
International Conference RANLP 2009 - Borovets, Bulgaria, pages 275–280

Dependency Parsing and Semantic Role Labeling
as a Single Task

Roser Morante, Vincent Van Asch
CLiPS - Computational Linguistics

University of Antwerp
Prinsstraat 13

B-2000 Antwerpen, Belgium
Roser.Morante,Vincent.VanAsch@ua.ac.be

Antal van den Bosch
Tilburg Centre for Creative Computing

Tilburg University
P.O. Box 90153

NL-5000 LE Tilburg, The Netherlands
Antal.vdnBosch@uvt.nl

Abstract

We present a comparison between two systems
for establishing syntactic and semantic depen-
dencies: one that performs dependency parsing
and semantic role labeling as a single task, and
another that performs the two tasks in isola-
tion. The systems are based on local memory-
based classifiers predicting syntactic and seman-
tic dependency relations between pairs of words.
In a second global phase, the systems perform
a deterministic ranking procedure in which the
output of the local classifiers is combined per
sentence into a dependency graph and seman-
tic role labeling assignments for all predicates.
The comparison shows that in the learning phase
a joint approach produces better-scoring classi-
fiers, while after the ranking phase the isolated
approach produces the most accurate syntactic
dependencies, while the joint approach yields the
most accurate semantic role assignments.

Keywords

Joint learning, dependency parsing, semantic role labeling

1 Introduction

In their currently popular definitions, dependency
parsing and semantic role labeling are partly overlap-
ping tasks. In their standard definitions they map
to differently structured output spaces: dependency
graphs span over sentences, while semantic role assign-
ments center around individual predicates. Yet, the
spaces overlap; in a dependency graph verbal predi-
cates will tend to have dependency relations with the
same modifiers that have a semantic role as argument
of that predicate. In general, even though the la-
bels are different, syntactic dependencies between two
words often co-occur with the existence of certain se-
mantic roles. Although they do not signify the same,
the “subject” dependency relation, for example, often
co-occurs with the “A0” label that denotes the agent
role in the PropBank annotation scheme [14]. Over-
laps such as these naturally suggest the possibility of
jointly learning the two labeling tasks as if they were
one.

In this paper we present a system that performs de-
pendency parsing and semantic role labeling jointly,

which we submitted to the CoNLL Shared Task 2009
[8]. The task combines the identification and label-
ing of syntactic dependencies and semantic roles for
seven languages. Details about the task setting and
the data sets used can be found in the web page of
the task1. Additionally, we present a comparison of
the joint system with another version of the system
(“isolated” system) that processes semantic and syn-
tactic dependencies separately. In this way, we are
able to evaluate whether and where the joint learning
approach is more efficient and successful than the iso-
lated approach. As far as we know, this is the first
time that such a comparison is performed.

In the joint system, the two labeling tasks are
learned jointly by merging the syntactic and seman-
tic dependencies, which implies that the number of
labels increases, and the average number of examples
per label decreases. This does not rule out the appli-
cation of a machine learning classifier to the joint task,
but the classifier should not be too sensitive to a frag-
mented class space with many labels. This is the main
reason our system relies on local memory-based clas-
sifiers: they are largely insensitive in terms of training
and processing efficiency to the number of class labels
[4].

Memory-based algorithms have been previously ap-
plied to processing semantic and syntactic dependen-
cies separately. As for semantic role labeling, [10]
describes a memory-based semantic role labeling sys-
tem for Spanish based on gold standard dependency
syntax; [11] report on a semantic role labeling sys-
tem for English based on syntactic dependencies pro-
duced by the MaltParser system of Nivre et al. [13].
As for dependency parsing, MaltParser uses memory-
based learning as one of its optional local classifiers.
Canisius et al. [2] present another type of memory-
based dependency parser, extended later in [3] to a
constraint satisfaction-based dependency parser. The
latter parser combines local memory-based classifica-
tion with a global optimization method based on soft
weighted constraint-satisfaction inference, where the
local classifiers estimate syntactic relations between
pairs of words, the direction of the relation from chil-
dren to parents, and the relations that parents have
with children. Our current joint system adopts a sim-
ilar strategy, but uses ranking rather than weighted
constraint satisfaction inference.
1 http://ufal.mff.cuni.cz/conll2009-st/

275



We briefly discuss the issue of joint learning of two
tasks in Section 2. The two versions of the system
are described in Section 3, Section 4 presents and dis-
cusses the results, and in Section 5 we put forward
some conclusions and future research.

