
International Conference RANLP 2009 - Borovets, Bulgaria, pages 185–191

Feature Subset Selection in
Conditional Random Fields for Named Entity Recognition

Roman Klinger and Christoph M. Friedrich
Department of Bioinformatics

Fraunhofer Institute for Algorithms and Scientific Computing (SCAI)
53754 Sankt Augustin, Germany

{roman.klinger,christoph.friedrich}@scai.fraunhofer.de

Abstract
In the application of Conditional Random Fields (CRF),
a huge number of features is typically taken into ac-
count. These models can deal with inter-dependent
and correlated data with an enormous complexity. The
application of feature subset selection is important to
improve performance, speed and explainability.
We present and compare filtering methods using infor-
mation gain or χ2 as well as an iterative approach for
pruning features with low weights.
The evaluation shows that with only 3 % of the orig-
inal number of features a 60 % inference speed-up is
possible. The F1 measure decreases only slightly.

1 Introduction
Feature selection is well established for many machine learn-
ing methods, for instance for feed-forward neural networks
[2] or decision trees [17]. The main advantages are an im-
provement of prediction performance, faster training and
prediction as well as a better understanding of the models
[4]. Methods can be distinguished between filters not us-
ing the learning algorithm and wrappers using the learning
algorithm as a black box [8]. An overview of approaches
for classification tasks is given by Liu and Motoda [11],
more specifically for text classification by Yang and Peder-
son [25].

Such feature selection methods are not well established
for Conditional Random Fields [9], a Maximum Entropy-
based method [1] for structured data. We propose methods
coping with the demanding task of handling sequential data
represented by a huge number of features. Reported num-
bers are for instance 1,686,456 for a gene name tagger [5].
Due to this high complexity, training and inference times
can explode. These high numbers of features are generated
by automated methods, i. e., for every token in the train-
ing set, features are generated. Then, all other tokens are
tested for these features. This method is typically applied
to determine the identity of words as well as for prefixes
or suffixes of different length or for learning schemata of
regular expression-like patterns [20].

Only a few approaches dealing with feature handling for
CRFs are published. The work by McCallum [12] demon-
strates a method for iteratively constructing feature con-
junctions that would increase conditional log-likelihood if

added to the model. An analysis of different penalty terms
for regularization is shown by Peng and McCallum [15].
Goodman [3] presented a related analysis of exponential
priors for Maximum Entropy models. The very recent work
of Vail et al. [23, 22] shows feature selection in Conditional
Random Fields by L1-norm regularization in the robotics
domain, a work which is related to the selection in Maxi-
mum Entropy models proposed by Koh et al. [7].

These methods incorporate the training procedure in the
selection process. In contrast, we present different filter
methods for feature selection to limit the complexity before
starting the training. It is demonstrated how the sequential
structure of text can be respected by filtering approaches
originally developed for classification problems (especially
in Section 3.1.2 and 3.1.3). These filter methods are com-
pared to an iterative approach.

The paper is organized as follows. A short description of
Conditional Random Fields is given in Section 2. We intro-
duce different approaches for feature selection in Section 3,
namely the adaption of classification methods to filter fea-
tures and an iterative approach to remove features with low
weights. In Section 4, an evaluation of the feature selection
methods is given. The results show a reduction of complex-
ity leading to improved speed and better explainability.

2 Conditional Random Fields and
Sequential Data

Conditional Random Fields [9, 13] are a family of prob-
abilistic, undirected graphical models for computing the
probability P~λ(~y|~x) of a possible label sequence ~y =
(y0, . . . , yn) given the input sequence ~x = (x0, . . . , xn).
In the context of Named Entity Recognition, this ob-
servation sequence ~x corresponds to the tokenized text.
The label sequence is encoded in a label alphabet L =
{I-<entity>,O,B-<entity>} where yi = O means that xi
is outside an entity, yi = B-<entity> means that xi is the
beginning and yi = I-<entity> means that xi is inside an
entity.

