
Proceedings of Recent Advances in Natural Language Processing, pages 1–8,
Hissar, Bulgaria, 12-14 September 2011.

Extracting STRIPS Representations of Actions and Events

Avirup Sil and Alexander Yates
Center for Data Analytics and Biomedical Informatics

Temple University
Broad St. and Montgomery Ave.

Philadelphia, PA 19122
{avirup.sil, yates}@temple.edu

Abstract
Knowledge about how the world changes
over time is a vital component of common-
sense knowledge for Artificial Intelligence
(AI) and natural language understanding.
Actions and events are fundamental com-
ponents to any knowledge about changes
in the state of the world: the states before
and after an event differ in regular and pre-
dictable ways. We describe a novel sys-
tem that tackles the problem of extracting
knowledge from text about how actions
and events change the world over time.
We leverage standard language-processing
tools, like semantic role labelers and coref-
erence resolvers, as well as large-corpus
statistics like pointwise mutual informa-
tion, to identify STRIPS representations of
actions and events, a type of representa-
tion commonly used in AI planning sys-
tems. In experiments on Web text, our ex-
tractor’s Area under the Curve (AUC) im-
proves by more than 31% over the clos-
est system from the literature for identi-
fying the preconditions and add effects of
actions. In addition, we also extract sig-
nificant aspects of STRIPS representations
that are missing from previous work, in-
cluding delete effects and arguments.

1 Introduction

Common-sense knowledge about the changes in
the state of the world over time is one of the
most crucial forms of knowledge for an intelli-
gent agent, since it informs an agent of the ways
in which it can act upon the world. A recent
survey of the common-sense knowledge involved
in the recognizing textual entailment task demon-
strates that knowledge about action and event se-
mantics, in particular, constitutes a major compo-
nent of the knowledge involved in understanding

natural language (LoBue and Yates, 2011). This
knowledge is also vital for central AI tasks like
planning, plan recognition (Kautz, 1991; Geib and
Steedman, 2007), and dialogue processing (Car-
berry, 1990; Litman and Allen, 1987).

In this paper we explore text mining approaches
to extracting common-sense knowledge about ac-
tion and event semantics. Our previous approach
(Sil et al., 2010) (henceforth, S10) identifies the
preconditions and effects of actions. We describe
how we extend S10’s approach by identifying ad-
ditional kinds of effects; by connecting this knowl-
edge to an external ontology and generalizing the
preconditions and effects; and by identifying ar-
gument variables for each predicate. Our experi-
ments show that our novel extractor can identify
the fully-formed STRIPS representations of ac-
tions with precision 0.73 and recall 0.72, and it
improves on S10’s AUC for tasks that both sys-
tems can handle by over 31%.

The next section discusses previous work. Sec-
tion 3 introduces STRIPS representation and the
challenges involved in extracting such representa-
tions. Section 4 details our extraction techniques.
Section 5 presents our experiments. Section 6 con-
cludes and discusses future work.

2 Previous Work

The most closely related work has investigated
how to extract “scripts” or “narrative event
schemas” (Chambers and Jurafsky, 2009) — sets
of events that often occur together. Schank and
Abelson’s (1977) famous example of a restaurant
script includes events such as sitting down, order-
ing, eating, and paying the bill. Script knowl-
edge is distinct from STRIPS representations in
that a script relates one event e to a subsequent
event e′, whereas STRIPS relates an event e to
a state of the world s before or after e. Our
extracted knowledge could complement the stan-
dard restaurant script, for example, with knowl-

1



edge that is hungry(diner) is true before
the diner eats, and ¬is hungry(diner) is
true afterwards. Neither of these statements con-
stitutes an event in a script, but they do fall into the
STRIPS paradigm.

Other research into extracting the relationships
between events has investigated causal relation-
ships (Girju, 2003) and, more generally, para-
phrases, such as in the DIRT system (Lin and Pan-
tel, 2001). Such systems typically do not distin-
guish between event-event relationships that ap-
pear in scripts — e.g., a flooding event e2 can fol-
low a raining event e1 — and event-state relation-
ships — e.g., is wet(grass) follows a raining
event e1. Our system is focused only on the lat-
ter: we are concerned how the state of the world
changes with the occurrence of an event rather
than how one event influences another event. Fur-
thermore, existing systems do not consider pre-
condition relationships, which are neither causal
nor paraphrases, and which are central to AI rep-
resentations of actions and events.

