
International Conference RANLP 2009 - Borovets, Bulgaria, pages 281–286

Structured Output Learning with Polynomial Kernel
Hajime Morita

Department of Computational
Intelligence and Systems Science,

Tokyo Institute of Technology
morita@lr.pi.titech.ac.jp

Hiroya Takamura
Precision and Intelligence Laboratory,

Tokyo Institute of Technology
takamura@pi.titech.ac.jp

Manabu Okumura
Precision and Intelligence Laboratory,

Tokyo Institute of Technology
oku@pi.titech.ac.jp

Abstract
We propose a new method which enables the training
of a kernelized structured output model. The struc-
tured output learning can flexibly represent a problem,
and thus is gaining popularity in natural language pro-
cessing. Meanwhile the polynomial kernel method is
effective in many natural language processing tasks,
since it takes into account the combination of features.
However, it is computationally difficult to simultane-
ously use both the structured output learning and the
kernel method. Our method avoids this difficulty by
transforming the kernel function, and enables the ker-
nelized structured output learning. We theoretically
discuss the computational complexity of the proposed
method and also empirically show its high efficiency
and effectiveness through experiments in the task of
identifying agreement and disagreement relations be-
tween utterances in meetings. Identifying agreement
and disagreement relations consists of two mutually-
correlated problems: identification of the utterance
which each utterance is intended for, and classification
of each utterance into approval, disapproval or others.
We simultaneously use both of the structured output
learning and the kernel method in order to take into
account this correlation of the two problems.

Keywords
Structured Output Learning, Machine Learning, Passive-Aggressive Al-
gorithm, Kernel, Meeting Records, Dialog Act, Adjacency-Pairs.

1 Introduction
Structured output learning is a method that learns a model
in order to predict the structured label of an instance. Typ-
ically, the structure is complex, and the set of possible la-
bels is very large. Examples of structured labels are graphs,
trees and sequences. Recently, for the algorithms of struc-
tured output learning, Support Vector Machine (Thochan-
taridis, 04) and Passive Aggressive Algorithm (Crammer,
06) were expanded. Structured output learning plays an
important role in natural language processing (NLP), in-
cluding parsing and sequential role labeling.

In NLP, the polynomial kernel has proven effective be-
cause it can take into account the interaction between fea-
tures. For example, for complicated tasks like dependency
structure analysis, we need to consider a combination of
features (Kudo, 00). The use of a kernel is necessary for
non-linear classification, as well as for improvement of per-
formance. However, structured output learning is hardly
ever used with a kernel, mainly because evaluation of all

possible labels by kernels would be necessary, and is com-
putationally prohibitive. We construct a kernelized clas-
sifier that identifies agreement/disagreement relations be-
tween utterances in dialogue. Identifying agreement and
disagreement relations consists of two mutually-correlated
problems: identification of the utterance which each utter-
ance is intended for, and classification of each utterance
into approval, disapproval or others. This problem can
be seen as the problem of finding edges between pairs of
nodes, where the number of nodes is fixed, and it is equiva-
lent to restricting the possible structure output in the output
of structured output learning. We can apply our method to
the problems that can be seen as identification of a graph
with a fixed number of nodes.

Furthermore, when using structured output learning for
complex NLP tasks, predicting a structure might include a
number of different problems. In order to simultaneously
learn a number of different problems as elements of a struc-
tured label, we define cost functions in consideration of
the case where the proportion of classes differs among the
problems.

In this paper, we propose a method that transforms the
kernel to reduce the computational complexity of learn-
ing with restricted structured output and kernels, and pro-
pose cost functions to take into account the different class
proportions among the problems, in order to apply struc-
tured output learning to a larger area of application. We
evaluate our method on the task of identifying agreement
and disagreement relations in the MRDA corpus (Shriberg,
04). On the large set of labels, experiments show that our
method is exponentially faster than the conventional meth-
ods.

2 Related work
In structured output learning, we need to find the best label
from an exponentially large set of labels in order to predict
the label. Therefore, the complexity of predicting the label
determines whether the problem can be solved in practical
time or not. Specialized algorithms for each problem to
improve efficiency are thus used for predicting a label. For
example, if the label is a sequence, the Viterbi algorithm
might be useful (Sittichai, 08), and if the label is a parse
tree, parsing algorithms like CKY can be used to search for
the best label (McDonald, 05). In general, these problems
are learned by linear models.

