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Abstract
Word Sense Disambiguation is the task dedi-
cated to the problem of finding out the sense
of a word in context, from all of its many pos-
sible senses. Solving this problem requires to
know the set of possible senses for a given word,
which can be acquired from human knowledge,
or from automatic discovery, called Word Sense
Induction. In this article, we adapt two exist-
ing meta-methods of Word Sense Induction for
the automatic construction of a disambiguation
lexicon. Our adaptation is based on multiple se-
mantic spaces (also called Word Space Models)
produced from a syntactic analysis of a very large
number of web pages. These adaptations and the
results presented in this article differ from the
original methods in that they use a combination
of several high dimensional spaces instead of one
single representation. Each of these competing
semantic spaces takes part in a clustering phase
in which they vote on sense induction.
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1 Introduction

A single word may potentially convey many different
senses but despite this potential for ambiguity, misin-
terpretations occur relatively rarely in actual human
linguistic interactions, including written texts. As a
consequence, it is possible to draw the hypothesis that
a wordsense should be inferable from the context it
appears in (letting aside the question of the context
size). Word Sense Disambiguation is the task dedi-
cated to this problem of finding out the sense of a
word in context. For a more detailed study, [1] and
[12] have covered an exhausting overview of the task.
However, solving this problem requires first to know
the set of possible senses for a given word. The mere
possibility of doing this exhaustively is a much debated

issue, because even among humans, it is very difficult
to agree on a set of senses for any given word. How-
ever if we consider it possible to obtain a list of the
senses, even if it is incomplete, then it can be acquired
from human knowledge (as one can find in any good
dictionary), or from automatic discovery, a task which
is generally called Word Sense Induction.

This task (and consequently Word Sense Disam-
biguation itself) is often tackled using methods that
are able to group similar words together, in order to
perform a clustering over the neighbors of the target,
and thus to discover one ’sense’ for each cluster found.
This approach puts a large part of the burden into the
similarity measure. While some methods use graph-
based measures (thus making use of manually crafted
structured resources), many unsupervised approaches
are based on the Word Space Model paradigm, some-
times also called Semantic Vector Space paradigm.
This paradigm relies on the hypothesis that a word-
sense depends on the contexts it appears in [8]. For
instance, all words that designate a mammal will tend
to occur with verbs like eat, run or breathe. Because
of this, if we represent each word by a normalized vec-
tor of the cooccurrence counts of this word with every
other words in a given corpus, two words that share
a lot of semantic features will tend to have a small
angular distance.

Semantic spaces are interesting because they are
built completely automatically from a corpus. They
do not require error prone and costly manual work
and can be quickly updated to reflect the emergence
of new words in a constantly evolving domain . Se-
mantic spaces can be built using various context types
such as documents, paragraphs or occuring words, or
again lemmas appearing near the source word (cooc-
curents). In [16], dimensions of Vector Space Model
represent the terms occurrence frequencies in each doc-
ument where each column represent a document. In
[11], dimensions correspond to the most frequent terms
of the vocabulary and the values are the number of
cooccurrences, in fixed-size windows, between the line
term and the column term (or possibly the mutual
information). In [13] and [7], each dimension corre-
sponds to a context obtained through a given syntactic
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relation and the value is their cooccurrence frequency.
With these semantic spaces where each word is rep-

resented by a vector from which is derived a measure
of similarity with other words, similar words can be
grouped together Senses of polysemic words can be
induced from various term selections. In [10], clusters
are built in one step from the full vocabulary, each
word may appear in several clusters. These clusters
represent synonym classes and senses of words belong-
ing to several clusters are thus discriminated. [17] ap-
proach consists in clustering all the occurence contexts
in a corpus of each word for which senses are being
learned. Finally, some systems like [4], [20] or [6] clus-
ter cooccurrents of the words they want to distinguish
the senses and [14] cluster the nearest neighbors in the
semantic space.

Our work largely follows [14] as we also group near-
est neighbors but differs from it as we dispose of a
panel of different semantic spaces (built on different
syntactic relations) with different specificities that we
combine, instead of using a unique semantic space.

Section 2 of this paper details the conception of the
semantic spaces we use. We present in Section 3 the
method of dimensionality reduction we use. Section
4 describes the clustering methods developed to take
into account differences between spaces. Finally, Sec-
tion 5 gives perspectives on the results and some di-
rections towards future works.