Extracting and representing selectional prefer-
ences has attracted significant attention recently,
especially using latent-variable probabilistic mod-
els like Latent Dirichlet Allocation (Ritter et al.,
2010). Preconditions are a more general type of
restriction on the arguments to actions than selec-
tional preferences — e.g. asleep(x) is a precon-
dition to awaken, but would not be considered a
selectional preference because it does not consti-
tute a class or type, but rather a property, of x.

3 STRIPS Representations

3.1 Background and Terminology

We define actions as observable phenomena, or
events, that are brought about by rational agents.
Because actions and events are central to AI,
there is a long history of work in representing
their semantics. One of the best-known, and still
widely used, representations for action semantics
is the STRIPS representation (Fikes and Nilsson,
1971); two examples of STRIPS representations
are given in Figure 1. We use STRIPS to represent
both actions and events. Formally, a STRIPS
representation is a 5-tuple (a, args, pre, add, del)
consisting of the action name a, a list args of
argument variables that range over the set of
objects in the world, and three sets of predicates
that reference the argument variables. The first,
the precondition list pre, is a set of conditions

awaken insert
STRIPS args: x o, p

pre: asleep(x) object#1(o),
opening#1(p),
¬in(o, p)

add: awake(x) in(o, p)

del: asleep(x) ¬in(o, p)

S10 pre: asleep person, slot
add: awake in

Figure 1: Two example STRIPS representations
(above), and corresponding examples of the rep-
resentation extracted in our prior work, S10 (be-
low). In contrast with S10, the STRIPS represen-
tations require extracting delete effects and resolv-
ing coreference relationships among arguments to
predicates. Also, our version of STRIPS uses
WordNet synsets to unambiguously specify predi-
cate names.

that must be met in order for the action to be
allowed to take place. For instance, in order for
someone to awaken, she or he must first be asleep.
The other two sets of conditions specify how
the world changes when the action takes place:
the add list describes the set of new conditions
that must be true afterwards (e.g., after the
event insert(pencil24,sharpener3),
in(pencil24,sharpener3) holds true),
and the del list specifies the conditions that
were true before the action happened but are no
longer true. These add and del conditions are
sometimes collectively referred to as effects or
postconditions.

Formally, the precondition, add, and delete lists
correspond to a set of rules describing the logi-
cal consequences of observing an event. To de-
scribe these rules, we assume a representation of
the world grounded in a logical form, such as
situation logic (Barwise, 1989) or episodic logic
(Schubert and Hwang, 2000). For simplicity, we
represent the passage of time by discrete time
points t, together with a temporal-ordering re-
lation after(t1, t2). This is the same notion of
time traditionally adopted by AI planning sys-
tems, although recent work has gone into elab-
orating this representation (Bresina et al., 2002;
Younes et al., 2003). A set of constants identify

2



the objects that exist in the world, and at each
time point, a set of logical predicates describes
the state of the world at that time, for instance
on(book1,shelf4, t9).

Let t1 be the time point immediately preceding
an event e with arguments args, t2 the time of
event e, and t3 the time immediately following e.
For each precondition p, each add effect a, and
each delete effect d, the following rules hold:

∀argse(args, t2)⇒ p(argsp, t1)

∀argse(args, t2)⇒ a(argsa, t3)

∀argse(args, t2)⇒ ¬d(argsd, t3)

where argsx represents the subset of the argu-
ments to which the predicate x applies. Finally,
we assume a second-order frame axiom that states
that unless explicitly updated by an event’s effects,
predicates that were true (false) before an event re-
main true (false) afterwards.

3.2 Problem Formulation: STRIPS
Extraction

The STRIPS extraction task takes as input a word
or phrase e naming a type of event, like insert,
and a large collection D of documents that men-
tion the action at least once. As output, systems
produce a STRIPS representation of the event: the
argument list for the event; three sets of predi-
cates representing the preconditions, add effects,
and delete effects; and for each predicate, the list
of variables that the predicate applies to.

This problem formulation is a first step towards
extracting knowledge of dynamics, although it cer-
tainly does not cover the full scope of the prob-
lem. For instance, we do not attempt to extract
representations for durative or repetitive events,
or actions like escalate or accelerate that
change quantities or numerical attributes. Further-
more, we restrict our attention in this paper to ex-
tracting predicates with only a single argument.
Despite the restrictions from the full problem of
extracting knowledge of dynamics, our problem
formulation involves a number of difficult techni-
cal challenges which together constitute a substan-
tial extraction problem.