2 Joint learning

When two tasks share the same feature space, there
is the natural option to merge them and consider the
merge as a single task. For example, Sejnowski and
Rosenberg [15] train a back-propagation multi-layered
perceptron network on the joint task of mapping a let-
ter in its context within an English word onto a joint
label representing its phonemic mapping and a marker
indicating stress on that phoneme. Van den Bosch [16]
demonstrates that the joint learning of these two tasks
indeed produces superior generalization performance
as compared to learning the letter-phoneme task and
the stress marker assignment task separately. Buch-
holz [1] transposes this idea to shallow parsing, and
shows that POS tagging and base phrase chunking
could be learnd as a single task without any signifi-
cant performance loss. Wang et al. [17] jointly learn
Chinese word segmentation, named entity recognition,
and part-of-speech tagging, outperforming a pipeline
architecture baseline. Recently, Finkel and Manning
show that joint learning of parsing and named entity
recognition produce mildly improved performance for
both tasks [6].

The merging of two tasks will typically lead to an
increase in the number of class labels, and generally a
more complex class space. In the worst case, the num-
ber of classes in the new class space is the product of
the number of classes in the original tasks. In practice,
if two combined tasks are to some extent related, the
increase will tend to be limited, as class labels from the
original tasks will tend to correlate. For instance, the
POS tag for “determiner” will typically co-occur with
the chunk marker for “beginning of noun phrase”, and
less so, or not at all with other chunk markers. Yet,
even a mild increase of the number of classes leads to
a further separation of the class space, and thus to less
training examples per class label.

Joint learning can therefore only lead to positive re-
sults if the data sparsity effect of the separation of
the class space is counter-balanced by an unharmed,
or even improved learnability. The latter is the pri-
mary reason for doing joint learning in the first place:
certain parts of either of the combined tasks may be
learned with more ease and with better success when
it is co-learned with a part of another tasks. Learn-
ing this new separate part of the class space may in
theory be easier than learning that particular part of
the the larger unseparated class space of either of the
composing tasks.

Here, in the joint system, we treat the syntactic and
semantic tasks as one and the same task. For example,
given a pair of words A and B, where B would be a
verbal predicate, we train a local classifier to assign
the label “SBJ:A0”, signifying that A is the modifier
in a subject dependency relation with its head B, as
well as that A is the argument with the A0 role of
predicate B. Thus, we merge the class labels of the two

tasks into single labels, and present the classifiers with
examples with these labels. Further on the system, as
we describe in the next section, we do make use of the
compositionality of the labels, as in the end we have
to produce syntactic dependency graphs and semantic
role assignments separately.

Apart from our system, three more joint systems
participated in the CoNLL Shared Task 2009. The
system described by [9] extends the Eisner parser to
accomodate semantic dependencies. The system of [5]
decomposes the joint learning task in four subtasks:
semantic dependency identification and labeling, and
syntactic dependency identification and labeling. A
pipeline approach is set up in order to use the out-
put of one task as input of another, and features not
available at a certain step are incorporated iteratively.
The system described by [7] is based on an incremental
parsing model with synchronous syntactic and seman-
tic derivations and a joint probability model for both
types of dependency structures.