In general, a CRF is given by

P (~y|~x) =
1

Z(~x)

n∏
j=1

Ψj(~x, ~y) (1)

185



with normalization Z(~x) =
∑
~y∈Y

∏n
j=1 Ψj(~x, ~y), where

Ψj are the different factors and Y is the set of all possible
label sequences. These factor functions combine different
features fi of the considered part of the text and label se-
quence and usually correspond to maximal cliques on the
independence graph.

For simplicity, we focus on the linear-chain CRF as a
special case of the general CRF. The factors are given in the
form

Ψj(~x, ~y) = exp

(
m∑
i=1

λifi

(
yj−1, yj , ~x, j

))
. (2)

Each feature fi(·) is weighted by λi ∈ R. These weights
are the parameters to be learned in the model and later used
in the iterative approach for feature subset selection (in
Section 3.2). An example formulation of features fi(·) is

fi

(
yj−1, yj , ~x, j

)
=
{

1, if yj−1 = s′i and yj = s′′i and ϕk(xj)
0, otherwise, (3)

where s′i, s
′′
i ∈ L.

There are two kinds of features. First, the ones represent-
ing the token sequence as a feature vector sequence1 (these
features are referred to as ϕk ∈ F). An example is that
ϕk(xj) holds if and only if xj is a capital word. Second, the
feature functions representing ϕk(xj) with label transitions,
to be referred to as fi ∈ F .

Optimization of the parameters λi is often performed with
the limited-memory Broyden-Fletcher-Goldfarb-Shanno al-
gorithm (L-BFGS, Nocedal, [14]) on the convex function
L(T ) with the training data T , including a penalty term:

L(T ) = logP~λ(~y|~x)) −
m∑
i=1

λ2
i

2σ2
. (4)

3 Feature Selection Methods for
CRFs

An exhaustive search to find the optimal feature subset is
not possible due to the large number of features and com-
paratively long training times. Hence, a wrapper approach
considering the CRF as a black box is impractical. We
compare different approaches for feature subset selection
of sequential data in CRFs, i. e., filtering methods (in Sec-
tion 3.1) and an iterative method (in Section 3.2).

3.1 Filter
To apply filter methods for classification tasks, the sequence
data have to be represented as classification instances. For
a pair of sequences (~y, ~x) this is done with respect to the
incorporated factors in the CRF. For every factor Ψj(~y, ~x),
an instance is built. The labels are all dependencies on ~y, the
features have the values at the corresponding position for ~x.

1For simplicity, we only consider boolean features.

For the factors in a linear-chain CRF as shown in Equation 2,
the instance Ij = (Lj , ~ϕj) at position j (0 < j ≤ n) has the
label Lj = (yj−1, yj) from a set of all possible transitions2

Lj ∈ L2. The feature values are ϕk(xj). Instances are built
for all positions in all training examples from T .

The features are ranked by measures presented below.
The best pfilter features (where pfilter is a parameter specifying
the percentage of kept features) are selected to represent the
text data.

In the following, the number of generated instances is
denoted with h, the number of instances with feature ϕ(xj)
with value 1 with h1

j and with value 0 with h0
j . The number

of instances with label L` is h(`), with feature values 1 or 0
of those with h1

j (`) and h0
j (`) respectively.

3.1.1 Simple Information Gain

Our first approach for measuring the quality of a feature
is the use of information gain of a feature IG(ϕ(xj)) to
differentiate between all possible labels L`. It is defined as

IG(ϕ(xj)) = I

(
h1
j

h
,
h0
j

h

)
−R(ϕ(xj)) (5)

where I(·) is the information content

I(p1, p2) = −p1 log2 p1 − p2 log2 p2 (6)

with probabilities p1 and p2. R(ϕ(xj)) is the remainder of
bits of information after testing feature ϕ(xj):

R(ϕ(xj)) =
|L2|∑
`=1

(
h(`)
h
I

(
h1
j (`)
h(`)

,
h0
j (`)
h(`)

))
. (7)

For comparing the features it is sufficient to compute R(·)
because I(·) is constant for one feature [18]. Determining
this measure for m features with |L| different labels lasts
O(m|L2|).

Ranking the features with this approach cannot lead to
differences between transitions in the CRF. Therefore, it is
referred to as Simple IG.

