger: selecting reliably tagged in-

domain data to add to the training set. This method

has been successful for domain adaptation for de-

pendency parsing (Chen et al., 2008). We use a

corpus of dialogues collected in a collaborative

task as target domain, thus introducing the chal-

lenges of processing spontaneous speech: hesita-

tions, corrections, false starts, and contractions.

We assume that this domain is more challenging

than a target domain of biomedical texts, which is

often used for domain adaptation research. Spon-

taneous speech dialogues do not only differ in ter-

minology, but also in the types of sentences. Di-

alogues, for example, contain a higher percentage

of questions and imperatives than formal written

language, such as news or scientific writings.

Our domain adaptation experiments concentrate

on adding in-domain training data based on an en-

semble of POS taggers. The experiments show

that extending the training set generally improves

POS tagging accuracy. However, it cannot provide

information on the ambiguity classes for words

that do not appear in the source domain. For this

reason, we integrate an active learning strategy for

adding ambiguity classes for words that are iden-

tified automatically as unlikely to be tagged cor-

rectly.

The remainder of the paper is structured as fol-

lows: In section 2, we provide an overview of do-

main adaptation techniques in POS tagging and

parsing. Section 3 describes our approach to do-

main adaptation, and section 4 describes the exper-

imental setup. In section 5, we discuss our find-

ings for domain adaptation, and in section 6, we

describe the active learning extension.

2 Related Work

Domain adaptation is a task that has received

much attention in recent years, with different re-

sults, ranging from evaluations that it is “frustrat-

ingly easy” (Daume III, 2007) to “frustratingly

hard” (Dredze et al., 2007). The main differen-

tiating factor seems to be whether a small portion
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of annotated in-domain training data is available

or only a large-size, unannotated data set. In our

work, we concentrate on the second, more diffi-

cult, scenario.

Most work on domain adaptation has focused

on parsing rather than on POS tagging (e.g. (Mc-

Closky et al., 2006; Yoshida et al., 2007; Chen

et al., 2008; Rimell and Clark, 2008). Chen et

al. (2008)) perform domain adaptation for a de-

pendency parser. They show their best results are

reached by adding only a selection of the informa-

tion provided by a parser trained on out-of-domain

data. Since short dependencies are more reliable

than long ones, they select only the short, and thus

reliable, ones and gain an increase in accuracy.

Rimell and Clark (2008) adapt the Penn Treebank

to parse grammatical relations in the biomedical

domain. They report that the domains are similar

structurally and that the lexicon is the main differ-

ence between the domains. Yoshida et al. (2007)

investigate the influence of an external POS tag-

ger on parsing accuracy in an HPSG parser. They

show that the quality of the POS tagger has a sig-

nificant influence even in-domain. The situation

can be improved by allowing the POS tagger to

output multiple, weighted POS tags from which

the parser can choose. They show that allowing

the tagger to output multiple POS tags improves

parsing results both in-domain and out-of-domain.

Clark et al. (2003) use the results of one POS

tagger on unannotated data to inform the training

of another tagger in a semi-supervised setting us-

ing a co-training routine with a Markov model tag-

ger and a maximum entropy tagger. The authors

test both agreement-based co-training, where the

sentences are added to training only if the taggers

both agree, and naive co-training, where all sen-

tences from one tagger are added to the training

of the other, with no filter. For small sets of seed

sentences, both types of co-training improve ac-

curacy, with the higher quality, smaller training

set from agreement-based co-training performing

slightly better. The authors also report results for

using naive co-training after the taggers were al-

ready trained on large amounts of manually anno-

tated data. Naive co-training did not improve the

taggers when trained in such a way (the authors

leave agreement based co-training to future work).

Blitzer et al. (2006) investigate domain adapta-

tion for POS tagging using the method of struc-

tural correspondence learning (SCL). SCL pro-

vides an informative feature-space for modeling

the similarities between source and target domain

by identifying pivot features. Pivot features be-

have similarly across domains, and if non-pivot

features in the different domains correspond to

many of the same pivot features, they are as-

sumed to correlate. The machine learning algo-

rithm is trained with the feature-space model from

SCL on the source domain, with the idea that

the trained model will now be informative for the

unlabeled target domain as well. Blitzer et al.