3.3 Challenges
Word sense ambiguity, synonyms, and syntactic
ambiguity plague our system, as they do all ex-
traction systems, but in contrast to S10 we expect
our extractor to identify sense-disambiguated

entries in an ontology for predicates, rather than
ambiguous terms. Hence, we want to extract
liquid#3 (fluid matter having no fixed shape but
a fixed volume) in Wordnet (Fellbaum, 1998)
as a precondition for action boil as opposed to
liquid#4 (a frictionless continuant that is not a
nasal consonant). Like the KNOWITALL system
and related Web IE systems (Etzioni et al., 2005;
Downey et al., 2005), we rely on the redundancy
inherent in large document collections to help
address these issues. In addition, we face these
challenges:

Lack of Explicitly Stated Knowledge: Common-
sense knowledge, like preconditions and postcon-
ditions of events, is often taken for granted by
the author and reader, and thus does not need to
be stated explicitly. Our biggest challenge is to
create a system that can extract this knowledge
even though it is never stated explicitly.

Temporality: Our patterns must distinguish
between implications that are true before an event
vs. after an event.

Generalization: The most common example of
a cut event in text may be of a scissors cutting
paper, but we do not want to conclude from these
examples that scissors and paper are preconditions
for cutting. Instead, some larger class of objects,
like the set of sharp objects, is a better description
of the precondition for the cutting instrument.
Unlike S10, we expect a STRIPS extractor to
extract appropriately-generalized predicates.

Rule Extraction: Like the DIRT system (Lin and
Pantel, 2001), a STRIPS extraction system must
identify rules rather than grounded facts. Instead
of discovering asleep(person1), we want to
discover patterns like ∀x,t1,t2awaken(x, t2) ∧
after(t2, t1) ⇒ asleep(x, t1). In contrast,
S10 does not identify predicate arguments, which
enable the use of preconditions and effects as
inference rules.

4 Extraction Methods

4.1 Extracting Preconditions and Add Effects

Our previous system, S10 identifies the names of
preconditions and add effects. We briefly review
S10’s approach here.

Given a corpus where each document contains
an event e, S10 begins by identifying relations and
arguments in a large text corpus using an open-

3



domain semantic role labeler (Huang and Yates,
2010) and OpenNLP’s noun-phrase coreference
resolution system1. Taking a set of candidate pred-
icate words, we then define different features of
the labeled corpus that measure the proximity in
the annotated corpus between a candidate word
and the action word. Using a small sample of
labeled action words with their correct precon-
ditions and effects, we then train an RBF-kernel
Support Vector Machine (SVM) to rank the can-
didate predicate words by their proximity to the
action word.

S10 use three different types of features for
measuring proximity: first, we compute the point-
wise mutual information (PMI) (Turney, 2002) be-
tween the event e and the candidate word c using
the document set D. For any set of words W , let
DW represent the set of documents containing all
words in W .

PMI(e, c) = log
|D{e,c}|
|D{e}||D{c}|

(1)

Second, we compute the three-way PMI between
e, c, and discriminator features f :

PMI(e, c, f) = log
|D{e,c,f}|

|D{e}||D{c}||D{f}|
(2)

By using discriminator features f like before
and requires, these three-way PMI features
can measure if e and c relate to one another in a
way that is indicative of preconditions, in particu-
lar. Likewise, discriminator features like after
and causes, can measure whether c relates to e
in the manner of an effect. In practice, approx-
imately 200 discriminator features for precondi-
tions and 200 for add effects are selected using
greedy, χ2 feature selection.

The third kind of feature for measuring prox-
imity between e and c relies on semantic role and
coreference annotations. For instance, one such
measure counts how often c occurs as an argument
to a predicate e, as indicated by the semantic role
annotations. Another feature counts how often c
corefers with an argument to a predicate e, and an-
other counts how often c appears within a window
of text near a predicate e. See S10 for full details
on these features.