Fig. 1: Architecture of the joint system for depen-
dency parsing and semantic role labeling

3 System description

In this section we describe the joint system, and com-
pare it to the isolated version of the system. The joint
system operates in three phases (see Figure 1): a clas-
sification phase in which three memory-based classi-
fiers predict different aspects of joint syntactic and se-
mantic labeling; a ranking phase in which the output of
the classifiers is combined per sentence; and a phase in
which the syntactic and semantic dependency graphs
are built.

As a first step, before generating the instances of
the joint classifiers, we merge the semantic and syn-
tactic dependencies into single labels. Table 1 lists
the merged versions of the dependencies in an ex-
ample sentence. The “Merged”’ column contains for
each token its one or more merged dependencies, sep-
arated by blank spaces; each dependency is expressed
in labels with the following format: < headID >::<
dependencylabel >:< semanticrolelabel >. If a syn-
tactic or semantic label is absent, it is encoded by an
underscore, “ ”.

276



N Token Synt. Sem. Merged
1 Housing 2:NMOD 2:A1 2::NMOD:A1
2 starts 3:SBJ 2:A2 4:A1 2:: :A2 3::SBJ: 4:: :A1

6:A1 13:A0 6:: :A1 13:: :A0
3 are 0:ROOT 0::ROOT:
4 expected 3:VC 3::VC:
5 to 4:OPRD 4:C-A1 4::OPRD:C-A1
6 quicken 5:IM 5::IM:
7 a 8:NMOD 8::NMOD:
8 bit 6:OBJ 6:A2 6::OBJ:A2
9 from 6:ADV 6:A3 6::ADV:A3
10 August 13:NMOD 13:AM-TMP 13::NMOD:AM-TMP
11 ’s 10:SUFFIX 10::SUFFIX:
12 annual 13:NMOD 13:AM-TMP 13::NMOD:AM-TMP
13 pace 9:PMOD 9::PMOD:
14 of 13:NMOD 13:A2 13::NMOD:A2
15 1,350,000 16:NMOD 16::NMOD:
16 units 14:PMOD 14::PMOD:
17 . 3:P 3::P:

Table 1: Example sentence with isolated and merged
dependency labels

3.1 Phase 1: Classification

In the classification phase, three classifiers predict dif-
ferent local aspects of the global output structure. All
three operate at the word level. Two classifiers con-
sider pairs of words, and predict the identity or the
presence, respectively, of a joint semantic and syntac-
tic dependency between them. The third classifier fo-
cus on single words only, and predicts the relations
one word has with other words, without making ref-
erence to these other words. The hyperparameters of
the classifiers were optimized on English, by training
on the full training set and testing on the develop-
ment set; these optimized settings were then used for
the other six languages as well. The hyperparameters
and features used per classifier can be found in [12].

Classifier 1: Pairwise semantic and syntac-
tic dependencies. Classifier 1 predicts the merged
semantic and syntactic dependencies that hold be-
tween two tokens. Instances represent combinations
of pairs of tokens within a sentence. Each token is
combined with all other tokens in the sentence. The
class predicted is a joint < dependencyrelation >:<
semanticrole > label, or NONE if no relation is
present between the tokens. The amount of occurring
classes for all seven languages is shown in Table 2.

Cat Chi Cze Eng Ger Jap Spa
C1 111 309 395 551 152 103 124
C2 111 1209 1221 1957 300 505 124

Table 2: Number of classes per language predicted by
Classifiers 1 (C1) and 2 (C2)

The three most frequent merged class labels in the
case of English carry a syntactic dependency only:
NMOD: (16.2% of all joint dependency labels), P:
(10.1%), and PMOD: (8.7%). The syntactic de-
pendency components of these three labels also co-
occur with semantic roles in other joint labels, such as
NMOD:A1, which is the sixth-most frequent joint label
(3.9%). The fourth most frequent class is a semantic-
role-only label: :A0 (5.5%). The fifth most frequent
class is the most frequent example of a joint syntactic
and semantic dependency: OBJ:A1 (4.5% of all joint

dependency labels). The joint label SBJ:A0 ranks
number 12 in the frequency list, covering 2.5% of all
labels. At the other end of the frequency list, many
joint labels occur only rarely; for English, 287 classes
of the 551 occur only once.

