
International Conference RANLP 2009 - Borovets, Bulgaria, pages 161–165

Fast Boosting-based Part-of-Speech Tagging and Text Chunking with
Efficient Rule Representation for Sequential Labeling

Tomoya Iwakura
Fujitsu Laboratories Ltd.

1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki 211-8588, Japan
iwakura.tomoya@jp.fujitsu.com

Abstract
This paper proposes two techniques for fast sequential
labeling such as part-of-speech (POS) tagging and text
chunking. The first technique is a boosting-based al-
gorithm that learns rules represented by combination
of features. To avoid time-consuming evaluation of
combination, we divide features into not used ones and
used ones for learning combination. The other is a rule
representation. Usual POS taggers and text chunkers
decide the tag of each word by using the features gen-
erated from the word and its surrounding words. Thus
similar rules, for example, that consist of the same
set of words but only differ in locations from current
words, are generated. We use a rule representation that
enables us to merge such rules. We evaluate our meth-
ods with POS tagging and text chunking. The experi-
mental results show that our methods show faster pro-
cessing speed than taggers and chunkers without our
methods while maintaining accuracy.

1 Introduction
Several machine learning algorithms such as Support Vec-
tor Machines (SVMs) and boosting-based learning algo-
rithms have been applied to Natural Language Processing
(NLP) problems successfully. The cases of boosting in-
clude text categorization [11], POS tagging [5] and text
chunking [7, 5], and so on. Furthermore, parsers based on
boosting-based learners have shown fast processing speed
[7, 5]. However, to process large data such as WEB data
and e-mails, processing speed of base technologies such as
POS tagging and text chunking will be important.

This paper proposes two techniques for improving pro-
cessing speed of POS tagging and text chunking. The first
technique is a boosting-based algorithm that learns rules.
Instead of specifying combination of features manually, we
specify features that are not used for the combination of
features as atomic. Our boosting algorithm learns rules that
consist of features or a feature from non-atomic features,
and rules consisting of a feature from atomic features.

The other is a rule representation for sequential label-
ing such as POS tagging and text chunking. Usual POS
taggers and text chunkers decide the tag of each word by
using features generated from the current word and its sur-
rounding words. Thus each word and its attributes, such
as character-types, are evaluated several times in different
relative locations from current word. We propose a repre-
sentation that enables us to merge similar rules that consist
of the same set of words and attributes that only differ in
positions from current word.

The experimental results with English POS tagging and
text chunking show the taggers and chunkers based on our
methods show faster processing speed than without our
methods while maintaining competitive accuracy.

2 Boosting-based Learner
2.1 Preliminaries
Let X be the set of examples and Y be a set of labels
{−1,+1}. Let F = {f1, f2, ..., fM} be M types of fea-
tures represented by strings.

Let S be a set of training samples
{(x1, y1), ..., (xm, ym)}, where each example xi ∈ X
consists of features in F , which we call a feature-set, and
yi ∈ Y is a class label. The goal is to induce following
mapping from S:

F : X → Y .
Let |xi| (0 < |xi| ≤ M) be the number of features

included in a feature-set xi, which we call the size of xi,
and xi,j ∈ F (1 ≤ j ≤ |xi|) be a feature included in xi.
We call a feature-set of size k as a k-feature-set. We call xi
is a subset of xj , if a feature-set xj contains all the features
in a feature-set xi. We denote subsets of feature-sets as

xi ⊆ xj.
Then we define weak hypothesis based on the idea of

the real-valued predictions and abstaining [11]. Let f be a
feature-set, called a rule, c be a real number, called a con-
fidence value, and x be an input feature-set, then a weak-
hypothesis for feature-sets is defined as

h〈f ,c〉(x) =
{
c f ⊆ x

0 otherwise
.

2.2 Boosting-based Rule Learning
We use a boosting-based algorithm that has shown fast
training speed by treating a weak learner that learns sev-
eral rules at each iteration [5]. The learner learns a final
hypothesis F consisting of R types of rules defined as

F (x) = sign(
PR
r=1h〈fr,cr〉(x)).