4.2 Connecting Extractions to an Ontology
One obvious shortcoming of the S10 system is
that it fails to generalize adequately. For instance,

1http://opennlp.sourceforge.net

s CWs

nurse#1 {nurse}
doctor#1 {doctor,allergist}

health prof.#1 {doctor,nurse,allergist}
person#1 {doctor,nurse,poet,. . .}

Table 1: Sample candidate preconditions from
CS for action ‘heal’, together with the set of
words in the corpus for ‘heal’ that have the can-
didate synset as a hypernym.

the system extracts hammer as a precondition for
the action crush. While it is true that if one
has a hammer, then one can crush things, this is
too strict of a precondition. Using this incorrect
knowledge, a system might conclude from the text
“Jane crushed the soda can with her hands” that
hands are a kind of hammer.

Our first extension to the baseline S10 system is
to give it the capacity to generalize the predicates
it finds, by giving it more general candidate pred-
icates. Let synsets(w) denote the set of WordNet
synsets for a word w, and let CW be the set of
candidate words used by S10. For each c ∈ CW ,
we add each s ∈ synsets(c) to a new candidate
predicate list of synsets CS; if c does not appear
in WordNet, we add c itself toCS. We then add all
direct and indirect hypernyms of the synsets inCS
to CS. In Table 1, we show a sample of the can-
didate preconditions s from CS for action heal.
We also show the subset CWs of words from CW
that have s as a hypernym.

Our second extension to S10 is to modify the
definition of our features so that they apply to the
synsets in CS rather than the words in CW . To
compute the PMI-based features, we set |D{s}| to
|DCWs |, and |D{e,s,f}| to be |D{e,f} ∩ DCWs |.
For semantic role-based features, let F (e, c) de-
note one of the counts we compute for candidate
word c and event e. For hypernyms, we change
this to F (e, s) =

∑
c∈CWs

F (e, c). We refer to
S10 with the new candidates CS and the modified
features as S10′.

Correctly ranking the elements of CS is sig-
nificantly harder than ranking CW (the problem
for S10), because the new list has far more el-
ements — multiple synsets and hypernyms for
each element of CW . The feature set in the
S10′ system is unable to handle these new chal-
lenges. In particular, S10′ tends to choose overly

4



feature description

root-dist 1. maxr∈R d(s, r)
2. minr∈R d(s, r)

3.
∑

r∈R d(s,r)

|R|
max-dist maxc∈CWs mins′∈synsets(c) d(s, s

′)

avg-dist
∑

s′∈synsets(c)|c∈CWs
d(s,s′)

|CWs|

weighted
dist

∑
c∈CWs,s′∈synsets(c)

d(s, s′)C(c)∑
c∈CWs

C(c)

Table 2: Features added to S10′ to create HYPER.

general hypernyms far too often. For example,
synsets like physical entity#1 tend to rank
highly as preconditions and add effects according
to S10′, as many words in CW are hyponyms of
physical entity#1, and thus this synset has
high scores for count and PMI-based features.

To compensate, we include several new features
that measure the generality of hypernyms. Table
2 lists the new features we add to S10′ to cre-
ate our new extractor, which we call the HYPER

model. Here, d(s, s′) is the distance between s and
s′, or the number of hyponym relationships sepa-
rating s and s′; R is the set of root nodes in the
WordNet hierarchy; and C(w) is the frequency of
word w in our corpus. The first three features cal-
culate the maximum, minimum and average dis-
tance separating s and any root node of the Word-
Net hierarchy. The second and third features find
the maximum and average distance between s and
the terms in CWs. The final feature computes
a weighted distance between s and the elements
c ∈ CWs, where each weight is the frequencies
of c. Each of these features helps to differenti-
ate between very general synsets and more spe-
cific synsets (or synsets for terms appearing fre-
quently in the corpus). Adding these features to
HYPER allows the SVM to balance between candi-
date synsets that score highly on the standard S10′

features and candidate synsets that are less gen-
eral.

4.3 Detecting Delete Effects

S10′ and HYPER can identify preconditions and
add effects, but they do not handle delete effects.
We extend the system with a separate extractor
for delete effects. By far the most common kind

feature description

prefix 1 if p = {un-,im-,in-} concate-
nated with an add effect

loose count a separate feature |D{neg,p,f}| for
each neg ∈ {“no”, “not”} and
each f ∈ {“after”, “during”,
“as”, “before”}

strict count for each neg and f ,
|D{“neg p f”}|

simple PMI for each neg, PMI(neg, p) and
PMI(“neg p”, e)

ratio PMI for each neg, PMI(“neg p”,e)
PMI(p,e)

Table 3: Features for classifying whether a pre-
condition predicate p is a delete effect of an event
e.

of delete effect is one that falsifies a precondition
predicate: e.g., before someone puts a book down,
they are holding the book, and afterwards they are
not. So far, we have restricted our attention to this
common case, although more general extractors
are possible for conditional delete effects, which
falsify a predicate only on the condition that the
predicate was true before the event.

