
International Conference RANLP 2009 - Borovets, Bulgaria, pages 411–415

String Distance-Based Stemming
of the Highly Inflected Croatian Language

Jan Šnajder and Bojana Dalbelo Bašić
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia
{jan.snajder, bojana.dalbelo}@fer.hr

Abstract
Stemming refers to the grouping of morphologi-
cally related words into so-called stem classes for
the purpose of improving information retrieval
performance. Traditional approaches to stem-
ming are language-specific and require a sub-
stantial amount of linguistic knowledge. A vi-
able alternative is string distance-based stem-
ming, in which stem classes are obtained by clus-
tering word-forms from a corpus. In this pa-
per, we apply string distance-based stemming
to the highly inflected Croatian language using
a number of string distance measures proposed
in the literature. We focus on evaluating the
stemming performance at both inflectional and
derivational level, and investigate how this per-
formance relates to the choice of the distance
threshold value. Although our focus is on the
Croatian language, we believe our results trans-
fer well to languages of similar morphological
complexity.

Keywords

Stemming, morphology, string distance,Croatian language

1 Introduction

Most information retrieval (IR) systems represent doc-
uments simply as a collection of words. The perfor-
mance of such systems is negatively affected by the
fact that words in texts appear in various morphologi-
cal forms, either as the result of inflection (transforma-
tion of a word into various word-forms) or derivation
(transformation of a word into new, but semantically
related words). To reduce morphological variation, IR
systems typically rely upon some sort of morphologi-
cal normalization to conflate the various morphologi-
cal forms into a single representative form. Numerous
studies have shown morphological normalization to be
beneficial for IR; this has been shown for English [4],
as well as for other, more morphologically complex lan-
guages [13, 15].

The most common morphological normalization
technique is stemming. Stemming refers to the removal
of affixes from word-forms, yielding a stem common to
all word-forms. The well-known Porter algorithm [11]
is an example of such a rule-based approach to stem-
ming. More generally, stemming refers to the pro-
cess of grouping morphologically related word-forms

into the so-called stem classes. Traditional rule- and
dictionary-based stemming requires significant linguis-
tic expertise and resources, which is why, for resource-
poor languages, language-independent approaches are
gaining popularity. Among others, string distance-
based stemming, in which stem classes are derived by
clustering word-forms based on their character struc-
ture, has been shown to be a viable alternative. String
distance-based clustering was first proposed by Adam-
son and Boreham [1] for the English language, and sim-
ilar approaches were later employed for Arabic [12] and
Turkish [3]. More recently, Majumder et al. [9] pro-
posed string distance measures for stemming in Ben-
gali, as well as in Hungarian and Czech [8]. The per-
formance of their stemming procedure has been shown
to be comparable to traditional rule-based approaches.

In this paper, we investigate the applicability of
string distance-based stemming to the Croatian lan-
guage. The Croatian language, much like other
Slavic languages, is morphologically complex, espe-
cially in the form of inflection. Previous approaches
to the stemming in Croatian are rule-based [5, 7]
or dictionary-based [14, 16] and are restricted to in-
flectional morphology. To our knowledge, the work
reported here is the first application of a language-
independent stemming technique to the Croatian lan-
guage. The main focus of our work is a detailed eval-
uation of stemming performance, performed at both
inflectional and derivational levels. Although our fo-
cus is on the Croatian language, we believe our re-
sults transfer well to languages of similar morphologi-
cal complexity.

The rest of the paper is structured as follows. The
next section describes the details of our approach:
the string distance measures used, the clustering al-
gorithm, and the evaluation methodology. Section 3
presents and discusses the experimental results. Sec-
tion 4 concludes the paper and outlines future work.

2 Methodology

2.1 String distance measures

A variety of string distance measures for the clustering
of morphologically related word-forms have been pro-
posed in the literature. In [1], a Dice coefficient based
on character bigrams was used as a measure of string
similarity. We generalize this approach to a distance
measure based on arbitrary-length n-grams:

411

Dicen(X, Y) = 1− 2c

x + y
, (1)

where x and y are the total number of n-gram tokens
in words X and Y , respectively, and c is the number of
n-gram tokens common to X and Y . The intuition be-
hind this measure is that, because morphologically re-
lated words have a number of morphemes in common,
they will also have a number of n-grams in common.