2 Description of the semantic
space

Semantic spaces we use for word sense induction are
issued from the work of [7] . The semantic spaces
are built using the results of a large scale syntactic
analysis. When we extracted them for our work, the
French corpus on which this semantic space is built was
made of two millions urls of French language pages on
which a syntactic analysis (including lemmatization)
was processed using LIMA, the CEA LIST natural
language processing system [2].

This parser is a dependency analyser. Thus it
extracts binary relations between tokens, like sub-
ject verb, object verb, noun complement, etc. These
relations are oriented: for example in the phrase ’ad-
vance in NLP’, NLP appears in the context of advance
for the noun complement relation but advance appears
in the context of NLP for the noun complement re-
verse relation.

The dictionary used to build the matrices (i.e. the
semantic space) is made of the 68,000 most frequent
words of the French language. To each binary relation
is associated a distinct matrix that registers the cooc-
currence frequencies of these 68,000 words through the
given relation. In order to be able to take into account
the information given by all words, even the rare ones,
we work with mutual information matrices computed
from the frequencies matrices. Mutual information is
computed according to the following formula, where Pi
is the probability of occurrence of the term described
by line i in any context of the given relation, Pj is the
probability of occurence of the context defined by col-
umn j, and Pi,j is the probability of cooccurrence of

the term i with the context j in the given relation.

MI = log(
Pi,j

Pi ∗ Pj
) (1)

The same process is applied on reverse relations and
on cooccurrences in fixed-size windows (5, 10, 20). Fi-
nally, we obtain 71 sparse square matrices of 68,000
dimensions. We will see later that these matrices con-
tain different and complementary kind of information.

3 Approximative KNN

Given the size of these matrices, it is highly desir-
able to perform a dimensionality reduction before us-
ing them for nearest neighbor search and clustering.
A linear Principal Component Analysis method such
as Latent Semantic Analysis [9] would have been an
alternative if not for the original dimensionality of our
data and the quadratic (O(n3)) complexity of the un-
derlying Singular Vector Decomposition. On the other
hand, Random Indexing [19] while more scalable, was
not a real option because of its reported low quality.
We chose to use Locality Sensitive Hashing which is
supposed to be more scalable than LSA and whose
quality was still to be tested on complex tasks. [3] has
defined a family of LSH functions for which the hashed
signatures keep their angular similarity for any input
vectors pair. [15] has shown that this hashing is partic-
ularly well adapted to set up a fast nearest neighbors
search method.

3.1 Dimension reduction: Locality
sensitive hashing

The goal of a hashing is to obtain a footprint smaller
than the original signature. Here, we want a func-
tion h giving a smaller footprint and respecting the
property that if two vectors v1 and v2 from the initial
space are similar, then the two hashed vectors h(v1)
and h(v2) are also similar.The hashing functions fam-
ily proposed by [3] allows to approximate the cosinus
measure whose efficiency has already been shown for
proximities of the elements in word spaces. We outline
the method below.

We draw randomly according to a Gaussian dis-
tribution d unit vectors −→r . This drawing provides
an equidistributed breakdown on the unitary hyper-
sphere.

Let a family of functions be defined by:

h−→r (−→u ) =

{
0 if −→r .−→u ≥ 0

1 if −→r .−→u < 0
(2)

Let two vectors −→u and −→v , the probability to draw a
random vector defining a hyper plane that separates
them is:

Pr[h−→r (−→u ) 6= h−→r (−→v )] = θ(−→u ,−→v )/π (3)

On a number of randomly drawn vectors this proba-
bility can be measured. Indeed, the probability that a
randomly drawn hyperplane has separated the original
two vectors u and v is the probability that the hyper-
plane has given a different bit for the two hash results
for u and v. The formula 4 gives this probability:

Pr[h−→r (−→u ) 6= h−→r (−→v )] = hamming distance(−→u ,−→v )/d (4)

288



By combining 3 and 4 the following approximation is
obtained:

θ(−→u ,−→v ) ≈ hamming distance(−→u ,−→v )/d ∗ π (5)

3.2 Fast approximate nearest neigh-
bors search

A fast approximate nearest neighbor search in a space
with a Hamming distance was proposed by [3] and
picked up by [15]. The method consists in pulling ran-
dom p permutations of d elements. For each permu-
tation, (a) the signatures are permuted bit by bit, (b)
all the elements are sorted following lexicographic or-
der, and (c) the B elements closest to the n source
elements which cosine approximation is lower than a
given threshold are kept.