We create a binary SVM classifier that predicts
for each precondition predicate whether or not
the precondition turns false after the event. For
each precondition predicate p, we construct fea-
tures that measure how strongly p is associated
with negation in the context of the event e. We
include a mix of orthographic features, count fea-
tures, and PMI-based features. The full set of our
features for this classifier is listed in Table 3.

As an example of the delete effects classifier in
action, consider the event maim. HYPER can ex-
tract unhurt as a precondition and hurt as an
add effect. In general, whenever we see an add ef-
fect that contradicts a precondition, we expect to
delete the precondition. The prefix feature in
Table 3 for maim flags unhurt as a possible pre-
condition to be deleted because it matches ‘un’ +
add effect hurt.

4.4 Determining Arguments

The last subtask for our STRIPS extractor is to
“relation-ify” our extracted representation by as-
signing arguments to the event e and each predi-
cate. S10 makes no attempt to identify arguments
to extracted predicates. As a result, for action

5



awaken, the S10 representation does not distin-
guish between a case where one entity x is asleep
and another entity y wakes up, and the case where
x is asleep and then x awakens.

This is a complex, structured-prediction prob-
lem involving coreference resolution between the
arguments to extracted relationships. As a first at-
tempt, we resort to an effective heuristic solution.
We use the argument role labels supplied by our
propbank-style semantic role labeler as candidate
variables for our representation. For an extracted
predicate p for e, we assign arguments to p based
on the semantic role label or labels with which it
is most commonly associated in the annotated cor-
pus. That is, for each possible semantic role r, we
count how often p occurs in a phrase that is an ar-
gument to e and is annotated with role r. We also
count how often p occurs as part of any phrase that
is annotated with role r. Let score(e, r, p) denote
the sum of these two counts. We choose an argu-
ment variable r∗ = arg maxr score(e, r, p), and
write p as the predicate p(r∗). Finally, we set the
arguments of e to be the set of unique arguments
chosen for all of its extracted predicates.

Figure 2 shows an example of this technique
and two baselines. The input to each system is
a STRIPS representation without arguments and
the output adds arguments. For action maim, the
semantic role heuristic finds that person#1 and
unhurt#1 occur most often in phrases marked
with a propbank A1 role. Hence, it concludes that
they both should have the same argument label.
object#1 occurs more in phrases with A2 roles,
and is given a separate argument variable as a re-
sult. These two roles then constitute the argument
set for event maim.

5 Experiments

5.1 Experimental Setup

We use the same experimental setup as in
S10: we use the dataset of 40 actions
from the lexical units in the frames that in-
herit from the Transitive action frame in
FrameNet(Johnson et al., 2003). We use the same
document collection of 15,088 documents that we
downloaded from the Web for these 40 action
words. For each action word, candidate predi-
cates for precondition and add effect extraction
were the top 500 words ranked by PMI with the
action word. This list was augmented with the su-
perclasses from WordNet, as described above. For

action pre add

S10’: maim person#1
unhurt
object#1

hurt

Distinct var. 
baseline:

maim(a,b,c,d) person#1(a)
unhurt(b)
object#1(c)

hurt(d)

Same var. 
baseline:

maim(a) person#1(a)
unhurt(a)
object#1(a)

hurt(a)

Semantic Role 
heuristic:

maim(A1,A2) person#1(A1)
unhurt(A1)
object#1(A2)

hurt(A1)

Figure 2: Addition of arguments to predicates for
action ‘maim’.

each action word, we hand-constructed a STRIPS
representation (we did not use S10’s labeled data
because it did not include the WordNet super-
classes as candidate words, or as part of its hand-
constructed representations). On average, our la-
beled data had 2.6 preconditions, 0.8 add effects,
0.5 delete effects, and 3 argument variables per ac-
tion word. In all of our extraction experiments,
we take care to test the extractors on different ac-
tion words from the ones on which they are trained
(for any components that require training), so that
results should generalize to new action words be-
yond the ones in our current collection.