We use a learning algorithm that generates several rules
from a given training samples S = {(xi, yi)}mi=1 and
weights over samples {wr,1, ..., wr,m} as weak learner.
wr,i is the weight of sample number i after selecting r − 1
types of rules, where 0<wr,i, 1 ≤ i ≤ m and 1 ≤ r ≤ R.

Given such input, the weak learner selects ν types of
rules with gain:

gain(f)
def
= |pWr,+1(f)−pWr,−1(f)|,

where f is a feature-set, and Wr,y(f) is
Wr,y(f) =

Pm
i=1 wr,i[[f ⊆ xi ∧ yi = y]],

where [[π]] is 1 if a proposition π holds and 0 otherwise.
The weak learner selects a feature-set having the highest

gain as the r-th rule, and the weak learner selects ν types
of feature-sets having gain in top ν as {fr, ..., fr+ν−1} at
each iteration.

Then the boosting-based learner calculates the confi-
dence value of each rule in the selected ν rules and updates
the weight of each sample. The confidence value cr for the
first rule fr in the selected ν rules is defined as

161

Fk : A set of k-feature-sets
##Ro : ν optimal rules (feature-sets)
Rk,ω : ω k-feature-sets for generating candidates
selectNBest(R, n, S, Wr): Select n best rules inR
with gain on {wi,r}mi=1 and training samples S
FN , FA : non-atomic, atomic features
procedure weak-learner(Fk ,S, Wr)
ν best feature-sets as rules
Ro = selectNBest(Ro ∪ Fk , ν, S, Wr);
if (ζ ≤ k) returnRo; ## Size constraint
ω best feature-sets in Fk for generating candidates
Rk,ω = selectNBest(Fk , ω, S, Wr);
τ = min

f∈Ro
gain(f); ## The gain of ν-th optimal rule

Foreach (fk ∈ Rk,ω)
Pruning candidates with upper bound of gain
if (u(fk) < τ) continue;
Foreach (f ∈ FN) ## Generate candidates
Fk+1 = (Fk+1 ∪ gen(fk, f));

end Foreach
end Foreach
return weak-learner(Fk+1, S,Wr);

Fig. 1: Find rules with given weights.
cr = 1

2
log(

Wr,+1(fr)+ε

Wr,−1(fr)+ε
),

where ε is a value to avoid to happen that Wr,+1(f) or
Wr,−1(f) is very small or even zero [10]. We set ε to 1.
After the calculation of cr for fr, the learner updates the
weight of each sample with

wr+1,i = wr,iexp(−yih〈fr,cr〉(xi)). (1)

Then the learner adds (fr, cr) to F as the r-th rule and
its confidence value. When we calculate the confidence
value cr+1 for fr+1, we use {wr+1,1, ..., wr+1,m} as the
weights of samples. After processing all the selected rules,
the learner starts the next iteration. The learner continues
training until obtaining R rules.
2.3 Learning Rules
We extend a weak learner that learns several rules from a
small portion of candidate rules called a bucket used in [5].
Figure 1 describes an overview of the weak learner.

At each iteration, one of the |B| types of buckets is
given as an initial 1-feature-sets F1 to the weak learner.
We use W-dist that is a method to distributes features
to |B|-buckets. To distribute features to buckets, W-dist
calculates the weight of each feature that is defined as
Wr(f) =

Pm
i=1 wr,i[[{f} ⊆ xi]] (f ∈ F). Then W-dist

sorts features based on the weight of each feature, and in-
sert each feature to one of the buckets.

The weak learner finds ν best feature-sets as rules from
feature-sets that include one of the features in F1. The
weak learner generates candidate k-feature-sets (1 < k)
from ω best (k-1)-feature-sets in Fk−1 with gain.

We define two types of features, FA and FN (i.e F =
FA ∪ FN). FA and FN are a set of atomic features and
a set of non-atomic features. When we generate candidate
rules that consist of more than a feature, we only use non-
atomic features in FN .

For example, if we use features FA = {A,B,C} and
FN = {a, b, c}, we examine followings as candidates;
{A},{B},{C},{a},{b}, {c}, {a, b}, {b, c} and {a, b, c}.