When training a kernel-based model, the increasing
number of support vectors has a bad influence on the
complexity. For this reason, Orabona (2008) proposed a
method that approximates a new vector through the exist-
ing support vectors in order to reduce the overall number
of obtained support vectors. Similarly, the complexity of

281

classification increases according to the increase of the set
of support vectors in the Support Vector Machine (SVM).
Keerthi (2006) proposed a method to approximate the size
of the support vector set.

Another approach to overcome the increase of the sup-
port vectors is a technique that expands the kernel so that
it avoids dealing with the support vectors (Moh, 08). This
method expands a polynomial kernel in order to treat the
induced feature space as the feature vector in linear mod-
els. However, this is infeasible for a large feature set.

3 Passive Aggressive Algorithm
Passive Aggressive Algorithm (Crammer, 06) is a family of
perceptron-like online max margin algorithms. It has linear
complexity in the number of examples. Therefore, this al-
gorithm is faster than batch-algorithms such as SVM, and
requires less memory. Crammer proposed an expansion to
structured output learning, and a derivation algorithm for
learning with a kernel. At each step, this algorithm conser-
vatively updates the model so that it can correctly classify
the misclassified instance x. For details, refer to (Crammer,
06).

Algorithm 1 shows the expansion to structured output
learning with kernel. Each instance x(i) is paired with a
correct label y(i). We call the pair (x,y) added to the
model W a support vector, such as in SVM, and τ is the
weight of the support vector. So the model W is a set of
tuples:(τ , x, y). Each pair of an instance and a label
corresponds to a feature vector that is given by Φ(x(i),y).
The prediction problem is reduced to finding the best label
ŷ from the possible labels Y:

ȳ = argmax
y∈Y

∑
{τ(t),x(t),y(t)}∈W

τ (t)K(Φ(x(t),y(t)), Φ(x(i),y))

To assign a different cost for each misclassified instance
during the learning, a cost function ρ(y,y′) is introduced,
associated with every pair of correct label y and predicted
label ŷ. We assume that ρ(y,y′) = 0 if y′ = y and that
ρ(y,y′) ≥ 0 whenever y 6= y′. At each update step, the al-
gorithm updates the model so that the following constraint
is going to be satisfied,

Wupdated = W ∪ (τ,x(i),y(i)) ∪ (−τ,x(i), ȳ).

At step 4, the algorithm maximizes the following expres-
sion by finding the label that violates this constraint to the
highest extent,

ȳ = argmax
y∈Y

X
{τ(t),x(t),y(t)}∈W

τ (t)K(Φ(x(t),y(t)), Φ(x(i),y))

+
q

ρ(y(i),y). (1)

At steps 5 and 6, unless there is a sufficient margin between
the example with the correct label and the other examples,
we calculate the weight τ . τ is a real number that ensures
necessary margin between the example with the correct la-
bel and the example with the resultant label ȳ. Step 7 up-
dates the model by τ and ȳ as follows:

Wupdated = W ∪ (τ,x(i),y(i)) ∪ (−τ,x(i), ȳ).
There are two problems with simultaneous use of struc-

tured output and polynomial kernel. One is clear from for-
mula (1). Following the increase in the number of support

Algorithm 1 Passive Aggressive Algorithm

Input: S = ((x(1),y(1)), ..., (x(N),y(N))), C
1: initialize model
2: for iteration = 1, 2, . . . do
3: for i = 1, ..., N do
4: get most violated label ȳ
5: if (ȳ 6= y(i)) then
6: calculate τ from ρ(y(i), ȳ)
7: update model
8: end if
9: end for

10: end for
11: return model

vectors, the computational complexity increases compared
to a linear model. Since a maximization (1) is carried out at
each iteration, the computational complexity increases not
only during classification, but also during learning.

We should also notice that the number of support vectors
tends to be large in online learning. In addition, since struc-
tured output learning has as many examples as the number
of pairs of an instance and a label, the number of support
vectors tends to be even larger.

The second problem is that since the algorithm classi-
fies the instances in the kernel space, we cannot evaluate
the intermediate scores corresponding to the elements of
label structures and their features. Therefore, most of the
available conventional decoding algorithms such as Viterbi
cannot be used. Moreover, since step 4 requires the max-
imization of the sum of more than one polynomial kernel
function, it is difficult to solve this problem efficiently.

4 Formal definition
In this section, we give a formal definition of the problem
of applying the polynomial kernel to structured output pre-
diction.