5.2 Results and Discussion

Our first experiment compared predicate extrac-
tion (preconditions and add effects) between S10′

and HYPER. We use 5-fold cross-validation, with
each run training on 32 action words and testing
on the remaining 8. The training data consists
of action words, candidate words, feature values,
and a +1 label for candidates matching our hand-
constructed representation, and -1 for those that
did not match. We train a regression model, so that
our SVMs produce real-valued predictions for (ac-
tion word, candidate word) pairs. We construct a
list of all such pairs and rank them according to the
SVM output. Figure 3 shows our results. The area
under the curve (AUC) for both preconditions and
add effects is significantly higher (0.34 improve-
ment in AUC for preconditions, 0.17 for add eff-
fects) for the full model, largely because the S10′

model ranks very general WordNet classes, like
physical entity, very highly for most action
words, simply because they appear so often as the

6



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io
n

Recall

Preconditions 
(Hyper)
Preconditions 
(S10')
Add Effects 
(Hyper)
Add Effects (S10')

Figure 3: Precision-Recall curves for extracting
preconditions and add effects.

superclasses of words in the documents. By incor-
porating the features that measure the generality
of classes, the full extraction model can learn to
rank these very general classes much lower, ex-
cept when strongly supported by evidence from
the documents. The absolute performance of the
full extractor is quite strong, with AUC 0.82 for
preconditions and 0.72 for add effects, compared
with AUCs for S10′ of 0.48 for preconditions and
0.52 for add effects.

We measured the performance of our delete
effect extractor using the same 5-fold cross-
validation setup. Recall that our delete classifier
predicts which preconditions become false after
the action. To separate the evaluation of this clas-
sifier’s performance from our precondition extrac-
tor, we use gold-standard preconditions as input to
the classifier. As before, we construct train and
test sets consisting of the action word, the pre-
condition, values for our features, and a label of
+1 if the precondition is in fact a delete effect,
and -1 otherwise. We train an SVM classifier,
and measure its precision and recall on detecting
true delete effects for each of the five folds. Ta-
ble 4 shows the results for extracting this kind of
knowledge. The average precision across the folds
was 72.2%, and recall was 52.6%, for an F1 of
60.8. In contrast, a baseline that predicts all pre-
conditions are also delete effects achieves an F1
of 41.3 (26% precision, 100% recall), and other
baselines (random, no preconditions are delete ef-
fects) performed worse. Thus, the delete effect
classifier is able to reliably detect negative knowl-
edge, which is rarely stated explicitly, using co-
occurrence statistics and other simple features.

For argument matching, we measured per-
formance by the overall quality of the ex-
tracted STRIPS representations, including argu-
ments. We first computed a maximal matching

Technique Prec. Recall F1

All pre. are deleted 26 90 40.3
No pre. are deleted 100 10 18.2
SVM trained model 72.2 52.6 60.8

Table 4: Precision and recall for our system which
extracts delete effects. The final SVM trained
model has gold standard preconditions as input to
the classifier. For an action with no delete effects,
if the system predicts no delete effects, we judged
precision and recall to be 100%, which is why the
recall of the second baseline is nonzero. Precision
and recall numbers are macro-averaged across ac-
tions.

between the argument variables selected by our
method and the argument variables in the hand-
constructed STRIPS representation. After com-
puting the matching, we substituted the variables
from the gold standard representation into the
automatically-produced variables. We then mea-
sured the quality of our automatically-generated
full STRIPS representation by measuring how
many of the predicted predicates match exactly a
predicate in the gold standard (precision), and how
many of the gold standard predicates were found
exactly in the automatically-generated representa-
tions (recall). For the purposes of this calculation,
we used the top 3 automatically-generated precon-
ditions and top 1 automatically-generated add ef-
fect per action word according to the HYPER ex-
tractor, regardless of the numeric scores for each
predicate. (We found that recall increased but pre-
cision dropped more when we included a second
add effect per action word.) We did not include
delete effects in this experiment. We compared our
heuristic technique to two baselines, one which
predicts that all extracted predicates for an action
share the same variable, and one which treats ev-
ery argument as a distinct variable. Table 5 shows
our results. The semantic role labeling heuristic
improves dramatically over the closest baseline by
25 points in F1. Overall, our complete extraction
system found precondition and add effect predi-
cates and arguments for STRIPS representations
with an F1 of 0.72, using only statistics over a
small corpus collected from the Web and a small
set of hand-labeled examples.