Classifier 2: Per-token relations. Classifier
2 predicts the labels of the dependency relations of
a token with its syntactic and/or semantic head(s).
Instances represent single tokens. For example, the
instance that represents token 2 in Table 1 would
have as class: :A2-SBJ: - :A1- :A1- :A0. The amount
of classes per language is shown in Table 2 under
“C2”. The number of classes exceeds 1,000 for Chi-
nese, Czech, and English. These numbers are higher
than those for Classifier 1, as single tokens can have
several semantic heads, along with always one syntac-
tic head.

Classifier 3: Pairwise detection of a relation.
Classifier 3 is a binary variant of Classifier 1 that pre-
dicts whether two tokens have a dependency relation.
Instance representation follows the same scheme as
with Classifier 1.

3.1.1 Results

The results of the Classifiers in terms of micro-
averaged F-scores (with β = 1) over all class labels
are presented in Table 3. The performance of Classi-
fiers 1 and 3 is mostly above 90%, which is promising,
leaving a clear margin of error nonetheless. The micro-
averaged F-scores for Classifier 2 are lower, especially
for Chinese, Czech, and English. There appears to
be a correlation with the high number of Classifier 2
class labels (more than one thousand) for these three
languages in particular, as witnessed by Table 2. The
data sparsity induced by this high fragmentation of the
class space may be hampering performance of Classi-
fier 2 for these three languages.

Lang. C1 C2 C3
Cat 94.77 86.30 97.96
Chi 92.97 70.11 95.47
Cze 91.49 67.87 93.88
Eng 94.17 76.16 95.37
Ger 92.76 83.23 93.77
Jap 91.55 81.22 96.75
Spa 94.76 84.40 96.39

Table 3: Micro-averaged F-scores of the joint system
per classifier (C) and per language on the test corpora

The isolated version of the system consists of six
classifiers: each of the three classifiers described above,
applied separately to syntax and semantics. These
classifiers learn the content of the columns “Synt.”
and “Sem.” in Table 1 in isolation, instead of learning
it jointly.

English C1 C2 C3
Dependencies ISO JOINT ISO JOINT ISO JOINT
Synt 94.65 95.19 87.32 95.88
Sem 96.29 97.87 80.42 95.43
Synt/Sem 92.24 94.17 76.16 94.42 95.37

Table 4: Comparison of Micro-averaged F-scores per
classifier (C) on English test data in the joint and the
isolated systems

277



Table 4 compares the results per classifier for the
joint (“JOINT”) and the isolated (“ISO”) systems.
For Classifier 1 we compute the results for syntax,
semantics and for the combination. To compute the
combined results of the isolated system we recombine
the results of the syntax and semantics classifiers. For
Classifier 2 we can only compare the results of the com-
bined syntactic and semantic labels in the joint system
with the results that we obtain separately for syntax
and semantics in the isolated system. For Classifier
3 it is not possible to compute the results of syntax
and semantics separately for the joint system, as its
binary labels do not distinguish between syntax and
semantics.

Results of Classifiers 1 and 3 indicate that learn-
ing the tasks jointly produces a moderately better
performance. The results of the main classifier, C1,
show that syntactic and semantic dependencies are
better learned within the joint setting. This might
be explained by the fact that merged class labels are
more fine-grained, and that certain merged labels can
be predicted better separately than when lumped to-
gether in the original coarser-grained syntactic or se-
mantic labels. By analysing the scores per class, we
find that the scores per syntactic class improve for
classes that split into several classes in the joint set-
ting and are frequent. For example, the syntactic
class NMOD, which splits into 13 classes and is very
frequent, scores 5 points higher in the joint system,
whereas the class MNR, which splits into 8 classes and
is not frequent, scores 4 points lower. We observe the
same trend in the scores per semantic class. For ex-
ample, class A1, which is the most frequent and splits
into 20 combined classes, scores 18 point higher in the
joint setting.