In [9], string distance is computed by considering
character matches up to the first mismatch and penal-
izing all subsequent character positions. Of the four
measures proposed in [9], our preliminary experiments
indicated that the following two measures are most
promising:

D3(X, Y) =
n−m + 1

m

n∑
i=m

1
2i−m

, (2)

D4(X, Y) =
n−m + 1

n + 1

n∑
i=m

1
2i−m

, (3)

where m is the position of left-most character mis-
match, and n+1 is the length of the longer of the two
strings. Intuitively, measure D4 penalizes long non-
matching suffixes, whereas measure D3 also rewards
long matching prefixes.

One widely-known string distance measure is the
Levenshtein distance [6], also called the edit distance.
Edit distance between two strings is the minimal num-
ber of insertion, deletion, and substitution operations
needed to transform one string into another. Of the
three measures listed, edit distance is least morpho-
logically sensitive.

2.2 Clustering

Partitioning algorithms like the k-means algorithm are
widely used for clustering due to their effectiveness
and simplicity. Such algorithms are not directly appli-
cable to string distance-based clustering because they
require a vector space-based measure in order to com-
pute the cluster centroids. Thus, similar to [9] and
[1], we cluster the word-forms using a hierarchical ag-
glomerative algorithm [2]. The algorithm starts by as-
signing word-forms to singleton clusters and proceeds
by merging at each level the two least distant clus-
ters until a single cluster remains. From the result-
ing cluster tree (the dendrogram), clustering at spe-
cific distance levels can be obtained. The distance be-
tween two clusters is typically computed as the maxi-
mum, minimum, or average distance between elements
of the two clusters, referred to as complete-linkage,
single-linkage, and average-linkage algorithm, respec-
tively. Complete-linkage results in small and compact
clusters, single-linkage results in elongated clusters,
whereas the result of average linkage is somewhere in
between. In our experiments, we use average-linkage
clustering. Note that, although we use a hierarchical
agglomerative algorithm, we make no use of the de-
rived hierarchical structure.

The main drawback of hierarchical agglomerative
clustering is its computational inefficiency. Typical
implementation makes use of an n×n distance matrix,

where n is the number of elements. Thus, the space
complexity of the algorithm isO(n2). To construct the
complete dendrogram, the distance matrix is searched
for the least distant cluster pair within each of the n
iterations, yielding a time complexity of O(n3). Be-
cause the number of distinct word-forms in a corpus
is on the order of hundreds of thousands, this problem
must be addressed somehow.

Our approach is to cluster in two consecutive steps:
a divisive and an agglomerative step. The idea is
to use the divisive step to partition the set of word-
forms into pre-clusters and then to perform agglomer-
ative clustering on each of the pre-clusters separately.
Pre-clusters must be coarse-grained so that morpho-
logically related word-forms are assigned to the same
pre-cluster, otherwise they cannot be merged in the
agglomerative step. Partitioning n word-forms into
pre-clusters of size m reduces the space complexity to
O(m2) and the time complexity to O(nm2).

A straightforward approach to pre-clustering is to
compute the equivalence classes of word-forms sharing
a common prefix of a specified length l. We will de-
note this partition by P (l). The size of pre-clusters is
inversely proportional to l, but so is the quality of pre-
clustering. If we consider longer prefixes, more mor-
phologically related word-forms will end up being as-
signed to distinct pre-clusters. This problem suggests
that the procedure can be further improved by taking
into account the size of the obtained pre-clusters. The
idea is to increase the specified prefix length and recur-
sively partition only those clusters whose size is above
the specified threshold. This procedure results in size-
bounded pre-clusters of maximal quality. We will de-
note this partition by M(s), where s is the maximum
size of the pre-clusters.

2.3 Evaluation

Stemming algorithms are traditionally evaluated ex-
trinsically, i.e., by considering their effect on the per-
formance of IR systems. Such task-specific evaluation
makes it impossible to distinguish between the case
where the stemmer makes faulty conflations and the
case of correct conflation not being beneficial for the
task at hand. To address this, we use an intrinsic,
task-independent evaluation first proposed by Paice
[10]. This method evaluates a stemmer by counting
the actual understemming and overstemming errors
that the stemmer commits. The under- and overstem-
ming errors are counted on a manually constructed
word sample in which the words are grouped accord-
ingly. The understemming index UI is computed as
the proportion of pairs from the sample that are not
conflated even though they belong to the same group,
whereas the overstemming index OI is computed as
the proportion of pairs that belong to different groups
among those that are conflated to the same stem. The
stemming weight SW is defined as the ratio OI /UI .