3.1.2 Information Gain One-Against-All

The limitation of Simple IG is the disregard of differences
between transitions in CRF. To cope with that, we assign
a list of the best pfilter features to every transition L`. In
general, every clique in the graph has its own evaluation of
features ϕ(·).

The remainder, the measure for the quality of a feature in
Equation 7, changes slightly to

ROAA(ϕ(xj),L`)

=

(
h(`)
h
I

(
h1
j (`)
h(`)

,
h0
j (`)
h(`)

))

+

(
h̄(`)
h
I

(
h̄1
j (`)
h̄(`)

,
h̄0
j (`)
h̄(`)

))
(8)

2For the linear-chain CRF of order 1. In general, Lj ∈ Lc+1 with order c
holds.

186



ϕ(xj) = 1 ϕ(xj) = 0
P

L` h1
j (`) h0

j (`) h(`)
L6=` h̄1

j (`) h̄0
j (`) h̄(`)P

h1
j h0

j h

Table 1: The 2 × 2 contingency table.

where
h̄(`) =

∑
l∈{1,...,|L|2}\`

h(l) ,

and h̄1
j (l) and h̄0

j (l) analogous. This approach is applied to
rank the features ϕ(xj) for every transition L` separately.
It is referred to as Information Gain One-Against-All (IG-
OAA). The runtime is O(m|L|) and therefore less than Sim-
ple IG.

3.1.3 χ2-Statistics

Another well-known and often incorporated ranking method
are χ2-statistics [16]. The 2×2 contingency table is defined
for each feature ϕ(xj) and each transition L` compared to
all other transitions (cf. Table 1). The χ2-statistic is then
computed by

χ2(ϕ(xj),Lj) =(
h1
j (`) · h̄0

j (`)− h0
j (`) · h̄1

j (`)
)2 · h

h(`) · h̄(`) · h0
j · h1

j

(9)

Similar to IG OAA, this is performed to rank the features
ϕ(xj) for every transition L` separately. Therefore, the run-
time is also O(m|L|). We refer to this method as χ2 OAA.

3.1.4 Random

The most simple method is a random ranking and selection
of features. This is used as a baseline to evaluate the other
measures presented in the previous sections.

3.2 Iterative Feature Pruning
Training a CRF is commonly performed by the iterative
algorithm L-BFGS to assign weights λi to all feature func-
tions fi ∈ F such that L(T ) is maximized (compare to
Equation 4). Typically, many weights are close to 0. The
idea of Iterative Feature Pruning (IFP) is that feature func-
tions with low absolute weight value have a low impact on
the output sequence.

Based on this assumption, the algorithm (see pseudo
code in Figure 1) starts with a fully optimized CRF using
all features representing the training data (Line 2). The next
step is the removal of features with lowest absolute value
(3). The parameter p = 1− |S||F| specifies the percentage of
features to be removed in each iteration (13–15). S is the
set of remaining features after one iteration of IFP.

In each step, a retraining with L-BFGS is performed to
allow an adaption of the model by adjusting the weights

1: function IFP(crf,trainData, valData, p)
2: crf = BFGS(crf, trainData, valData)
3: log = PRUNING-STEP(crf, trainData, valData, p)
4: crf = SELECTFEATURESET(log)
5: crf = BFGS(crf, trainData+valData,null)
6: end function
7: function PRUNING-STEP(crf, trainData, valData, p)
8: log← EVALUATE(trainData, valData, crf)
9: F = GETFEATURESET(crf)

10: if F = ∅ then
11: return log
12: end if
13: S = features with lowest weights such that

p = 1− |S|/|F|
14: F = F\S
15: SETFEATURESET(crf,F )
16: crf = BFGS(crf, trainingData)
17: return PRUNING-STEP(crf, trainData, valData)
18: end function

Figure 1: Iterative Feature Pruning Algorithm (starting with
method IFP(·) in Line 1)

for the remaining features (16). After that, the pruning is
repeated (17) until no features are left (11).

During this process, at each iteration of pruning, the
current performance of the model is evaluated and stored
(8). This information can be used to select the final feature
set (Line 4, an heuristic is shown in Section 4.3) and to train
a full model with the identified feature subset (Line 5).