• label y

In this paper, we assume that the label is a binary vec-
tor of length m. Most of the data structures, such
as graphs or sequences, can be represented by binary
vectors.

• instance x

x denotes the vector representing an instance.

• Φ function

In algorithm 1, the Φ function generates a feature vec-
tor from a label and an instance. ⊕ denotes an opera-
tor that concatenates two vectors, m denotes the label
length, and yi denotes a label element. We define the
Φ function as follows,

Φ(y,x) = (y1x)⊕ (y2x)⊕ · · · ⊕ (ymx).

For example, for a given pair
y = (1, 0, 1, 0),x = (1, 2, 3, 4) , we obtain
Φ(y,x) = (1, 2, 3, 4, 0, 0, 0, 0, 1, 2, 3, 4, 0, 0, 0, 0).
By combining each of the label elements with the vec-
tors that represent the instances, this Φ function gen-
erates a range of features in a vector corresponding to

282

each label element. That is, the weights of each fea-
ture can be determined for each label element. We can
decide whether the feature is a positive evidence or a
negative evidence for each label element.

• cost function
We define three cost functions for the labels, each one
of which is represented as a binary vector. Section 6
explains the cost functions in detail.

5 Transformation of the polynomial
kernel

As a kernelized learner, we often use a polynomial kernel
in NLP in order to treat the combination of features such
as words and dependencies. Let m be the label length, and
K(v,v′) be a p degree polynomial kernel. We transform
this kernel to reduce the computational complexity. The
transformation is composed of integrating the Φ function
and polynomial kernel, and decomposing the integrated
kernel.

5.1 Integrating the Φ function and the kernel
Let us first consider reducing the computational complex-
ity per kernel function evaluation. For calculating the ker-
nel, we must regenerate the feature vector from x and y,
or cache the kernel values. However it is impractical to
hold all the N2m feature vectors. In addition, we must deal
with all feature vectors at each iteration. The access to fea-
ture vectors does not have locality of reference. Therefore
caching support vectors is not efficient. For this reason, we
calculate the kernel value directly, by integrating the poly-
nomial kernel and the Φ function.

Let us calculate the kernel between the vectors generated
by the Φ function in due order. For simplicity, the constant
term in the polynomial kernel is dropped out, without loss
of generality. The p degree polynomial kernel can be ex-
panded as follows:

K(Φ(y,x), Φ(y′,x′))
= ((y1 · x⊕ y2 · x⊕ . . .⊕ ym · x) ·

(y′1 · x′ ⊕ y′2 · x′ ⊕ . . .⊕ y′m · x′))p.

Since in the kernel space an inner product can be obtained
by the range of features corresponding to each label ele-
ment, the above formula can be tranformed as follows:
K(Φ(y,x),Φ(y′,x′)) =
{(y1 · y′1)(x · x′) + . . . + (ym · y′m)(x · x′)}p,

and we can extract the products of the dot-product of in-
stance vectors (x·x′), K(Φ(y,x), Φ(y′,x′)) = ((y·y′)(x·
x′))p. Thus, a kernel can be represented by a dot-product
of labels (y · y′) and a dot-product of instance vectors
(x·x′). It turns out that we can evaluate the polynomial ker-
nel without the Φ function. Here, let the kernel integrated
with Φ function be denoted by Kex as follows:

Kex(y,x,y′,x′) = ((y · y′)(x · x′))p. (2)

Refer to Figure 1 for intuitive explanation. Through the
kernel integrated with Φ, we can evaluate a kernel by only
the dot-product between the instance vectors, regardless of
the label length.

If we do not integrate Φ with the kernel, evaluation of
the kernel costs (label length) × (feature size) computa-
tional time and memory. By contrast, evaluation costs only

Fig. 1: Integrating Φ function and kernel

(label length) + (feature size) for both in our calculation.
Since we have to only cache the kernel between the in-
stances, cache efficiency increases significantly.

5.2 Decomposing the kernel
In order to reduce the number of calls to the kernel function
as much as possible, we expand the integrated kernel fur-
ther, limiting ourselves to the case of second degree poly-
nomial kernels for the sake of simplicity.