The gen is a function to generate combination of fea-
tures. We denote f ′ = f + f as the generation of k + 1-
feature-set f ′ that consists of a feature f and a k-feature-set
f . Let ID(f) be the integer corresponding to f , called id,
and φ be 0-feature-set. Then the gen is defined as follows.

gen(f , f) =

8><>:
φ if (f ⊆ FA)

f + f if ID(f) > max
f ′∈f

ID(f ′)

φ otherwise

.

S = {(xi, yi)}mi=1 : xi⊆X , yi ∈ {+1}
Wr = {wr,i}mi=1: Weights of samples after learning
r types of rules.
|B| : The size of bucket B = {B[0], ..., B[|B| − 1]}
b, r : The current bucket and rule number
distFT: distribute features to buckets
procedure AdaBoost.SDFAN()
B = distFT(S, |B|); ## Distributing features into B
Initialize values and weights:
r = 1; b = 0; c0 = 1

2
log(

W+1
W−1

);
For i = 1,...,m: w1,i = exp(c0);
While (r ≤ R) ## Learning R types of rules
##Select ν rules and increment bucket id b
R = weak-learner(B[b], S,Wr); b++;
Foreach (f ∈ R) ##Update weights with each rule
c = 1

2
log(

Wr,+1(f)+1

Wr,−1(f)+1
);

For i=1,..,m wr+1,i = wr,i exp(−yih〈f ,c〉(xi));
fr = f ; cr = c; r++;

end Foreach
if (b == |B|) ## Redistribution of features
B = distFT(S, |B|); b=0;
end if

end While
return F (x) = sign(c0 +

PR
r=1 h〈fr,cr〉(x))

Fig. 2: An overview of AdaBoost.SDFAN.
The gen excludes the generation of candidates that include
an atomic feature. We assign smaller integer to more infre-
quent features as id. If there are features having the same
frequency, we assign id to each feature with lexicographic
order of features as in [4].

We also use the following pruning techniques.
• Size constraint (ζ): We examine candidates whose size
is no greater than a threshold ζ.
• Upper bound of gain: The upper bound is defined as

u(f)
def
= max(

p
Wr,+1(f),

p
Wr,−1(f)).

For any feature-set f ′⊆F , which contains f (i.e.
f ⊆ f ′), the gain(f ′) is bounded under u(f), since
0 ≤ Wr,y(f ′) ≤ Wr,y(f) for y ∈ {±1}. Thus if u(f) is less
than τ , the gain of the current optimal rule, candidates that
contain f are safely pruned.

Figure 2 describes an overview of our algorithm, which
we call AdaBoost for a weak learner learning Several rules
from Distributed Features consist of Atomic and Non-
atomic (AdaBoost.SDFAN, for short). 1

3 Efficient Rule Representation
3.1 A Problem of Conventional Methods
When identifying the POS tags of words and chunks of
words in usual parsers, we firstly generate features from
current word and its surrounding words.

Let “I am happy .” be a sequence of words. If we iden-
tify a tag of “am” with 3-word window, we use “I”, “am”
and “happy” as features. To distinguish words that appear
different locations, we usually express words with rela-
tive locations from current word like “I:-1”, “am:0” and
“happy:1”, where the -1, 0 and 1 after “:” are location-
markers for relative locations. When “happy” is a current
word, we have to express “am” as “am:-1”. Thus similar
rules that differ in relative locations are generated.

3.2 Efficient Rule Representation
We propose a rule representation, called Compressed Se-
quential Labeling Rule Representation (CSLR-rep, for

1 To reflect imbalance class distribution, we use the default rule defined
as 1

2
log(

W+1
W−1

), where Wy =
Pm
i=1[[yi = y]] for y ∈ {±1}.