To illustrate the process of IFP, it is shown exemplarily by
means of extreme examples for one data set3 in Figure 2. On
the horizontal axis, all L-BFGS training iterations are shown
consecutively with the intermediate pruning steps. The blue
dotted line shows the decrease of the number of features,
the red solid line the F1 measure for the training data, the
green dashed line the F1 measure for one validation data
set. Removing 40 % of the features in each step (p = 0.4)
clearly depicts the process of removing and retraining of
the model. Experiments4 have shown that in general lower
numbers of features can be achieved with comparable F1

measures if smaller values of p are used. The drawback
is the higher number of iterations needed. We focus on
p = 0.1 which leads to good results as shown in Section 4.

4 Results
In this section, the methods proposed in Section 3 are eval-
uated on the data sets and configurations of the CRFs de-
scribed in Section 4.1. The hypotheses to be analyzed are:

Selecting a reasonable subset of features:
A1 Improves explainability of the CRF model,
A2 Improves training time and tagging time which is bene-

ficial for developing as well as applying the model,
A3 Improves performance in F1 measure or does not de-

crease it dramatically.
Additionally, we assume that one method is superior to all
others:
B One method outperforms the others.

3CoNLL data set introduced in Section 4.1
4Results not shown here due to page limitation.

187



��
����
����
����
����

��

�������������������	�������
����������
��
���
����
�����
������
�������
�����

�
�
��
�
�
�
�
��

�
�
�
�
�
��
�
��
	
�

�
�
�

���������������������������

������

��
����
����
����
����

��

�� ���� ����� ����� ����� �����
��
���
����
�����
������
�������
��	
��

�
�
��
�
�
�
�
��

�
�
�
�
�
��
�
��
	
�

�
�
�

��	��������������	������

������

��
����
����
����
����

��

�� ����� ����� ����� ����� �	��� �����
��
���
����
�����
������
�������
��
���

�
�
��
�
�
�
�
��

�
�
�
�
�
��
�
��
	
�

�
�
�

�
����������������
�������

�������

�����������	�
������
�

������������
���
�����
�


�����������������

Figure 2: Iterative Feature Pruning for CRF trained on CoNLL
data with different percentages of features pruned in each iteration.

The evaluations in the following form the basis for the dis-
cussion of these hypotheses in Section 4.4.

4.1 Data Sets used for Evaluation

The results and evaluations are shown on the basis of two
data sets with slightly different configurations of the CRF.
Quantities of entities are given in Table 2.

The BioCreative 2 Gene Mention Task data (BC2) con-
tains entities of the class Gene/Protein with the specialty
of acceptance of several boundaries for entities [24]. We
incorporate the configuration of the CRF as described in a
participating system using only the shortest possible annota-
tion as exact true positive per entity [6, 21].

Name Training Set

B- I- O

BC2 18165 15017 382983
CoNLL 29466 13180 213499

Test Set

B- I- O

BC2 6290 4801 128915
CoNLL 5654 2458 38554

Table 2: Numbers of labels in data sets, the different entity classes
are added in CoNLL.

CoNLL data set

��

����

����

����

����

��

�� ��� ���� ����� ������ �������

�
�
��
�
�
�
�
��

�	
�������������

BioCreative 2 data set

��

����

����

����

����

��

�� ��� ���� ����� ������ �������

�
�
��
�
�
�
�
��

�	
�������������

���������
���	



�����
���	



���������

Figure 3: Comparison of the average F1 measure using 10-fold
cross-validation. Used features are determined with methods de-
scribed in Section 3. The transparent band shows the standard
deviation. The arrows show a possible selection of the model
features (g = 2 · 10−6, ∆ = 0.02, cf. Section 4.3).

The CoNLL data [19] is an annotation of the Reuters
corpus [10] containing the classes person, organization, lo-
cations and misc. We use an order-one CRF with offset
conjunction combining features of one preceding and suc-
ceeding token for each position in the text sequence. The
feature set is fairly standard with Word-As-Class, prefix and
suffix generation of length two, three and four as well as reg-
ular expressions detecting capital letters, numbers, dashes
and dots separately and as parts of tokens. The combination
of the provided sets “train” and “testa” is used for training
and “testb” for testing.