(2006) evaluate the SCL transfer of a POS tagger

from the Penn Treebank to a corpus of biomedi-

cal abstracts (MEDLINE), reporting an improve-

ment from 87.9% to 88.9%. The authors report

that vocabulary is the main difference between the

domains. However, SCL can only be applied to

feature-based discriminative learning methods.

3 Domain Adaptation by Tagger

Combination

For our experiments, we use the Wall Street Jour-

nal part of the Penn Treebank as source domain

and dialogues in a collaborative task as target do-

main. In the target domain, we have access to a

large unannotated corpus and a small annotated

corpus, which we use for evaluation purposes. In

order to adapt a POS tagger to the target domain,

we extend the training set by sentences from the

large unannotated corpus. Our hypothesis is that

these sentences will provide the POS tagger with

relevant information from the target domain. For

assigning POS tags to the additional sentences

from the target domain, we use three different POS

taggers trained on the Penn Treebank. Then we

select those sentences for which a majority of tag-

gers agree on the POS tags. The method of using

agreement between taggers was originally used by

van Halteren et al. (2001) to improve tagger per-

formance. We investigate the following questions:

1) How does the number of agreeing POS tag-

gers influence the accuracy of the final tagger? 2)

Should we select only complete sentences or add

all trigrams on which the taggers agree? Lifting

the restriction that the taggers agree on complete

sentences will increase the size of the training set.

3) Do we need the full Penn Treebank training set,

or does this large training set dominate the smaller

training set from the target domain?
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4 Experimental Setup

4.1 Data Sets

We use three corpora: the Penn Treebank for

the source domain; the HCRC Map Task Corpus

(Thompson et al., 1996) for additional training in

the cooperative dialogue domain; and the CReST

corpus (Eberhard et al., 2010) for evaluation in the

target domain.

The HCRC Map Task Corpus (Thompson et

al., 1996) is a multi-modal corpus composed of 18

hours of digital audio and 150 000 words of tran-

scription, representing 128 two-person conversa-

tions. The conversations were obtained from a co-

operative problem solving task, in which two par-

ticipants were asked to help one another fill in a

route on a map. HCRC is annotated for speaker

and dialogue turn information, as well as for POS

tags. However, we use only the actual transcrip-

tions. This corpus serves as our unannotated, in-

domain training corpus.

The CReST Corpus (Eberhard et al., 2010) is

a multi-modal corpus consisting of 7 dialogues,

comprising 11 317 words in 1 977 sentences. Sim-

ilar in domain to the HCRC corpus, it represents

cooperative dialogues, but is based on a slightly

different task: one of the participants is located in

a search environment, while the other is outside

but has access to a map of the environment. The

participants need to collaborate to fulfill their tasks

(locating objects in the environment and placing

objects on the map).

CReST is annotated for POS, syntactic depen-

dency and constituency, disfluency, and dialogue

structure. The POS tagset is a superset of the

tagset for the Penn Treebank, with the additional

tags representing features unique to natural dia-

logue.

Data Preparation. Due to differences between

the transcriptions of HCRC and CReST, we made

small, systematic changes to HCRC to make it

more consistent with CReST. For instance, HCRC

had various permutations of mmhmm which we

changed to the standard mhm transcription in

CReST. Since the Penn Treebank does not con-

tain all tags used in CReST, we translated the ad-

ditional CReST tags into tags of the original tagset

for our experiments. E.g. the POS tag VBI (imper-

ative verb) is translated into VB (verb in the base

form).

4.2 POS Taggers

We use three POS taggers: TnT (Brants, 2000),

MElt (Denis and Sagot, 2009), and SVMTool

(Giménez and Màrquez, 2004). These taggers

were chosen because they represent the state of the

art for single-direction taggers and also because

they use different approaches to POS tagging and

thus have different biases. Our assumption is that

the different biases will result in different types of

POS tagging mistakes.

TnT (Brants, 2000) is a trigram Markov model

POS tagger with state-of-the-art treatment of un-

known words. TnT generates files containing lexi-

cal and transition frequencies and thus provides us

with the option of including new trigrams directly

into the trained model.