We build the list of nearest neighbours words we
want to cluster, using the main trends of that algo-
rithm.

3.3 Results

We have been able to compute the list of k nearest
neighbors of polysemous words for each of the syntac-
tic spaces and we see for example in table 1 the results
with k = 10 for the word vol1 in various spaces.

We notice that the nearest neighbors obtained for
the word vol are quite different depending on which
space is used. Some spaces gather nearest neighbors
oriented towards a precise meaning, while others re-
turn mixed meanings. uses can be separated into:
media type, computers aspect and content and uses,
the distinction between spaces remains unclear except
for the apposition relation. We observed that these
distinctions largely depend on the polysemous word
processed: the discriminating spaces, when they exist,
are not always the same. Therefore we can assume
that each space contains different information which
is worth being taken into account.

Our goal is to build sets of nearest neighbors rep-
resenting different uses. Since automatic induction
exploits the contexts of words occurrences in a cor-
pus, various usages of even monosemous words can
appear and be discriminated in the same way as dif-
ferent senses of polysemous words would. We thus
prefer the term use to the term sense. Depending on
the words, spaces discriminate quite heterogeneously
their various uses. We propose in the next section a
clustering method taking into account the specificity
of each space while allowing the inter-space consolida-
tion.

4 Word sense induction by
multi-represented words clus-
tering

In our approach, we want to cluster the nearest neigh-
bors of a word into several clusters so that each of them
represents a sense. We wish to be able to distinguish
different clusters as in the manually built example of

1 which means fly or steal

Fig. 1: Senses discrimination in the object verb base

Figure 1. This figure shows a 3-dimensional projection
where object verb contexts should allow the discrimi-
nation of three meanings of the word sens : the sens as
the ability to perceive, the sens giving an orientation
indication, and the sens giving a semantic indication.

Traditional clustering methods are used on a sin-
gle vector space, as illustrated in the ideal example
above. But we have seen previously that the various
spaces emphasized different closenesses. It can be seen
for example in table 1) that the object verb relation
highlights the semantic proximity on flying meaning
of the word vol while the apposition space does not
highlight it at all, but stresses the proximities of theft
meaning. We thus assume that the spaces peculiari-
ties will help to better distinguish clusters of meaning
if each of them is separately taken into account rather
than considering a global space built by concatenation
of all the matrices. To do this, we are guided by Shared
Nearest Neighbors clustering algorithms adapted and
used by [5] and [6] and by the Hyperlex algorithm de-
veloped by [20]. We propose two ”clustering by vote”
methods.

For each of the parts of speech for which we want
to produce senses, i.e. noun, verb, adjective, we re-
tain the relevant spaces . For instance when dealing
with a verb, we do not consider the complement noun
space involving only nouns and we use the reverse ob-
ject verb space and not the object verb one. We also
consider only spaces involving relations between plain
words (noun, verb, adverb, adjective). For example,
we leave out the relationship between a determiner
and its noun.

After experimentation, we choose to cluster the
words that appear at least twice in the 30 nearest
neighbors of the selected spaces. Let E be this set.
The following sections present the two methods.

4.1 Method based on the shared near-
est neighbors algorithm

This method processed in three steps. First, a number
of seeds (not fixed in advance) is extracted. The re-
maining elements are then assigned to these clusters.
Finally clusters whose seeds are too close are joined
and elements belonging to clusters considered as too
small are reassigned.

The algorithm we propose is based on the [5] SNN
algorithm seed selection method for which there is no
need to choose a priori the number of seeds. How-
ever, experiments give us better results with a direct
neighbors graph than with the shared nearest neigh-
bors graph. We then keep the first one. One pos-
sible explanation for this surprising result compared
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vol complement noun vol, avion, voyage, retour, course, achat, opération, première, journée, premier
object verb vol, voyage, retour, création, attaque, changement, mise, mariage, acte, fin
apposition vol, meurtre, racket, fraude, chantage, assassinat, homicide, rapine, violence, crime
apposition.reverse vol, meurtre, viol, prostitution, rapine, adultère, proxénétisme, idolâtrie, agression, luxure

Table 1: 10 nearest neighbors of words vol

to the results presented in [5] is that we use a small
part of the original space elements. There is therefore
too few data to use this second level of information.
We also retain the idea of defining the seeds using the
strong links. The name Shared Nearest Neighbors be-
ing no longer relevant, we now refer to this algorithm
as MultiNN.