The word sample we used consisted of 10,000 dis-
tinct word-forms (nouns, verbs, and adjectives) from
the Croatian newspaper “Vjesnik”.1 In order to make
separate evaluation of both inflectional and deriva-
tional stemming performance possible, we grouped the

1 http://www.vjesnik.hr

412

Table 1: Examples of word groups from the sample

{{arheolog}}
{{arhitekt, arhitekta},
{arhitekturi, arhitekture, arhitekturama},
{arhitektonski, arhitektonskih}}

{{arhiva, arhivima, arhivu},
{arhivske, arhivskim, arhivskoj}}

{{arija, arije, ariju}}

word-forms manually at two distinct levels. Inflec-
tional groups are comprised of inflectional word-forms
and have clear-cut semantic boundaries. Derivational
groups are comprised of word-forms from morpho-
logically and semantically related inflectional groups.
More precisely, two inflectional groups are joined to-
gether if the corresponding word-forms are derivation-
ally as well as semantically related (in the case of pol-
ysemy, it suffices if some of their senses are related).
A derivational group is then obtained by a transitive
closure of this pairwise relation. The semantic rela-
tions between members of such groups are less clear
and are often context dependent. Our sample consists
of 5, 508 inflectional and 3, 833 derivational groups.
Table 1 shows an excerpt from the sample in which
17 word-forms are grouped into seven inflectional and
four derivational groups.

3 Experiments and discussion

The experiments were performed on a corpus com-
prised of 92, 465 articles from the newspaper “Vjes-
nik”, amounting to over 23 million word-form tokens
and 560,137 word-form types.

3.1 Pre-clustering

As discussed above, the purpose of the divisive clus-
tering step is to decrease the complexity of agglom-
erative clustering. Because divisive clustering results
in understemming, we aim at keeping understemming
errors as low as possible, while at the same time ob-
taining small-sized pre-clusters.

The results for both aforementioned pre-clustering
partitions are depicted in Table 2. For each parti-
tion, we give the number of pre-clusters, the size of
the largest pre-cluster, and the inflectional (iUI) and
derivational (dUI) understemming indices. The un-
derstemming indices reflect how many errors the algo-
rithm makes by assigning inflectionally or derivation-
ally related word-forms to distinct pre-clusters, while
the size of the largest class determines the upper bound
of the algorithmic complexity. The problem of pre-
clustering with a common fixed-length prefix is that,
in order to obtain pre-clusters of manageable sizes, the
prefix length must be at least 5. This splits apart
many inflectional groups, as indicated by the high un-
derstemming values. Size-bounded partitioning, on
the other hand, can be used to obtain pre-clusters of
manageable sizes, while at the same time committing
much less understemming errors. In particular, parti-
tion M(500) seems like a reasonable trade-off between

Table 2: Size and understemming indices for parti-
tions P (l) and M(s)

Pre-clusters Understemming

Partition Number Largest iUI % dUI %

P (1) 32 72108 4.21 2.49
P (2) 808 29716 4.79 3.76
P (3) 9365 10774 7.45 7.09
P (4) 45794 2029 16.36 20.87
P (5) 113532 988 28.78 38.08
M(5000) 1501 4932 5.62 4.70
M(2500) 2873 2464 6.92 6.34
M(1000) 5732 1000 8.17 9.29
M(500) 10316 498 10.80 13.48
M(250) 18108 250 15.78 21.56
M(100) 37155 100 29.78 43.47

computational efficiency and stemming performance.
Thus, for the divisive step, we use M(500) and pre-
cluster 560,137 word-forms into 10,316 pre-clusters.

3.2 Clustering

After partitioning the corpus into pre-clusters of a
manageable size, we applied hierarchical agglomera-
tive clustering on each pre-cluster separately. We used
string distance measures Dice2 and Dice3, as defined
by (1), measures D3 and D4, as defined by (2) and
(3), respectively, and the edit distance. As a baseline,
we used the partitioning method P (l), which is equiv-
alent to simply truncating a word-form to the first l
characters.

The UI-OI plot on Fig. 1 shows the inflectional
stemming performance of the five distance measures.
As the value of the distance threshold increases, the
understemming decreases and the overstemming in-
creases. The plot reveals that all five measures per-
form far better than simple truncation. As expected,
the edit distance performs worse than other mea-
sures. Measures D3 and D4 are of comparable per-
formance and consistently outperform measures Dice2

and Dice3. The UI-OI plot for derivational stemming
performance is shown on Fig. 2. Except for the edit
distance, which performs considerably worse than the
truncational baseline, the other string distance mea-
sures yield modest improvement over the baseline.
Measures D3, D4, and Dice3 perform at comparable
levels, whereas measure Dice2 performs slightly less
well.