The Maximum-Entropy Lexicon-Enriched

Tagger (MElt) (Denis and Sagot, 2009) is a

conditional sequence maximum entropy POS

tagger that uses a set of lexical and context

features, which are a superset of the features

used by Ratnaparkhi (1996) and Toutanova and

Manning (2000).

SVMTool (Giménez and Màrquez, 2004) is a

discriminative POS tagger based on support vec-

tor machines. The features and specifications used

in training were taken from the SVMTool model

for English, based on the Penn Treebank.

5 Experiments

We perform six experiments: The first experiment

establishes a baseline by training the POS taggers

out of domain on the Penn Treebank and then us-

ing them without adaptation on the target domain.

In the second experiment, the training set is ex-

tended by those HCRC sentences on which all

three taggers agree. In the third experiment, we

investigate whether the accuracy of the adapted

tagger deteriorates if we choose all sentences on

which only two taggers agree. In the fourth exper-

iment, we investigate the effect of adding trigram

information on which all taggers agree to the TnT

trained model. In the fifth experiment, we also add

lexical information to the TnT model. In the final

experiment, we investigate whether the large size

of the Penn Treebank neutralizes effects from the

additional training data, based on the experiment

with sentences on which all three taggers agree.
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Tagger baseline all3

MElt 83.91 84.32†

SVMTool 84.60 85.15†

TnT 85.77 85.70

Table 1: The results of the baseline and of select-

ing all sentences on which all taggers agree. Dags

indicate a significant improvement over the base-

line.

5.1 Agreement Among All POS Taggers

This experiment uses all three POS taggers,

trained on the Penn Treebank, to tag all sentences

from the HCRC corpus. Then all sentences are

selected on which the taggers agree. These sen-

tences are added to the Penn Treebank training set,

and the taggers are retrained and evaluated on the

CReST corpus. The results of the baseline and this

experiment are shown in table 1.

The results show that both discriminative POS

taggers, MElt and SVMTool, improve signifi-

cantly over the baseline (McNemar, p < 0.001).
TnT, in contrast, suffers a non-significant decrease

in performance. However, TnT’s baseline results

are significantly higher than the two other tag-

gers’. This can be explained by the state-of-the

art module for guessing unknown words in TnT,

which is based on suffix tries extracted from hapax

legomena in the training data set. For the baseline,

TnT reaches an accuracy of 16.64% on unknown

words, MElt 11.65%, and SVMTool 10.32%.

In order to determine whether our initial low

performance was due to within-domain tagging is-

sues, such as “fuzzy” linguistic boundaries (Man-

ning, 2011), or simply to the level of difference

between our source and target domains, we con-

ducted a brief analysis of the errors from this ex-

periment. We found that the top three discrep-

ancies in the all3 condition for TnT, compris-

ing 55.32% of the incorrect tags, were the result

of mistakenly labeling a gold-tagged interjection

(UH) with an adjective (JJ), noun (NN), or an ad-

verb (RB) tag. The next most common mistake

was labeling a gold-tagged SYM (incomplete or

non-word) with JJ (5.32% of discrepancies). SYM

and UH are much more common in a corpus of spo-

ken dialogue transcriptions than in closely edited

financial news. Thus, these top four mistakes rep-

resent errors arising from the dissimilarity of the

domains (as opposed to the fifth mistake, mistak-

ing IN (preposition) for RB, which is a more tra-

Training # of words

baseline 1 342 561

all3 1 391 238

me/svm 1 413 106

me/tnt 1 418 957

svm/tnt 1 412 917

Table 2: Number of words in the training set.

Tagger me/svm me/tnt svm/tnt all3

MElt 84.37† 84.28 84.59† 84.32†

SVM 84.98 85.30† 85.47† 85.15†

TnT 85.94 85.84 85.70 85.70

Table 3: Results of adding all sentences for which

two taggers agree.

ditional within-domain tagging error, with “fuzzy”

linguistic boundaries partially to blame).

5.2 Agreement Between Two Taggers

The reason for requiring all three POS taggers to

agree on full sentences is that the selected sen-

tences will be reliable. However, the method also

has the drawback that only a rather small num-

ber of sentences fulfill this criterion. The first 2

rows in table 2 show the number of words in the

training data for the baseline experiment with only

Penn Treebank data and for the all3 experiment.