7



Technique Prec. Recall F1

All preds. have same var. 32 33 32
Each pred. has distinct var. 56 58 57
Semantic role heuristic 73 72 72

Table 5: Precision and recall of our complete
representation with extracted predicates and argu-
ments.

6 Conclusion and Future Work

We have presented a system for extracting a com-
plete STRIPS representation of 40 common ac-
tions from text, with an overall F1 of 0.72. We
demonstrate that our system significantly outper-
forms the closest comparable one from the litera-
ture and extracts richer representations. Future di-
rections include extracting more sophisticated rep-
resentations of action semantics, especially multi-
argument predicates and logical connectives be-
tween predicates, and extracting representations
for more complex actions, like durative or repet-
itive actions.

References
Jon Barwise. 1989. The Situation in Logic. CSLI.

John Bresina, Richard Dearden, Nicolas Meuleau,
David Smith, and Rich Washington. 2002. Planning
under continuous time and resource uncertainty: A
challenge for AI. In Proc. of the 18th Conference on
Uncertainty in Artificial Intelligence.

Sandra Carberry. 1990. Plan Recognition in Natural
Language Dialogue. MIT Press, Cambridge, MA,
USA.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of ACL-IJCNLP 2009.

Doug Downey, Oren Etzioni, and Stephen Soderland.
2005. A Probabilistic Model of Redundancy in In-
formation Extraction. In IJCAI.

O. Etzioni, M. Cafarella, D. Downey, S. Kok,
A. Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. 2005. Unsupervised named-entity extrac-
tion from the web: An experimental study. Artificial
Intelligence, 165(1):91–134.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. Bradford Books.

R. Fikes and N. Nilsson. 1971. STRIPS: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2(3/4):189–
208.

Christopher W. Geib and Mark Steedman. 2007. On
natural language processing and plan recognition. In
IJCAI, pages 1612–1617.

Roxana Girju. 2003. Automatic detection of causal
relations for question answering. In Proceedings of
the ACL 2003 workshop on Multilingual summariza-
tion and question answering, pages 76–83, Morris-
town, NJ, USA.

Fei Huang and Alexander Yates. 2010. Open-domain
semantic role labeling by modeling word spans. In
ACL.

Christopher Johnson, Miriam Petruck, Collin Baker,
Michael Ellsworth, Josef Ruppenhofer, and Charles
Fillmore. 2003. FrameNet: Theory and practice.

Henry A. Kautz. 1991. A formal theory of plan recog-
nition and its implementation. In Reasoning about
plans, pages 69–124. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

D. Lin and P. Pantel. 2001. DIRT – Discovery of In-
ference Rules from Text. In KDD.

Diane J. Litman and James F. Allen. 1987. A
plan recognition model for subdialogues in conver-
sations. Cognitive Science, 11(2):163 – 200.

Peter LoBue and Alexander Yates. 2011. Types of
common-sense knowledge needed for recognizing
textual entailment. In ACL.

A. Ritter, Mausam, and Oren Etzioni. 2010. A la-
tent dirichlet allocation method for selectional pref-
erences. In ACL.

R.C. Schank and R.P. Abelson. 1977. Scripts, plans,
goals and understanding: an inquiry into human
knowledge structures. Erlbaum.

Lenhart K. Schubert and Chung Hee Hwang. 2000.
Episodic Logic meets Little Red Riding Hood: A
comprehensive natural representation for language
understanding. In Lucja Iwanska and Stuart C.
Shapiro, editors, Natural Language Processing and
Knowledge Representation: Language for Knowl-
edge and Knowledge for Language, pages 111–174.
MIT/AAAI Press.

Avirup Sil, Fei Huang, and Alexander Yates. 2010.
Extracting action and event semantics from web text.
In AAAI Fall Symposium on Common-Sense Knowl-
edge (CSK).

P. D. Turney. 2002. Thumbs up or thumbs down? se-
mantic orientation applied to unsupervised classifi-
cation of reviews. In Procs. of ACL, pages 417–424.

Håkan L. S. Younes, David J. Musliner, and Reid G.
Simmons. 2003. A framework for planning in
continuous-time stochastic domains. In AAAI.

8