In each space (object verb, subject verb, ...):

1. we build the nearest neighbors graph in which
each element of E has a corresponding node and
every distance between two of the elements is rep-
resented by an edge weighted by their approxi-
mate cosine distance.

2. we define a strong link threshold (eg. 0.2 of
the maximum distance in the space) and discard
edges whose values are below this threshold;

3. for each node in the graph (elements of E) we
compute the sum of its remaining links.

4. if this sum is larger than a certain threshold (eg.
0.3 of the maximum in the space), we say that
this is a local seed for this space.

For each element of E, we know the number of spaces
in which it is a local seed. If this number is bigger
than a threshold (eg 0.8 of the number of collaborating
spaces), then this element is said to be a global seed.

We build clusters around each global seed in this
way:
• In each space, we remove the elements of E which

have been called global seed.

• In each space and for each element of E, we store a
vote for its nearest global seed (highest approximate
cosine).

• We sum the votes on all spaces and assign each ele-
ment to its most popular seed (possibly several ones
in case of equality).

• In each space, if two seeds have a total value exceeding
a certain threshold, the space votes for the merging
of the two clusters involved.

• If a sufficient number of spaces votes for this merging,
the two clusters are merged into one.

• The elements of the clusters considered too small com-
pared to the number of elements to be clustered are
reassigned one by one to large clusters.

4.2 Method based on the HyperLex al-
gorithm

We adapt a second method to our multi-representation
of words. This is the Hyperlex algorithm presented by
[20]. It was originally applied to a list of co-occurrences
but in our case we apply it to a list of nearest neigh-
bors.

The the first part of the original algorithm proceeds
as follows.
Let E be the set of words to cluster.

• Take the most frequent element (hub) in E. If the
number of its connected nodes whose weight is below
a certain threshold ϕ is greater than a given number
k, this hub becomes the seed of a component.

• Remove this hub and if it has been determined to be
a seed, remove also its connected nodes from E.

• Repeat until E is empty.

In the scope of our multiple representations, we define
the distance from any element of E to the source as the
average distance over the spaces and use the decreasing
distances as the order in which to test whether a node is
a seed. We assume that a word close to the source will be
a good sense representation. We do not need to test the
high frequency term in first place because our graph is a
nearest neighbours graph in which a high frequency of a
term does not infer more outgoing edges. Instead of being
discarded, items related to a seed are candidates to become
elements of the seed component. The different spaces vote
to validate this attribution. In this first study we do not
implement the second part of the algorithm (spanning tree
calculation) as we assume that the process of voting will
filter out the words which are not part of a component and
let them be attached to a forthcoming seed.

4.3 Results

The results were evaluated manually in this first step by
comparing our results with those obtained by the original
algorithms for a predefined list of words. For instance,
table 2 presents the results of the four methods (the two
original and our two modified versions) for the word bar-
rage.

The comparison of our clusters with those of the origi-
nal algorithms is difficult because we did not try to group
the same type of terms (cooccurrents vs. syntactic nearest
neighbors). We can notice that the distinguished senses are
not always the same. We find firstly in 3.1, 4.1 and 4.4, the
usage of barrage as hydraulic dam which was discriminated
for its use as an industrial system and in 3.2 and 4.2 as a
building on a river. The senses 3.3 and 4.3 of barrage cor-
respond to the meanings roadblock, police barrage or fac-
tory strike that we cannot well distinguish. The dictionary
Petit Larousse used during the ROMANSEVAL campaign
[18] does not itself distinguish them and simply consid-
ers them as obstacles. This is the same physical object,
but the usage is different. Finally, we could not find the
sportive meaning of play-off match, whose use is present
in very few locutions such as match de barrage. The fact
that hardly no nearest neighbour can express this meaning
and the sparseness of its occurrences can both explain the
difficulty we have to extract it. Nevertheless, for the word
vol, our algorithm correctly extracted the theft offence and
flight meanings, which was not the case for the HyperLex
algorithm.