In the Passive Aggressive Algorithm with a kernel, the
number of suppor vectors increases during the iterations,
and becomes an arbitrarily large set. For this problem, Moh
(2008) proposed a method that expands a second degree
polynomial kernel to an induced feature space, and treated
it as a linear model to avoid treating support vectors for
memory complexity. However, since Moh’s method must
treat a large space that is of a square of the size of a fea-
ture set, this has the opposite effect that the computational
space is increasing. Thus, this method cannot treat a large
number of features. If we expand the kernel in a feature
space, it cannot benefit from the kernel trick and it must
treat a large feature space as in Moh(2008). We expand the
kernel not only in the feature space, but also in the label
space. Therefore, we can expand the kernel efficiently, if
label length < feature size.

Kex can be decomposed and represented as a combina-
tion of yi that belongs to y, where the constant term in a
polynomial kernel is dropped out without loss of general-
ity,

Kex(y,x,y′,x′)=((y·y′)(x·x′))2=(y)2
(
(y′)2(x · x′)2).

Here, we consider the calculation of the kernel score
S(y,x) between an example (y,x) and the support vec-
tors {τ (t),y(t),x(t)}. We decompose y and y(t) to each
yi and y

(t)
i , and expand the square. So let γij denote∑

{t|(τ (t),y(t),x(t))∈W} τ (t)y
(t)
i y

(t)
j (x · x(t))2, because γij

is constant in terms of y. We then obtain the score of the
example:

S(y,x) =
∑

(τ(t),y(t),x(t))∈W
τ (t)Kex(y,x,y(t),x(t))

=
∑

{i,j|i 6=j, i,j<m}
yiyjγij +

∑
{i|i≤m}

y2
i γii.

As shown above, support vectors can box in the parame-
ters γ ∈ Rm2

. For the same instance vector x and the

283

same model, we can calculate the score using γ for each y
without calls to the kernel. We call the expanded kernel a
“transformed kernel”.

5.3 Predicting with polynomial kernelization
At step 4 of Algorithm 1, we solve the maximization prob-
lem. We exploit the expansion so that we obtain the label
which violates the constraints to the highest extent.

Algorithm 2 predicts ȳ using the transformed kernel. 1
denotes the label, each element of which is 1. ei denotes
a label that is the vector with a 1 in the i-th element and 0
elsewhere. And τ (k) denotes the weight on the k-th sup-
port vector. svki = Φ(ei,SVk) denotes the feature vector
generated by Φ from the k-th support vector and ei. We
henceforth define y(0) as always equal to 1, so that we cal-
culate γ with a constant term, and the label whose length is
m implicitly includes the constant term y(0).

Algorithm 2 for finding ȳ.
Input: x = Φ(1,x), τ,W ={SV1,...,SVn}
Input: true y //correct label(in training only)

1: for all {(i, j)|0 < i ≤ j ≤ m} do
2: γij =

∑
svk∈W

τ (t)βijK(svki,x)K(svkj ,x)

βij =
{

1 if(i = j)
2 otherwise

3: end for
4: for 0 ≤ i ≤ m do
5: γ0i = γi0 =

∑
svk∈W

τ (t)K(svki,x)

// processing constant terms.
6: end for
7: ȳ = argmax

y∈{0,1}m
S(y,x) //when classifying

ȳ = argmax
y∈{0,1}m

S(y,x) + ρ(true y,y) //when training

8: return (ȳ)

Calculating γ requires calling the kernel function n(m+
1)2 times, but the evaluation of each label requires only the
calculation of the polynomial expression whose coefficient
is γ. Thus, even the evaluation of all possible labels has
only to call the kernel n(m + 1)2 times.

Additionally, the Passive Aggressive Algorithm trains
the model incrementally, and the weight of the support vec-
tor added to the model does not change. In this way, if we
hold γ for all instances, γ can be updated according to the
support vectors newly added to the model. Thus, complex-
ity can be reduced even further.

5.4 Discussion
Here, we discuss the computational complexity of the
learning. Let N be the number of examples, and let h be the
number of support vectors included in the model at a given
point. Let H be the number of the final support vectors,
I be the number of iterations needed to obtain H support
vectors, and m be the label length.

We assume that the misclassification rate of training data
is constant while training the model. We then need to per-
form classification calculation λ = N I

H times in order to
obtain one support vector. In the following, we will see
the number of calls to the kernel required to obtain all the

support vectors for each case of without transformation and
with transformation.