They show that only a very small number of words

is added: The number of words increases from ap-

proximately 1.34 million words to 1.39 million,

i.e. only 50 000 words are added out of the 150 000

words in the HCRC corpus, an insignificant num-

ber when compared to the source domain data.

Thus, in order to provide more in-domain train-

ing data, we relax the constraint on the selection

of sentences from the HCRC corpus and select

all sentences for which two specific taggers agree.

The results are shown in table 3. The last column

in this table repeats the results from the previous

experiment.

These results show that the additional data (cf.

table 2) improves performance over the experi-

ment requiring agreement between all three tag-

gers. It is worth noting that MElt and TnT per-

form best with training where the common sen-

tences are from the two other taggers. For SVM-

Tool, including TnT improves accuracy, but there

is no significant difference between the combina-

tion of MElt with TnT and the one with SVMTool
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and TnT. We assume that TnT has reached satura-

tion on the Penn Treebank and cannot learn new

information from additional data tagged with its

own bias. Sentences from the other taggers, how-

ever, do present new information.

We had a closer look at the sentences that were

added to TnT when MElt and SVMTool (me/svm)

agree and when MElt and TnT (me/tnt) agree

and found considerable differences in the distri-

bution of POS tags. These differences can also be

found in the test set tagged with TnT, based on

the two training sets. In all data sets, the com-

bination me/tnt seems to keep the lexical bias of

the Penn Treebank more strongly than the combi-

nation me/svm. For example, the word left is

consistently tagged as a noun when TnT uses the

me/svm combination. In most instances, this is the

correct decision. The me/tnt combination, in con-

trast, prefers a verb reading. For the word back,

the me/svm combination selects the correct adverb

reading over the verbal particle reading preferred

by the me/tnt reading. Since the combination of

SVMTool and TnT also keeps the bias, the inno-

vation in the me/svm combination cannot be at-

tributed to having SVMTool in the combination.

We also investigated whether using a union of

sentences from different pairs of taggers would in-

crease overall accuracy. This adds approximately

70 000 words to the training set. However, the

results of this experiment proved to be not signifi-

cantly different from those based on tagger pairs.

5.3 From Complete Sentences to n-grams

The results from the previous experiment show

that adding more training data, even if it is less

certain, improves the accuracy of the final tagger.

One possibility to provide more training material

consists in relaxing the constraint that the taggers

need to agree on complete sentences. Instead, we

extract either all longest matching n-grams or all
trigrams on which the taggers agree. The n-grams
are processed and added to the TnT model from

the Penn Treebank. This is only possible because

TnT stores its trained model in an accessible for-

mat. The discriminative POS taggers could not be

used for this experiment since adding incomplete

sentences as training data would have influenced

their trained models negatively.

As before, all evaluations are performed on

CReST. The results of this experiment are shown

in table 4. The first 3 columns contain the re-

me/svm me/tnt svm/tnt all3

full 85.94 85.84 85.70 85.70

n 85.88 85.55 85.93 85.76

tri. 86.10 85.77 85.93 85.98

Table 4: Results of adding n-grams or trigrams to
TnT’s model.

sults of merging n-grams or trigrams from 2 dif-

ferent taggers; the last column shows the results

for merging all 3 taggers. The first row repeats the

results from previous experiments using complete

sentences that taggers agree upon. We restrict our-

selves to adding only transition information here

and merely use the lexicon from the Penn Tree-

bank baseline. We will investigate adding both

transition and lexical information in the next ex-

periment. The results show that adding trigrams

instead of complete sentences, based on MElt and

SVMTool, results in approximately 25 000 addi-

tional trigram counts, and it improves the accu-

racy of the final tagger from 85.94% to 86.10%.

Adding all n-grams, in contrast, adds around
33 000 trigram counts and results in slightly lower

accuracies, demonstrating that in some cases, the

sheer amount of data may be counteracted by sub-

standard quality. Again, TnT profits most from in-

domain sentences provided by a combination of

MElt and SVMTool.