3.3 Optimal measure

A good string distance measure should commit as
few under- and overstemming errors as possible. The
trade-off between these two types of errors is similar
to the trade-off between precision and recall in IR. As
in IR, we define a composite measure of stemming per-
formance, the stemming quality, as a harmonic mean
between 1−UI and 1−OI , as follows:

SQ =
2(1−UI)(1−OI)

2−UI −OI
. (4)

413

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 30 40 50 60 70 80

iO
I %

iUI %

4

5

6

7

8

D3
D4

Dice2
Dice3

Edit
P(l)

Fig. 1: UI-OI plot for inflectional grouping

This assumes that under- and overstemming errors are
equally important, though this may not be always the
case. We use iSQ and dSQ to denote inflectional and
derivational stemming quality, respectively; these tell
us how well the string distance measure approximates
the inflectional and derivational groupings.

Table 3 lists the optimal inflectional and derivational
stemming quality of the five string distance measures
and the corresponding threshold value t. Measure D4

result in the best stemming quality. We can see that
the stemming quality of all measures is worse on in-
flectional levels than on derivational levels, and that
in most cases the understemming errors are more pro-
nounced.

3.4 Optimal threshold value

The choice of the distance threshold is obviously
crucial for stemming performance. A lower thresh-
old value yields “light” and predominantly inflec-
tional stemming, whereas a higher threshold value
yields “heavy” and predominantly derivational stem-
ming. The difficulty in choosing the optimal threshold
value derives from the semantic relationships between
derivationally related words being to a certain degree
arbitrary. It is therefore difficult to decide how much
derivational stemming is appropriate. What is certain,
however, is that stemming should occur at least at the
inflectional level, but should not extend beyond the
derivational level. To account for this, we only have to
consider inflectional understemming and derivational
overstemming errors, and redefine the stemming qual-
ity SQ given by (4) in terms of indices iUI and dOI .
Fig. 3 shows the so-defined stemming quality SQ of
measure D4, along with the inflectional and deriva-
tional stemming qualities iSQ and dSQ . Measure
D4 achieves optimal inflectional stemming quality for
t = 0.537 and optimal derivational stemming quality

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 30 40 50 60 70 80
dO

I %
dUI %

4

5

6

7

D3
D4

Dice2
Dice3

Edit
P(l)

Fig. 2: UI-OI plot for derivational grouping

 30

 40

 50

 60

 70

 80

 90

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4

S
Q

 %

threshold

inflectional (iSQ)
derivational (dSQ)

SQ

Fig. 3: Stemming quality of measure D4

for t = 1.104 (cf. Table 3). Between these two ex-
tremes, the optimal stemming quality SQ = 85.32% is
reached for t = 0.859; this is where measure D4 makes
the least number of inflectional understemming and
derivational overstemming errors, 19.38% and 9.39%,
respectively.

3.5 Discussion

Among the considered measures, stemming quality is
best for measure D4; this measure seem to capture
best the inflectional and derivational morphology of
the Croatian language, which is mostly suffixational.
Apart from this, we can make two interesting observa-
tions. Firstly, inflectional stemming quality is consis-
tently worse than derivational stemming quality, and
improvement over the simple truncational baseline is
much greater for inflection than for derivation. These
results are probably due to the fact that, at the level of
character structure, inflectional relations are less read-

414

Table 3: Optimal inflectional and derivational stemming performance of five string distance measures

Inflection Derivation

Measure t iUI % iOI % iSQ % iSW t dUI % dOI % dSQ % dSW

D3 0.813 35.17 20.13 71.56 0.57 3.047 23.15 25.95 75.42 1.12
D4 0.537 34.22 19.23 72.51 0.56 1.104 27.61 20.36 75.84 0.74
Dice2 0.332 36.18 28.15 67.60 0.78 0.560 31.35 16.61 75.31 0.53
Dice3 0.376 38.41 26.87 66.86 0.70 0.668 30.97 16.84 75.44 0.54
Edit 3.075 28.59 36.86 67.02 1.29 5.711 22.12 36.58 69.91 1.65

ily discernible than derivational relations. Secondly,
for both inflection and derivation, understemming er-
rors are more pronounced than overstemming errors
(i.e., SW < 1). This difference in errors can proba-
bly be attributed to pre-clustering, which introduces
additional understemming errors.

With an appropriate threshold, the stemming qual-
ity of measure D4 can reach to over 85%. This
should be contrasted with stemming quality of sim-
ple truncation, which (on the same sample) reaches to
SQ = 75.55%, and lexicon-based inflectional normal-
ization [16], reaching to SQ = 95.07%. This result is in
favor of string distance-based stemming as a language-
independent approach to stemming. A more conclu-
sive comparison will have to be done in an extrinsic,
task-specific setting.