• Without kernel transformation
Since evaluation of each example requires h2m calls
to the kernel function, obtaining one support vector
requires h2mλ calls. Thus, the number of calls to the
kernel to obtain H support vectors is,

∑H
h=1 hλ2m =

NI(H + 1)2m−1. In practice, misclassifications de-
crease in number with training and one support vector
requires more classification examples. Hence com-
plexity can become larger.

• When transforming the kernel
Since evaluation of the examples requires only the cal-
culation of the kernel of the new support vectors, it
needs H(m+1)2

I calls to the kernel function on aver-
age. Therefore, the number of calls to the kernel to get
H support vectors is, H H(m+1)2

I λ = NH(m + 1)2.

In the cases where the label length is long or training
needs many iterations, the computational complexity ben-
efits from the transformation of the kernel.

6 Cost function
In structured output learning, for a given pair of labels, a
cost is calculated by a cost function. Hereby, we can in-
troduce a “near error” and a “distant error”, and impose
a little penalty to near error and a large penalty to distant
error. We define three cost functions. Each cost function
defines what is ”near” and ”distant”. s is a scale parameter
in the following.

• 0/1 cost

ρ0/1(y,y′) =
{

0 if y = y′
s otherwise

It returns s if the labels differ, and 0 otherwise. It is
the most basic cost function that can be defined for
general labels.

• average cost

ρaverage(y,y′) = 1
m

∑m
i=1

{
0 if y(i) = y′(i)

s otherwise

It returns s× (the number of different elements in the
label) divided by the label length. It means that errors
in several label elements induce a larger penalty.

• Asymmetric cost

ρasm(y,y′) =
1
m

m∑
i=1

 0 y(i) = y′(i)

s · ji y(i) = 1, y(i) 6= y′(i)

s otherwise

This cost function returns s · ji if a positive element
is incorrectly classified as a negative element. If
there is a bias between positive and negative label
elements, the model will learn disproportionally by
rote, because of which it gains a rather oversized
margin, and the rest cannot gain sufficient margin.
In order to remedy the bias and gain decent margins,
an asymmetric cost function gives a different cost
when the positive or negative elements are mistaken.
It changes the width of the margin that must be

284

Table 1: Dialogue example
A wait, is this a computer science conference ?
A or is it a
B um, well, it’s more . . .
B it’s both right.
B it’s it’s sort of t- cognitive neural psycho linguistic
B but all for the sake of doing computer science
B so it’s sort of cognitive psycho neural plausibly

motivated architectures of natural language processing
B so it seems pretty interdisciplinary

reserved. We assign different parameters ji to each
label, so that this function can absorb the positive and
negative bias that is different for each element.

7 Experiments
We examine the task of identifying agreement and dis-
agreement between utterances to verify the efficiency and
the effectiveness of our method. Identifying agreement and
disagreement between utterances is to predict whether each
utterance shows agreement or disagreement, and inter-
utterances have a link.

7.1 Data
We used the MRDA corpus that has been used by related
works (Galley, 2004). This corpus contains dictated text
and audio data collected from 75 multi-party meetings in
ICSI. The meetings, one hour duration each, have been held
on a weekly basis by 6.5 researchers on average. For all
utterances in this corpus, annotators labeled that the Dialog
Acts, speakers, Adjacency-Pairs, etc.

Each Dialog Act is a category of utterances defined ac-
cording to their intent. There are 44 Dialog Acts. Among
them, we regard 4 tags, Acknowledge-answer(“bk”), Ac-
cept(“aa”), Accept-part(“aap”), Maybe(“am”), as agree-
ment. We regard other 2 tags, Reject(“ar”), Reject-
part(“arp”) as disagreement. Adjacency-Pairs are another
kind of tags. We regard an utterance pair is linked if they
are annotated with the Adjacency-Pairs tag. We show the
dialogue example in Table 1.

7.2 Experimental settings
In this experiment, we aim to predict the agreement and
disagreement relations between the utterances, segmented
into groups of 3 continuous utterances: first, second, and
third utterances. There are 3 possible links. For each link,
there are 3 possible values: agreement, disagreement, oth-
ers. Therefore, the label length m is 9. In this paper, we
train and classify shifting the segments by 1 utterance. That
is, the second utterance from an example is the first utter-
ance on the next example. We also used as features the
preceeding and succeeding 3 utterances, 7 utterance in all,
to classify on our method. The features that denote the
content of utterances are the word length, uni-grams, bi-
grams, tri-grams, head 2 words, and tail 2 words. The fea-
tures that denote relations between utterances are whether
the speaker is the same or not, and the time interval. We
cannot evaluate this problem precisely by accuracy, since
the classes are biased in size. Thus, we used F-value in
order to evaluate. We used 12499 examples to train, and
9200 examples for testing. We do not determine an itera-
tion limit in the Passive Aggressive Algorithm; instead, we

used the model of the point of convergence. The second
degree polynomial kernel was used, and the constant term
is set to 1.