3.2 Phase 2: Ranking

The classifier at the root of generating the desired
output (dependency graphs and semantic role assign-
ments) is Classifier 1, which predicts the semantic and
syntactic dependencies that hold between two tokens.
However, the classifier predicts incorrect dependencies
to a certain degree, and does not produce a graph in
wich all tokens have at least a syntactic head. The
evaluation of the overall joint syntactic and seman-
tic labeled accuracy based on the output of Classifier
1 produces a baseline score of 51.3% labeled macro
F-score. The ranking phase intends to improve over
this performance. This is done in two steps: (i) re-
ranking alternative predictions of Classifier 1 in order
to construct an intermediate dependency tree, and (ii)
adding extra semantic dependencies to the tree that
do not align with syntactic dependencies.

3.2.1 Ranking predictions of Classifier 1

In order to disambiguate between all possible de-
pendencies predicted by Classifier 1 between tokens,
the system applies re-ranking rules. It analyses the
dependency relations that have been predicted for
a token with its potential parents in the sentence,
and ranks them. For example, for a sentence with
10 tokens, the system would make 10 predictions per
token. The predictions are first ranked by entropy of

the class distribution for that prediction, then using
the output of Classifier 2, and next using the output
of Classifier 3.

Ranking by entropy. In order to compute entropy
we use the (inverse-linear) distance-weighted class la-
bel distributions among the nearest neighbors that
Classifier 1 is able to find. For example, the predic-
tion for an instance may be: { NONE (2.74), NMOD:
(0.48) }. The system ranks the prediction with the
lowest entropy in position 1, while the prediction with
the highest entropy is ranked in the last position. The
rationale behind this is that the lower the entropy, the
more confident the classifier is about the predicted de-
pendency. Table 5 lists the first six heads for the pred-
icate word ‘starts’ ranked by entropy (cf. Table 1).

Head Predicted label Distribution Entropy
Housing NONE { NONE (8.51) } 0.0
expected :A1 { :A1 (5.64) } 0.0
to NONE { NONE (4.74) } 0.0
quicken :A0 { :A0 (4.13), :A1 (0.18), :A2 (0.31) } 0.56
are NONE { NONE (2.56), SBJ: (0.52) } 0.65
starts :A0 { :A0 (7.90), :A1 (0.61), :A2 (1.50) } 0.93

Table 5: Output of Classifier 1 for the first six heads
of ‘starts’, ranked by entropy

Ranking by Classifier 2. The next ranking step
is performed by using the predictions of Classifier 2,
i.e. the estimated labels of the dependency relations
of a token with its syntactic and/or semantic head(s).
The system re-ranks the predictions that are not in the
set of possible dependencies predicted by Classifier 2
to the bottom of the ranked list. Because this is done
after ranking by entropy, the instances with the lowest
entropy are still at the top of the list. Table 6 displays
the re-ranked six heads of ‘starts’, given that Classifier
2 has predicted that possible relations to heads are
SBJ:A1 and :A1, and given that only ‘expected’ is
associated with one of these two relations.

Head Predicted label Distribution Entropy
expected :A1 { :A1 (5.64) } 0.0
Housing NONE { NONE (8.51) } 0.0
to NONE { NONE (4.74) } 0.0
quicken :A0 { :A0 (4.13), :A1 (0.18), :A2 (0.31) } 0.56
are NONE { NONE (2.56), SBJ: (0.52) } 0.65
starts :A0 { :A0 (7.90), :A1 (0.61), :A2 (1.50) } 0.93

Table 6: Output of Classifier 1 for the first six heads
of ‘starts’, ranked by entropy and Classifier 2

Ranking by Classifier 3. The final ranking step
makes use of Classifier 3, which predicts the existence
of a relation between two tokens. The dependency re-
lations predicted by Classifier 1 that are not confirmed
by Classifier 3 are moved to the end of the ranked list.
Table 7 lists the resulting ranked list.