5.4 Adding Lexical Information

A look at the words that are mistagged with the

highest frequency in the previous experiment, in

which we added trigram information, shows that

they fall into two different categories: words such

as okay, um, gonna that are typical for dialogues

but do not occur frequently in the Penn Treebank;

and words that have a different POS preference in

the target domain. An example for this category

is the word left, which tends to be a verb in the

Penn Treebank and an adverb in CReST.

For this reason, we decided to add the lexical

information from the trigrams to TnT’s lexicon.

The results of this experiment are shown in table

5. They show that adding lexical information re-

sults in lower accuracies: they decrease minimally

from 86.10% (adding only trigram transition in-

formation) to 86.00% when adding both transition

and lexical information. When adding n-grams
and lexical information, the results improve over

adding only n-grams, but they do not reach the
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me/svm me/tnt svm/tnt all3

n 85.88 85.55 85.70 85.70

n+lex. 86.00 85.86 85.81 85.88

tri. 86.10 85.77 85.93 85.98

tri.+lex. 86.00 85.42 85.78 85.86

Table 5: Results of adding lexical information to

TnT’s model.

best trigram result.

Since this result did not meet our expectation,

we analyzed the changes to the lexicon file and

the tagging errors. The extended lexicon con-

tains 326 additional words, but only 8 of them also

occur in CReST (ah, fifteen, forty-five,

furthest, hmm, mhm, um, yeah). yeah is by

far the most common word in the test data. The

small number of added words that actually occur

in the test set severely restricts possible improve-

ments on in-domain POS tagging.

A comparison of TnT’s performance with and

without the extended lexicon shows that there are

101 discrepancies (in 11 317 words) in which the

POS tagger without additional lexical information

makes the correct decision. Out of these discrep-

ancies, the word yeah accounts for 45 errors.

Here, the extended lexicon lists the tag NN in-

stead of the tag UH. The reason lies in the fact

that yeah does not occur in the Penn Treebank,

and the three taggers trained on this treebank all

(wrongly) tag yeahwith the most frequent tag for

unknown words.

From the error analysis, we can conclude that

the added words do not correspond to the words

that are needed in the test domain, which means

that the HCRC map task corpus data are not sim-

ilar enough to the CReST data. However, we can

also conclude that even if there were a larger over-

lap, there is a high chance that those words would

be mistagged by the ensemble of taggers so that

adding the new words would result in a deteriora-

tion of the performance.

5.5 Decreasing Out-Of-Domain Training

Data

In a final experiment, we investigate whether the

difference in amounts of training data between

source domain and target domain neutralizes the

positive influence of adding in-domain informa-

tion. Table 2 shows that the number of words

added by our methods ranges between one third

and half of the original data set. It is therefore pos-

Tagger baseline red. base. red.+all3

MElt 83.91 79.38 83.86

SVMTool 84.60 78.79 83.90

TnT 85.77 79.86 84.11

Table 6: The results of restricting the size of the

out-of-domain training set.
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Figure 1: Accuracy as a function of amount of

WSJ training

sible that the added information does not change

the transition probabilities enough to improve the

behavior of the final tagger. For this reason, we

restrict the size of the Penn Treebank training set

to the number of words in the in-domain set, thus

reducing the influence of the out-of-domain data.

For this experiment, the in-domain training set is

taken from the combination of all 3 taggers, as re-

ported in table 1. The results of this experiment

are shown in table 6.

The results show that training the POS tagger on

only the reduced Penn Treebank containing 46 680

words results in a severe loss in accuracy, from ap-

proximately 84% to approximately 79%. Adding

more training data from the Penn Treebank con-

sistently increases the results, as shown in Figure

1, thus demonstrating that more data is more im-

portant than in-domain knowledge.

These experiments shows that even a fairly

“easy” problem such as POS tagging requires a

large training set. In the first experiment, combin-

ing the reduced Penn Treebank with the in-domain

data set increases the accuracies of all POS taggers

over the reduced baseline, but they do not reach

the baseline based on the whole Penn Treebank.

This experiment shows that the sheer size of the

training set is more important than access to in-

domain training data, at least when the quality of
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base all3 me/svm me/tnt svm/tnt

trans. 85.77 86.10 85.77 85.93 85.98

active 89.04 89.13 89.15 89.03 89.15

Table 7: Results of adding an active learning lexicon to the training for TnT. All differences between the

two experiments are significant.

this additional training set is not guaranteed.