For evaluating the inference time on a larger set, a uni-
form sample from the Medline5 database of 10,000 entries is
used additionally. Each one comprises titles, author names,
and abstracts. The number of tokens is 958869 for BC2
and 960744 for CoNLL (additionally to BC2 tokenization,
splitting on all dots is performed for CoNLL data).

4.2 Cross-Validation on the Training Sets
As a basis for parameter selection (presented in Section 4.3)
and to evaluate the impact of feature selection, 10-fold cross

5http://www.nlm.nih.gov/databases/databases_
medline.html

188



validation is performed on the training sets (Section 4.1).
The results are shown in Figure 3. The curves depict the
average F1 measure6 of the 10 partitions. The different
numbers of features are detected with different parameters
specified for the respective selection method. The transpar-
ent band around the line depicts the standard deviation for
the according number of features.7 The significance of the
difference of the methods is tested regarding the area under
the curves in Figure 3 via Welch’s t-test with a significance
level of α = 0.05.

Comparing the results on the two data sets, the methods
lead to similar results whereas the differences are clearer
on CoNLL data. All approaches outperform the random
selection significantly. The approach of χ2 OAA is worse
than the conceptionally similar IG OAA and the more naive
Simple IG on BC2 data.

IG OAA outperforms all other filtering approaches. As-
suming the goal to reach the highest possible F1 measure,
IFP leads to better results than IG OAA on both data sets.
Only if an extremely small number of features remains
(fewer than about 50), IG OAA leads to better results. The
superiority of IFP to χ2 OAA is significant (p = 0.02) on
the CoNLL data set.

4.3 Results on independent test sets
We need to find the parameter assignment to determine the
feature subset in the final model. For the filter approaches,
the parameter is pfilter. For IFP, the meaningful number of
features at which the pruning is stopped has to be detected.
Based on the smoothed8 values of F1 measure in 10-fold
cross-validation (see Figure 3), we define two measures to
automatically detect these parameters: The maximally ac-
cepted loss in F1 measure is denoted with ∆, the threshold
for the gradient is g. The detection of the feature subset is
performed via backward selection starting with high num-
bers of features. The first position on the curve for which
the gradient is smaller than g or the F1 measure is smaller
than ∆ is selected. The values g = 2 · 10−6 and ∆ = 0.02
lead to the positions denoted by arrows in Figure 3. The
results for these values are evaluated in the following. The
advantage of backward selection to forward selection is that
it may capture interacting features more easily [8].

A model is built on the full training set applying IFP
or filtering with the detected parameters. In Figure 4 the
results on independent test sets mentioned in Section 4.1 are
depicted. The smallest numbers of features are achieved by
IFP followed by IG OAA.

The F1 measures decrease up to the accepted ∆ = 0.02
on BC2 data and to a lower amount for the CoNLL data.
The best trade-off between F1 measure and the number of
features (depicted in third bar chart) is always achieved by
IFP followed by IG OAA.

A smaller number of features should induce a faster
model in training and inference. The time of evaluating

6Fβ =
(1+β2)·precision·recall
β2·precision+recall , where β = 1

7In iterative feature pruning, different numbers of features can occur at the
same iteration of pruning. In that case, the closest detected number of
features is used to compute average and standard deviation.

8Smoothing via computation of median in a running window.

P~λ(~y|~x) (compare to Equation 1) on all training examples
is shown in the fourth bar charts. This computation is cru-
cial for training durations as it has to be performed many
times. These numbers correspond roughly to the number
of features, the durations are smaller than for the original
model. The ratio is not linear due to the necessary forward-
backward algorithm calls (whose runtime is quadratic in the
number of possible labels) and dynamic memory allocation
times.