Head Predicted label Distribution Entropy
expected :A1 { :A1 (5.64) } 0.0
quicken :A0 { :A0 (4.13), :A1 (0.18), :A2 (0.31) } 0.56
starts :A0 { :A0 (7.90), :A1 (0.61), :A2 (1.50) } 0.93
Housing NONE { NONE (8.51) } 0.0
to NONE { NONE (4.74) } 0.0
are NONE { NONE (2.56), SBJ: (0.52) } 0.65

Table 7: Output of Classifier 1 for the first six heads of
‘starts’ ranked by entropy, Classifier 2, and Classifier 3

After ranking the predictions of Classifier 1, the sys-
tem selects as syntactic head for every token the pre-

278



diction with the best ranking that has a syntactic de-
pendency value different from “ ”. This is motivated
by the fact that every token has one and only one
syntactic head. The tree that results from this step
(intermediate tree) can have more than one root, or
no root at all. To make sure that every sentence has
one and only one root, we apply some extra rules.

The error reduction rate at each step of the ranking
process is shown in Table 8.

Ranking Labeled Macro F1 Error Reduction
No ranking 53.40
C1 Entropy 68.66 32.74
By C2 71.48 8.99
By C3 75.88 15.42

Table 8: Effect of the ranking steps in the final results
of the joint system on the test data of English

The product of this step is a tree in which every
token is uniquely linked to a syntactic head. Because
syntactic and semantic dependencies have been linked,
the tree contains also semantic dependencies. How-
ever, the tree is missing the semantic dependencies
predicted by Classifier 1 that do not have a syntactic
dependency part. The final step, described in Subsec-
tion 3.3 adds these relations to the dependency tree.
We first describe how ranking in the isolated system
is implemented.

3.2.2 Ranking in the isolated system

In the isolated system the same ranking process is ap-
plied to the syntactic dependency task in order to build
a syntactic graph, where every node has only one syn-
tactic head. The ranking algorithm takes as input the
output of the classifiers that learn syntactic dependen-
cies in isolation.Table 9 shows the error reduction rates
of syntactic dependencies for English at every step of
the ranking process, comparing the joint system and
the isolated system. The results show that the effect
of the ranking process outperforms the scores of the
joint system slightly, despite the fact that the indi-
vidual classifiers produced better scores in the joint
setting.

Joint Isolated
Ranking LAS ER LAS ER
No ranking 51.08 51.02
C1 Entropy 70.84 40.39 71.93 42.69
By C2 74.22 11.29 74.71 9.90
By C3 80.35 23.77 81.08 25.18

Table 9: Comparison of the ranking effects in the iso-
lated and joint systems for syntactic dependencies on
the test data of English (LAS “Labeled Attachment
Score”, ER “Error Reduction”)

It is not possible to make the same comparison
for semantic dependencies in isolation, as the rank-
ing aims to select one syntactic head. In the semantic
dependency graph, a token can have more than one
head.

3.3 Phase 3: Adding extra semantic
dependencies

In order to find the tokens that have only a semantic
relation with a predicate, the system analyses for each
predicate the list of predictions made by Classifier 1,
selecting the predictions in which the syntactic part of
the label is “ ” and the semantic part of the label is
not “ ”. On the test data for English, applying this
rule produces another 9.57% error reduction on labeled
macro F1: from 75.88% to 78.19%.

In the isolated system semantic dependencies are
processed differently. Classifiers 1, 2 and 3 learn the
semantic dependencies in isolation. Then, the predic-
tions of Classifier 1 are ranked by entropy. All AM
arguments (e.g. AM-TMP) are kept because a predi-
cate can have more than one, but the redundant basic
arguments (such as A0, A1, etc.) are filtered out be-
cause each predicate can have only one of them. If
there is more than one, we keep the one that occupies
the highest position in the ranking. Additionally, some
relations are filtered out by using Classifiers 2 and 3.
The results obtained for semantics in the isolated and
in the joint system are not directly comparable, be-
cause we cannot process them in the exact same way.