6 Extending the Lexicon with Active

Learning

The results of the previous sections show that

adding information on which taggers trained out-

of-domain agree is useful for moderately improv-

ing tagging accuracy and especially for reestimat-

ing transition probabilites. However, the method

is unsuitable for finding the correct ambiguity sets

for words that do not occur in the out-of-domain

training set. Such words must be treated in the tag-

ger’s module for handling unknown words, which

is often based on suffix information extracted from

infrequent words in the training set. However,

many of the unknown words in the CReST cor-

pus are colloquial words and thus do not show

the same morphological characteristics as words

in the training set. The words yeah and mhm are

good examples: it is rather unlikely that the tag-

ger can guess their ambiguity set based on their

bigram suffixes ah and hm. This problem is

not unique to the domain of spontaneous speech.

Biomedical terms, for example, also display atypi-

cal suffixes, which make them difficult to classify.

Since the training corpus cannot provide the re-

quired information, we decided to acquire mini-

mal information from the target domain via active

learning. This goal here is to automatically iden-

tify words that TnT was likely to tag incorrectly.

These words are then presented to the user, who is

asked to provide the ambiguity sets for the words.

In our experiment, we simulated the user by look-

ing up the words identified by our program in the

CReST gold standard.

In order to determine which words would be dif-

ficult for TnT, we built a suffix trie similar to TnT’s

model for unknown words. For the sake of sim-

plicity, we restricted the trie to a maximum suf-

fix length of three letters. Then, each word in our

CReST test corpus that did not occur in the Penn

Treebank training lexicon was matched against the

suffix trie. If the word’s suffix was not present in

the trie, the word was presented to the user and

added to TnT’s lexicon. The extended lexicon was

used in combination with the extended transitions

based on trigrams from section 5.3. In total, 74

ambiguity classes were added in the active learn-

ing lexicon.

The results in table 7 show that adding the active

learning lexicon to the Penn Treebank baseline im-

proves tagging accuracy to 89.04%, outperform-

ing our best previous results (cf. table 4). The best

results of 89.15% are based on combinations of

the active learning lexicon and transition informa-

tion from where just two taggers agree on HCRC

trigrams. This illustrates that adding new words to

the lexicon results in a higher improvement than

adding new transition information. However, the

best results are gained by a combination of the

two methods. All active learning results are sig-

nificantly higher than the previous best result of

86.10%.

For the Penn Treebank baseline, there were 176

word types that were wrongly tagged. In the ac-

tive learning experiment, 71 types (40.34%) were

added with their ambiguity classes, among them

the prevalent word yeah. All of these words were

unambiguous in the target domain.

7 Conclusion and Future Work

We investigated a generally applicable method of

domain adaptation for POS tagging, which uses

the consent of three POS taggers with different bi-

ases to add in-domain sentences to the training set.

We show that we reach a slight but significant in-

crease in accuracy from 85.77% to 86.10% when

using all trigrams on which the POS taggers agree.

Reducing the size of the out-of-domain training set

has a detrimental effect on the quality of the POS

tagger. The improvement from adding in-domain

trigrams is due to more accurate transition prob-

abilities. In contrast, the lexical additions from

the in-domain data were detrimental. The active

learning strategy of adding user-defined lexical in-

formation for difficult unknown words improves

this accuracy to 89.15%. However, this accuracy

is still far below an in-domain accuracy, which
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reaches 95.66%.

TnT’s better performance on this task may be

due to its superior handling of unknown words,

but may also be a result of the fact that the fea-

ture sets used with MElt and SVMTool were de-

signed specifically for the Penn Treebank. Wemay

be able to improve results for those two taggers if

we optimize the feature set for the target domain.

However, this means modifying the implementa-

tion of the taggers since the feature extraction is

not modular. For the future, we are planning to in-

vestigate whether structural correspondence learn-

ing (Blitzer et al., 2006) will reach higher accura-

cies, even though it cannot be used with our best

performing POS tagger, TnT. We will also repeat

these experiments with a biomedical target domain

to see if our results transcend domains.
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