These numbers naturally lead to dramatically reduced
training times. Training the full CoNLL model lasts 5788
seconds, 2397s for BC2 respectively. With the feature set
detected by IFP, these numbers reduce to 2156s and 670s.
This improvement is not helpful in practice, as the IFP
procedure incorporates training the model. However, fil-
tering via IG OAA improves overall training time as it is
computationally inexpensive. It leads to 5230s and 1002s
for training a model.9

Reducing the number of features also leads to a faster
inference10: The fifth bar charts show durations for tagging
10000 sampled abstracts from Medline. Best results are
achieved by IFP (CoNLL: 10.52s instead of 17.56s, BC2:
2.42s instead of 4.56s), followed by the filtering methods
which do not differ remarkably (IG OAA: CoNLL: 14s, BC2:
2.65s).

Summarizing, a reduced training iteration time of 76 %
of original time evaluating P~λ(~y|~x) with a loss of only
1.7 % F1 (absolute value) on the BC2 data is possible with
IFP. The tagging time is reduced to 53 %. On the CoNLL
data, a loss of only 0.57 % in F1 occurs with savings of even
54 % of original computing time. Tagging time is reduced
to 60 %.

4.4 Discussion
Comparing the methods, the results are similar for the data
sets: In 10-fold cross-validation, the random method is
dominated by all other methods. Simple IG or χ2 OAA are
second worst, depending on the data set. IFP is the best
method, closely followed by IG OAA.

The Simple IG lacks the representation of different tran-
sitions in the features which is especially important for the
CoNLL data with 4 entity classes of interest. No dictio-
naries with members of these classes have been used in
the presented setting, so all classes are memorized with
automatically generated features, hence, a large number of
different features is needed for the different transitions in
the CRF.

The method χ2 OAA always leads to worse results com-
pared to IG OAA on the 10-fold cross-validation although
it is a systematically similar approach. The reason is pre-
sumably the unbalancedness of the labels in the generated
classification instances11 which is taken into account in the

9The relation to the numbers of features and the iteration durations is not
linear as the needed numbers of training iterations differs.

10Measuring only the computation, not the time to read the data from hard
disk and to extract the features.

11Transitions of intermediate terms (like (O,O)) are for instance much
more frequent than those of beginnings of entities (like (B,B)).

189



CoNLL data set

�����

������

������

������
����	
����

����
����
����
����
���� ��

�������

�������

�������
��������
����

����
�����
�����
�����
�����
����� ��������
���������

��

�����

������

������

��
��

�
��

�
��

�	



	

��

�
�


�
��

�
�

	�
�

��
�

�
�

�

���
�
� 
���

BioCreative 2 data set

�����

������

������

������
����	
����

����
����
����
����
���� ��

�������

�������

�������
��������
����

����
����
����
����
����
����� ��������
���������

��
�����
�����
�����
�����
�����

��
��

�
��

�
��

�	



	

��

�
�


�
��

�
�

	�
�

��
�

�
�

�

���
�
� 
���

Figure 4: Results on independent test sets (Note the different scales for some of the histograms.)

information remainder (Equation 7 and 8) but not in χ2

(Equation 9).
IFP leads to better results than IG OAA for high F1 mea-

sures. The reason is the limitation of IG OAA to use the
same number of features (but not the same set) for each
transition (specified by pfilter). This does not hold for IFP
as it only relies on the model structure itself. The drawback
is the higher computational cost due to the incorporated
L-BFGS optimization.

The random method does not lead to good results, but
it should be noted, that even this approach can remove
30 %–40 % without a dramatic decrease in F1 measure. The
reason are unessential redundancies in the full feature set.

Mainly all these results are reflected on the independent
test sets. IFP or IG OAA has the best trade-off between F1

measure and the number of features. Good inference speed-
ups can be achieved with both methods, corresponding to
the low numbers of features. However, IFP cannot be used
to speed up training as it incorporates the training procedure
itself. Hence, IG OAA is proposed for this instance. For re-
ducing tagging time as well as for understanding the model,
IFP should be used as it leads to the smallest numbers of
features.

In Table 3, the percentages and numbers of remaining
features accepting maximally 0.01 loss in F1 measure are
depicted. Much more features can be ignored in the BC2
than in the CoNLL setting. This can be an indicator for the
need for better generalizing features: as the classes have
to be memorized by automatically generated features, less
features can be eliminated. In BC2, features with better
generalization characteristics are implemented.