3.4 Predicate sense disambiguation

In the setting of the CoNLL Shared Task, process-
ing the semantic dependencies of a predicate involves
also disambiguating the sense of the predicate. This
is performed in the joint and the isolated systems by
a classifier for each language that predicts the sense of
the predicate. An exception is made for Japanese, as
with that language the lemma is taken as the sense.
We use the IGTREE algorithm. Instances represent
predicates; the features used are the word, lemma and
POS of the predicate, and the lemma and POS of two
tokens before and after the predicate. The results per
language are presented in Table 10. We observe rela-
tively high scores for Chinese and English.

Lang. Cat Chi Cze Eng Ger Spa
F1 82.40 94.85 87.84 93.64 73.57 81.13

Table 10: Micro-averaged F-score for the predicate
sense disambiguation

4 Overall results

For each language, a full system is developed by train-
ing the three classifiers on the training set and testing
on the development set. The final results are obtained
by processing the test set provided by the CoNLL 2009
Shared Task. Table 11 lists the syntactic and seman-
tic dependency prediction evaluated separately. The
labeled attachment score (LA) indicates low scores
for Chinese and Czech, and relative success for En-
glish and Japanese. In terms of semantic role labeling
scores, precision is higher than recall for all languages,
and markedly lower scores are obtained with German
and Japanese.

The comparison of the final results of the joint and
the isolated system presented in Table 12 indicates a
moderately better performance of the isolated system

279



Syntax Semantics
Lang. LAS F1 Precision Recall
Cat 77.33 70.14 72.49 67.94
Chi 67.92 67.63 69.48 65.86
Cze 60.03 77.28 80.73 74.11
Eng 80.35 75.97 79.04 73.13
Ger 73.88 61.01 65.15 57.36
Jap 86.17 68.82 77.66 61.80
Spa 73.07 68.48 69.62 67.38

Table 11: Labeled attachment score (LAS) for syntac-
tic dependencies and F scores of semantic dependen-
cies per language in the joint system

for syntactic dependencies, and a drop in performance
of the isolated system for semantic dependencies. In
particular, the isolated system produces considerably
lower recall rates. This cannot be caused by the per-
formance of the classifiers, since their results in the
isolated setting are less than 2 points lower. There-
fore, the ranking process customized to semantic de-
pendencies is suboptimal.

Syntax Semantics
System LAS F1 Precision Recall
Joint 80.35 75.97 79.04 73.13
Isolated 81.08 63.89 72.00 57.42

Table 12: Comparison of labeled attachment score
(LAS) of syntactic dependencies and F scores of se-
mantic dependencies in the joint and the isolated sys-
tems for English

5 Conclusions

In this paper we presented two systems, one that per-
forms dependency parsing and semantic role labeling,
based on local classifiers that learn the semantic and
syntactic information jointly, and a second that per-
forms the tasks based on local classifiers that learn
the semantic and syntactic information in isolation.
The isolated system was designed with the purpose of
extracting conclusions about the effect of joint learn-
ing. By comparing the systems using English data, we
found that in the joint learning setting the classifiers
achieve slightly better scores.

The analysis of the results per class of the main clas-
sifier in the joint and the isolated setting shows that
classes that are frequent and split into several merged
classes in the joint setting have the highest increase
of scores in the joint setting compared to the isolated
setting. This suggests that separation of the class into
finer-grained intersections of semantic and syntactic
labels space facilitates the learning process, provided
that there are enough examples for these finer-grained
joint labels.

As for the joint system, the comparatively low scores
on most languages (compared to other competing sys-
tems in the CoNLL 2009 shared task) can be likely
improved (1) by making use of the available morpho-
syntactic features, which we did not use in the present
system; (2) by optimising the classifiers per language;
and (3) by further improving the ranking algorithm.