7.3 Execution time
We also measure the execution time. When the kernel is
not integrated, the execution time tends to be prohibitively
long. So we experimented with a small training dataset in
that case.

Additionally, we used fixed parameters, because param-
eters influence the execution time. The number of iterations
is 15. We used the average cost. We set the scale factor of
the cost function s to 10. We used the second degree poly-
nomial kernel in the evaluations of both the transformed
and non-transformed kernels.

8 Results
8.1 Effect of the cost function
We show the result of our examination of the performance
of the cost function in Table 2. We first compare the re-
sult with the zero-one cost with the result with the average
cost. When the zero-one cost is used, the utterance posi-
tion changes the result significantly, but classifying each
position utterance is the same problem.

On the other hand, when the average cost is used, the
utterance position does not change results much. Since
the zero-one cost judges only the overall correctness of the
predicted relations, it learns to reserve margin against both
near errors and distant errors. As a result, it reserves over-
sized margin against mistakes of the label elements during
learning. But, when the average cost is used, the mistakes
of label elements change the score; So it learns to reserve
an appropriate margin against elements of each label.

Furthermore, when the asymmetric cost is used, the
method performs well for all label elements. This is be-
cause this asymmetric cost absorbs the proportion of pos-
itive contents and negative contents, by implementing dif-
ferential penalty for the mistakes. We show the effect of
the parameters of asymmetric cost in the next section.

Table 2: Performance of the cost function

Cost function 0/1 Average Asymmetric
(j=3)

Agreement (utterance 1) 0.337 0.394 0.490
Agreement (utterance 2) 0.170 0.343 0.462
Agreement (utterance 3) 0.097 0.237 0.414
Disagreement (utterance 1) 0.016 0.000 0.134
Disagreement (utterance 2) 0.000 0.032 0.032
Disagreement (utterance 3) 0.000 0.000 0.076
Link(utterance 1-2) 0.030 0.074 0.305
Link(utterance 2-3) 0.021 0.088 0.366
Link(utterance 1-3) 0.012 0.083 0.277

8.2 Effect of the parameters j

We show the results with different values of parameters
j ∈ {ji}m in Table 3. We can change the penalty that is
given when the positive content is incorrectly classified, by
changing j. We observe an improvement in the classifica-
tion of agreements or links, and particularly in the classi-
fication of disagreements where these are few positive ex-
amples. Increasing j does not improve the performance un-
limitedly. The optimal values for j can be determined from
the proportion of the positive and negative examples, and
we must fit j to the corresponding problem.

285

Table 3: Influence of j

j 0.5 1 10 50 100
Agreement (1) 0.290 0.382 0.526 0.500 0.479
Agreement (2) 0.226 0.327 0.510 0.497 0.460
Agreement (3) 0.160 0.216 0.514 0.507 0.464
Disagreement (1) 0.000 0.000 0.245 0.320 0.287
Disagreement (2) 0.000 0.000 0.201 0.306 0.277
Disagreement (3) 0.000 0.000 0.258 0.320 0.316
Link (1-2) 0.173 0.088 0.472 0.508 0.445
Link (2-3) 0.038 0.142 0.529 0.518 0.456
Link (1-3) 0.027 0.069 0.431 0.450 0.413

Table 4: Comparison with linear model
Model Kernelized Linear
Agreement 0.512 0.501
Disagreement 0.316 0.263
Link(utterance 2-3) 0.550 0.494
Link(utterance 1-3) 0.454 0.418

8.3 Effect of the kernel
Based on the results above, we optimized the weight j for
agreement/disagreement and link, and compared with the
linear model. The weight parameters are as follows:
jyea = 3, jnay = 10, jlink1−2,2−3 = 6, jlink1−3 = 5.
We set the scale factor of the cost function s to 5. In
linear model: jyea = 3, jnay = 100, jlink1−2,2−3 = 6,
jlink1−3 = 5. We set the scale factor of linear model
slinear to 4. We chose the parameters for test data. Thus,
the results are the upper limit that we can obtain by tuning
the parameters.