We conclude the results with an investigation of the hypothe-
ses:
A1 The explainability of models applying feature selection

is improved by the lower complexity. The need for

Number of Features

Data Set Original Remaining %

CoNLL 269506 17377 6.45
BC 2 492611 11096 2.25

Table 3: Minimal numbers of original features needed to lose
maximally 0.01 of F1 measure applying IFP.

many automatically generated features can be an indi-
cator for a possible improvement by implementation of
features with better generalization properties. Detected
relevant features representing words or important pre-
and suffixes help understand the different entity classes
of interest. The fact that noisy features are removed
allows for an investigation of the remaining features
which can be assumed as meaningful12

A2 Training and tagging time are decreased by the lower
complexity of the CRF. To improve training time, the
use of a filtering approach like IG OAA is proposed as
these methods are computationally inexpensive. To
improve tagging time, IFP should be used as it leads
to the lowest numbers of features.

A3 A small decrease in F1 measure has to be accepted
for the benefit of a model with a considerable lower
number of features.

B The recommendation for a method depends on the appli-
cation: For improving training time, a filtering method
should be used, preferably IG OAA as it shows best re-
sults. For improving tagging time, the computationally
more expensive IFP can be applied.

12Lists of all features of the models are available online to demonstrate the
explainability comprehensively. http://www.scai.fraunhofer.
de/ranlp-crf-fs.html

190



5 Conclusion and Future Work
A huge number of features is typically used to represent
input text in CRFs. We presented different approaches for
feature subset selection, novel adaptations of filtering to the
sequential structure of text as well as an iterative method.
The methods have been evaluated on two domains, showing
a decrease of computing time and complexity of the model.
The F1 measure varies slightly.

Summarizing, IG OAA is the best filter approach, a lower
number of features can only be achieved with Iterative Fea-
ture Pruning (IFP) with a similar F1 measure. IFP relies
only on the CRF structure itself, so it is able to deal with
different numbers of features per transition in contrast to
the One-Against-All methods. Its main disadvantage is its
higher computing cost due to the incorporated training pro-
cess. It is notable that IFP and IG OAA are methods taking
the sequential structure of the text into account, IFP via
using the model itself, IG OAA via different feature sets for
different transitions. The method Simple IG, which does
not select features with respect to transitions, leads to worse
results.

Building a new Named Entity Recognizer often includes
annotation of a corpus. It has to be investigated, how the
need for features changes during the process of enriching
the training set with examples (e. g. via active learning).

Another point is that the proposed methods allow for
more complex feature generations (e.g. with more context
information). It has to be studied if new features, which
could not be implemented before due to an exhaustive mem-
ory consumption or run-time demand, could improve the
state-of-the-art results.

6 Acknowledgments
We thank especially Günter Rudolph, Katrin Tomanek, Ju-
liane Fluck, Corinna Kolářik and Martin Hofmann-Apitius
for fruitful discussions. Many thanks to the review-
ers for comprehensive comments. This work has been
partially funded by the Max-Planck-Society–Fraunhofer-
Society Machine Learning Collaboration (http://lip.
fml.tuebingen.mpg.de/).

References
[1] A. L. Berger, S. D. Pietra, and V. J. D. Pietra. A Maximum Entropy

Approach to Natural Language Processing. Computational Linguistics,
22(1):39–71, 1996.

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon
Press, 1995.

[3] J. Goodman. Exponential Priors for Maximum Entropy Models. In
Proceedings of the Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguis-
tics (HLT-NAACL), pages 305–312, 2004.

[4] I. Guyon and A. Elisseeff. An Introduction to Variable and Feature
Selection. Journal of Machine Learning Research, 3:1157–1182, 2003.

[5] C.-N. Hsu, Y.-M. Chang, C.-J. Kuo, Y.-S. Lin, H.-S. Huang, and I.-F.
Chung. Integrating high dimensional bi-directional parsing models for
gene mention tagging. Bioinformatics, 24(13):i286–i294, Jul 2008.

[6] R. Klinger, C. M. Friedrich, J. Fluck, and M. Hofmann-Apitius. Named
Entity Recognition with Combinations of Conditional Random Fields.
In Proc. of the Second BioCreative Challenge Evaluation Workshop,
pages 89–91, 2007.