We also observe a relatively low recall on the seman-
tic task as compared to the overall scores, indicating
that syntactic dependencies are identified with a better
precision-recall balance than the semantic roles. More
detailed tuning of our downsampling strategy may be
used to improve the balance for the semantic task.

Acknowledgments

This study was made possible through financial sup-
port from the University of Antwerp (GOA project
BIOGRAPH), and from the Netherlands Organisation
for Scientific Research.

References
[1] S. Buchholz. Memory-Based Grammatical Relation Finding.

PhD thesis, Tilburg University, 2002.

[2] S. Canisius, T. Bogers, A. van den Bosch, J. Geertzen, and
E. T. K. Sang. Dependency parsing by inference over high-
recall dependency predictions. In Proc. of CoNLL-X, pages
3–8, New York City, NY, 2006.

[3] S. Canisius and E. Tjong Kim Sang. A constraint satisfac-
tion approach to dependency parsing. In Proc. of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages 1124–
1128, 2007.

[4] W. Daelemans and A. van den Bosch. Memory-based lan-
guage processing. Cambridge University Press, Cambridge,
UK, 2005.

[5] Q. Dai, E. Chen, and L. Shi. An iterative approach for joint
dependency parsing and semantic role labeling. In Proc. of the
CoNLL 2009: Shared Task, pages 19–24, Boulder, CO, 2009.

[6] J. R. Finkel and C. D. Manning. Joint parsing and named
entity recognition. In Proc. of Human Language Technologies:
The 2009 Annual Conference of the NAACL, pages 326–334,
Boulder, Colorado, June 2009. ACL.

[7] A. Gesmundo, J. Henderson, P. Merlo, and I. Titov. A la-
tent variable model of synchronous syntactic-semantic parsing
for multiple languages. In Proc. of the CoNLL 2009: Shared
Task, pages 37–42, Boulder, CO, 2009.

[8] J. Hajič, M. Ciaramita, R. Johansson, D. Kawahara, M. A.

Mart́ı, L. Màrquez, A. Meyers, J. Nivre, S. Padó, J. Štěpánek,
P. Straňák, M. Surdeanu, N. Xue, and Y. Zhang. The CoNLL-
2009 shared task: Syntactic and semantic dependencies in mul-
tiple languages. In Proc. of CoNLL-2009: Shared Task, Boul-
der, Colorado, USA, 2009.

[9] X. LLúıs, S. Bott, and L. Márquez. A second-order joint eisner
model for syntactic and semantic dependency parsing. In Proc.
of the CoNLL 2009: Shared Task, pages 79–86, Boulder, CO,
2009.

[10] R. Morante. Semantic role labeling tools trained on the
Cast3LB-CoNLL-SemRol corpus. In Proc. of the LREC 2008,
Marrakech, Morocco, 2008.

[11] R. Morante, W. Daelemans, and V. Van Asch. A combined
memory-based semantic role labeler of english. In Proc. of the
CoNLL 2008, pages 208–212, Manchester, UK, 2008.

[12] R. Morante, V. Van Asch, and A. van den Bosch. Joint
memory-based learning of syntactic and semantic dependencies
in multiple languages. In Proc. of the CoNLL 2009: Shared
Task, pages 25–30, Boulder, CO, 2009.

[13] J. Nivre. Inductive Dependency Parsing. Springer, 2006.

[14] M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank:
An annotated corpus of semantic roles. Computational Lin-
guistics, 31(1):71–105, 2005.

[15] T. Sejnowski and C. Rosenberg. Parallel networks that learn to
pronounce English text. Complex Systems, 1:145–168, 1987.

[16] A. Van den Bosch. Learning to pronounce written words: A
study in inductive language learning. PhD thesis, Universiteit
Maastricht, 1997.

[17] X. Wang, J. Nie, D. Luo, and X. Wu. A Joint Segmenting and
Labeling Approach for Chinese Lexical Analysis. In Proc. of
the European conference on Machine Learning and Knowl-
edge Discovery, pages 538–549, Berlin, 2008. Springer Verlag.

280