4 Conclusion

String distance-based stemming is an alternative
to the traditional language-specific stemming ap-
proaches. We have applied string distance-based stem-
ming to the morphologically complex Croatian lan-
guage, using a number of string distance measures pro-
posed in the literature. For reasons of computational
efficiency, the clustering algorithm we used combines
divisive pre-clustering with agglomerative clustering.

Intrinsic evaluation of stemming performance on the
given sample has shown that certain string distance
measures are more adequate than others for captur-
ing Croatian inflectional and derivational morphol-
ogy. By choosing an appropriate distance threshold,
stemming quality considerably outperforms the trun-
cational baseline, and stemming errors can be kept in
the range of 10–20%. While this is likely to be accept-
able for many IR applications, it remains to be proven
on actual IR tasks, and we leave this for future work.

Additionally, in our future work, we intend to com-
plement the string distance-based approach with some
language-specific knowledge and investigate how this
refinement improves stemming quality.

Acknowledgments

The authors would like to thank the reviewers for help-
ful comments and suggestions on an earlier draft of this
paper. This work has been supported by the Ministry
of Science, Education and Sports, Republic of Croa-
tia, under the Grant 036-1300646-1986 and the Gov-
ernment of Flanders under the Grant KRO/009/06
(CADIAL).

References
[1] G. Adamson and J. Boreham. The use of an association mea-

sure based on character structure to identify semantically re-
lated pairs of words and document titles. Information Pro-
cessing and Management, 10(7/8):253–260, 1974.

[2] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-
tion. John Wiley & Sons, New York, 2001.

[3] F. C. Ekmekcioglu, M. F. Lynch, and P. Willett. Stemming
and n-gram matching for term conflation in Turkish texts. In-
formation Research News, 7(1):2–6, 1996.

[4] D. A. Hull. Stemming algorithms: A case study for detailed
evaluation. Journal of the American Society of Information
Science, 47(1):70–84, 1996.

[5] D. Lauc, T. Lauc, D. Boras, and S. Ristov. Developing text
retrieval system using robust morphological parsing. In V. H.-
D. Damir Kalpić, editor, Proceedings of 20th International
Conference on Information Technology Interfaces (ITI’98),
pages 61–65. SRCE, Zagreb, 1998.

[6] V. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Doklady, 10(8):707–
710, 1966.

[7] N. Ljubešić, D. Boras, and O. Kubelka. Retrieving information
in Croatian: Building a simple and efficient rule-based stem-
mer. In Digital information and heritage, pages 313–320, Za-
greb, 2007. Odsjek za informacijske znanosti Filozofskog fakul-
teta u Zagrebu.

[8] P. Majumder, M. Mitra, and D. Pal. Hungarian and Czech
stemming using YASS. In Working Notes for the CLEF 2007
Workshop, 2007.

[9] P. Majumder, M. Mitra, S. K. Parui, G. Kole, P. Mitra, and
K. Datta. YASS: Yet another suffix stripper. ACM Transac-
tions on Information Systems, 25(4):18:1–18:20, 2007.

[10] C. D. Paice. Method for evaluation of stemming algorithms
based on error counting. Journal of the American Society for
Information Science, 47(8):632–649, 1996.

[11] M. F. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, July 1980.

[12] A. D. Roeck and W. Al-Fares. A morphologically sensitive
clustering algorithm for identifying Arabic roots, 2000.

[13] J. Savoy. Light stemming approaches for the French, Por-
tuguese, German and Hungarian languages. In SAC ’06: Pro-
ceedings of the 2006 ACM symposium on Applied computing,
pages 1031–1035, New York, NY, USA, 2006. ACM Press.

[14] M. Tadić and B. Bekavac. Inflectionally sensitive web search
in Croatian using Croatian lemmatization server. In V. Lužar-
Stiffler and V. H. Dobrić, editors, Proceedings of 26th Inter-
national Conference on Information Technology Interfaces
(ITI’06), pages 481–486. SRCE, Zagreb, 2006.

[15] S. Tomlinson. Lexical and algorithmic stemming compared
for 9 European languages with Hummingbird SearchServer at
CLEF 2003. In CLEF, pages 286–300, 2003.

[16] J. Šnajder, B. Dalbelo Bašić, and M. Tadić. Automatic ac-
quisition of inflectional lexica for morphological normalisation.
Information Processing and Management, 44(5):1720–1731,
2008.

415