[7] K. Koh, S.-J. Kim, and S. Boyd. An Interior-Point Method for Large-
Scale l1-Regularized Logistic Regression. Journal of Machine Learn-
ing Research, 8:1519–1555, 2007.

[8] R. Kohavi and G. H. John. Wrappers for Feature Subset Selection.
Artifical Intelligence – Special Issue on relevance, 97(1-2):273–324,
1997.

[9] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. In Proc. of the Eighteenth International Conference on Machine
Learning (ICML 2001), pages 282–289. Morgan Kaufmann Publishers,
2001.

[10] D. D. Lewis, Y. Yang, T. Rose, and F. Li. A New Benchmark Collec-
tion for Text Categorization Research. Journal of Machine Learning
Research, 5:361–397, 2004.

[11] H. Liu and H. Motoda. Computational Methods of Feature Selection.
Data Mining and Knowledge Discovery Series. Chapman & Hall/CRC,
2008.

[12] A. McCallum. Efficiently Inducing Features of Conditional Random
Fields. In Proc. of the 19th Conference in Uncertainty in Articifical
Intelligence (UAI-2003), pages 403–410, 2003.

[13] R. McDonald and F. Pereira. Identifying Gene and Protein Mentions in
Text Using Conditional Random Fields. BMC Bioinformatics, 6 Suppl
1:S6, 2005.

[14] J. Nocedal. Updating Quasi-Newton Matrices with Limited Storage.
Mathematics of Computation, 35(151):773–782, July 1980.

[15] F. Peng and A. McCallum. Accurate Information Extraction from Re-
search Papers using Conditional Random Fields. In Proc. of Human
Language Technology Conference and North American Chapter of the
Association for Computational Linguistics (HLT-NAACL), pages 329–
336, 2004.

[16] R. L. Plackett. Karl Pearson and the Chi-Squared Test. International
Statistical Review, 51(1):59–72, 1983.

[17] J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81–
106, 1986.

[18] S. Russell and P. Norvig. Artificial Intelligence – A Modern Approach.
Prentice Hall, 2003.

[19] E. F. T. K. Sang and F. De Meulder. Introduction to the CoNLL-2003
Shared Task: Language-Independent Named Entity Recognition. In
W. Daelemans and M. Osborne, editors, Proc. of CoNLL-2003, pages
142–147. Edmonton, Canada, 2003.

[20] B. Settles. ABNER: an open source tool for automatically tag-
ging genes, proteins and other entity names in text. Bioinformatics,
21(14):3191–3192, 2005.

[21] L. Smith, L. K. Tanabe, R. J. nee Ando, C.-J. Kuo, I.-F. Chung, C.-
N. Hsu, Y.-S. Lin, R. Klinger, C. M. Friedrich, K. Ganchev, M. Torii,
H. Liu, B. Haddow, C. A. Struble, R. J. Povinelli, A. Vlachos, W. A.
Baumgartner, L. Hunter, B. Carpenter, R. T.-H. Tsai, H.-J. Dai, F. Liu,
Y. Chen, C. Sun, S. Katrenko, P. Adriaans, C. Blaschke, R. Torres,
M. Neves, P. Nakov, A. Divoli, M. Maa-Lpez, J. Mata, and W. J. Wilbur.
Overview of BioCreative II gene mention recognition. Genome Biol, 9
Suppl 2:S2, 2008.

[22] D. L. Vail. Conditional Random Fields for Activity Recognition. PhD
thesis, Computer Science Department, Carnegie Mellon University,
Pittsburgh, USA, 2008.

[23] D. L. Vail, J. D. Lafferty, and M. M. Veloso. Feature Selection in
Conditional Random Fields for Activity Recognition. In Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3379–3384, 2007.

[24] J. Wilbur, L. Smith, and L. Tanabe. BioCreative 2. Gene Mention Task.
In Proc. of the Second BioCreative Challenge Evaluation Workshop,
pages 7–9, 2007.

[25] Y. Yang and J. O. Pederson. A Comparative Study on Feature Selection
in Text Categorization. In Proceedings of the International Conference
on Machine Learning, 1997.

191