As Word Sense Induction systems group different ini-
tial terms and learn on different corpus bearing potentially
different semantic content, an automatic evaluation of our
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Source word barrage
HyperLex 1.1 : eau, construction, ouvrage, rivière, projet, retenue, crue

[20] 1.2 : routier, véhicule, camion, membre, conducteur, policier, groupement
1.3 : frontière, Algérie, militaire, efficacité, armée, Suisse, poste
1.4 : match, vainqueur, victoire, rencontre, qualification, tir, football

SNN 2.1 : manifestant, forces de l’ordre, préfecture, agriculteur, protester, incendier, calme, pierre
[6] 2.2 : conducteur, routier, véhicule, poids lourd, camion, permis, trafic, bloquer, voiture, autoroute

2.3 : fleuve, lac, rivière, bassin, mètre cube, crue, amont, pollution, affluent, saumon, poisson
2.4 : blessé, casque bleu, soldat, milicien, tir, milice, convoi, évacuer, croate, milicien, combattant

MultiHyperLex 3.1 : infrastructure, défense, établissement, installation, aménagement
3.2 : rivière, digue, pont, canal, lac
3.3 : train, station, usine, bâtiment, route, véhicule

MultiNN 4.1 : bâtiment, usine, véhicule, aménagement, bassin, chantier, infrastructure
4.2 : pont, barrière, digue, écluse
4.3 : route, rivière, train, défense
4.4 : station, canal, centrale, établissement, infrastructure, installation

Table 2: Comparison of clusters built for the word barrage

results by comparing the resulting clusters with those pro-
duced by other methods (whatever the mapping method
used) can prove to be inaccurate. A more reliable evalua-
tion would be to perform a more applicative task based on
those clusters (like Word Sense Disambiguation or Informa-
tion Retrieval) and to evaluate the results of the latter. An
automatic evaluation of this kind is still to be performed in
order to judge which of the two proposed approaches give
the better results and to assess the cluster discrimination
quality.

5 Discussion and future work

Although we do not have to choose the number of clus-
ters to obtain, allowing a different number of meanings
for each word, fixing the values of the parameters in-
volved in the two algorithms remains a real problem
in the sense that we currently have no way to learn
the optimal parameters. We are thus forced to choose
them by experimentation.

An advantage of these methods can be put forward:
in addition to distinguishing clusters of meaning, we
assume that the use of nearest neighbors as a set of
elements to cluster (not using cooccurrents) will allow
the use of those clustered neighbors as learning data
for a classifier performing word sense disambiguation.
This hypothesis will be tested soon.

Furthermore, the finalization of this work requires
to quickly carry out various studies. To highlight the
contributions of the method presented here, we want to
build clusters from the same set of closest neighbors,
using various spaces configuration: first the window
cooccurrences space only, second each of the syntactic
spaces alone, and third the concatenation of all matri-
ces, which should differ highly from our combination.

Finally, we plan to automatically build clusters of
those sense-clusters to define WordNet-like synsets.
We will use them to disambiguate and index a collec-
tion of documents and study the contribution of this
disambiguation to information retrieval.
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[13] S. Padó and M. Lapata. Dependency-based construction of se-
mantic space models. Comput. Linguist., 33(2):161–199, 2007.

[14] P. Pantel and D. Lin. Discovering word senses from text. In
Proc. of ACM SIGKDD Conference on Knowledge Discovery
and Data Mining 2002, Edmonton, Canada, 2002.

[15] D. Ravichandran, P. Pantel, and E. Hovy. Randomized al-
gorithms and nlp: Using locality sensitive hash functions for
high speed noun clustering. In Proceedings of ACL, Ann Ar-
bour(MI), 2005.

[16] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. 18(11):613–620, 1975.

[17] H. Schütze. Automatic word sense discrimination. Computa-
tional Linguistics, 24(1):97–123, 1998.

[18] F. Segond. Framework and results for french. Computers and
the Humanities, Special Issue on SENSEVAL, 34(1-2), 2000.

[19] L. Sellberg and A. Jönsson. Using random indexing to improve
singular value decomposition for latent semantic analysis. In
Proceedings of the 6th Conference on Language Resources
and Evaluation, Marrakech, Morocco, 2008.
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