We show the results with this settings in Table 4. The lin-
ear model cannot deal with corresponding words among the
utterances because it cannot treat a combination of features,
and slows down the performance, especially when classi-
fying links. In classification of agreements/disagreements,
the polynomial kernel improves the performance, too.

8.4 Computational complexity
We measured the execution times and compared them in
Table 5. For both cases of using transformation or not,
the execution time is proportional to (example size) ×
(support vector size).

Without overheads, the difference of these execution
times is close to the theoretical complexity difference when
the kernel is called 2m = 512 times and the complexity for
each kernel is m = 9 times higher, coming together as in
total 4608 times.

Table 5: Execution time
Number of training examples 50 100 150
Support vectors 118 183 294
Using non-transformed kernel 15523s 56227s 139590s
Using transformed kernel 3. 19s 8.14s 28.65s
Ratio ×4866 ×6907 ×4872

9 Conclusion
In this paper, we proposed the cost functions to take into
account the different class proportions between the prob-
lems, and a method that transforms the kernel to reduce the
computational complexity of learning with structured out-
put and kernels. This algorithm is based on one of the on-
line max margin algorithm, Passive Aggressive Algorithm,
so it learns fast and uses a small amount of memory. We
evaluated our method on the task of identifying agreement
and disagreement relations, and we empirically and theo-
retically showed the computational complexity of the pro-

posed method, and also the efficiency of using a polyno-
mial kernel for structured output learning.

References
[1] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-

Shwartz, Yoram Singer, Online Passive-Aggressive Algo-
rithms. Journal of Machine Learning Research, Vol. 7, pp.
551–585, 2006.

[2] Michel Galley, Kathleen McKeown, Julia Hirschberg, Eliz-
abeth Shriberg, Identifying agreement and disagreement in
conversational speech: Use of bayesian networks to model
pragmatic dependencies. In Proceedings of the 42nd Annual
Meeting on Association for Computational Linguistics, pp.
669–676, 2004.

[3] Taku Kudo, Yuji Matsumoto, Japanese dependency struc-
ture analysis based on support vector machines. In Proceed-
ings of the 2000 Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large
Corpora, pp. 18–25, 2000.

[4] Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy
Ang, and Hannah Carvey, The ICSI meeting recorder di-
alog act (MRDA) corpus. In Proceedings of the 5th SIGdial
Workshop on Discourse and Dialogue, pp. 97–100, 2004.

[5] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, Yasemin Altun, Support Vector Learning for In-
terdependent and Structured Output Spaces. In Proceedings
of the 21st International Conference on Machine Learning,
pp. 823–830, 2004.

[6] Yasemin Altun, Ioannis Tsochantaridis, Thomas Hofmann,
Hidden Markov Support Vector Machines. In Proceedings
of the 20th International Conference on Machine Learning,
pp. 3–10, 2003.

[7] Yvonne Moh,Thorsten, Joachim Buhmann, Kernel Expan-
sion for Online Preference Tracking. In proceedings of The
International Society for Music Information Retrieval, pp.
167–172, 2008.

[8] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, Yasemin Altun, Support Vector Learning for in-
dependent and Structured Output Spaces. In Proceedings of
the 21st International Conference on Machine Learning , p.
104 , 2004.

[9] Francesco Orabonal, Joseph Keshet, Barbara Caputo, The
projectron: a bounded kernel-based Perceptron. In Pro-
ceedings of the 25th International Conference on Machine
Learning, pp. 720–727 , 2008.

[10] Jiampojamarn Sittichai, Cherry Colin, Kondrak Grzegorz,
Joint Processing and Discriminative Training for Letter-
to-Phoneme Conversion. In Proceedings of 2008 Annual
Meeting on Association for Compurational Linguistics and
Human Language Technology Conference, pp. 905–913,
2008.

[11] S. Sathiya Keerthi, Olivier Chapelle, Dennis DeCoste,
Building Support Vector Machines with Reduced Classifier
Complexity. The Journal of Machine Learning Research,
Volume 7, pp. 1493–1515, 2006.

[12] Ryan McDonald, Koby Crammer, Fernando Pereira, Online
Large-Margin Training of Dependency Parsers. In Proceed-
ings of the 43rd Annual Meeting on Association for Com-
putational Linguistics, pp. 91–98 , 2005.

286