162

f : a rule generated by AdaBoost.SDFAN
sc : the score of f
cl : the class of f
s(f): the feature-stem of a feature f
p(f): the location-marker of a feature f
fn: the conversion result of f
##RC[fn]: scores for fn
procedure ruleConv(f , sc, cl)
bp = min

f∈f
p(f) ## select the base position

Foreach f ∈ f ## generate new rule
lm = p(f)− bp ## new location-marker of f
append new representation of f
fn = fn + “s(f):lm”
endForeach
RC[fn] = RC[fn] ∪ (−bp, cl, sc)

Fig. 3: Generating CSLR-rep based rules.
short), to merge similar rules. To use CSLR-rep, we con-
vert weak-hypotheses (WHs, for short) generated by Ad-
aBoost.SDFAN to CSLR-rep. A CSLR-rep-based WH is
represented as

〈rule, {(p1, cl1, c1), ..., (pq, clq, cq)}〉.
The rule is a rule generated by merging rules learned

by AdaBoost.SDFAN. pp, called scoring-position, denotes
the position of a word to assign a score cp of a class clp
(1 ≤ p ≤ q) from current word.

We describe an example. Let 〈{I:−2, am:−1}, JJ, c0〉
, 〈{I:− 1, am:0}, V BP, c1〉 and 〈{I:0, am:1}, PRP, c2〉
be WHs generated by AdaBoost.SDFAN, and JJ ,
V BP and PRP be class tags. These WHs are
converted to the following CSLR-rep-based rule;
〈{I:0, am:1}, {(2, JJ, c0), (1, V BP, c1), (0, PRP, c2)}〉 ,

When the converted WH in the example is applied to a
word sequence “I am happy .”, we can assign scores to all
the three words by just checking {I:0, am:1}. The scores
for “JJ”, “VBP” and “PRP” are assigned to “happy”, “am”
and “I”, respectively.

When we use the three original WHs in the example, we
have to check three rules to assign scores to the words.

Figure 3 shows an overview for the rule conversion. We
assume each feature is divided into a location-marker and
a feature-stem. A location-marker is the relative location
from a current word. A feature-stem is a word or one of
its attributes such as character-types without a location-
marker.

We use the relative location of a feature appeared in left-
most word in each rule as base-position (bp, for short).
Then we convert each feature to a new feature that con-
sists of its feature-stem and new location-marker. The new
location-marker means a relative location from the bp. We
add the value of (bp × -1) as the scoring-position of the
current score.

3.3 Rule Application
We describe an overview of the application of rules repre-
sented by CSLR-rep. We consider two types of features,
static-features and dynamic-features, in this application.
Static-features are generated from input word sequences.
Dynamic-features are dynamically generated from the tag
of each word assigned with the highest score. We defineW
as a word window size that means using a current word and
its surrounding words appearing W−1

2 left and W−1
2 right

of the current word.
Figure 4 shows an overview of the application. Let
{wd1, ..,wdN} be an input that consists of N (1 ≤ N)
words. Each word wdi (1 ≤ i ≤ N) has |wdi| types of
attributes. We denote j-th attribute of wdi as wdi,j . RC

is a set of rules represented by CSLR-rep andRC[rc] is the
set of 〈 scoring-position, class, score 〉 of rc.

The application has two stages for static-features and
dynamic-features. Our algorithm firstly assigns scores with
rules consisting of only Static-features to each word in the
direction of beginning of sentence (BOS) to end of sen-
tence (EOS) direction. Rs[i] keeps the status of rule ap-
plications for i-th word. If the algorithm finds a subset of
rules while applying rules from i-th word, the algorithm
adds the subset of rules to Rs[i]. 2 We define subsets of
rules as follows:
Definition 1 Subsets of rules
If there exists rule in 〈rule, scores〉 ∈ RC that satisfies
rc ⊆ rule ∧ rc 6= rule, we call rc is a subset of rules of
RC and denote it as

rc ⊂ RC
Then we apply rules that include dynamic-features. All

the subsets of rules are kept in Rs after examining all
the Static-features, we can assign scores to words by just
checking dynamic-feature of each word with Rs. When
checking rules that include the dynamic-feature of i-th
word we check subsets of rules of words in (i− W−1

2 −∆
) to (i + max(W−1

2 ,∆) - 1). We use the tags of words with
in ∆ in the direction of EOS.

We describe an example. Let RC ={ {I:0, am:1}, {I:0,
VBP:1}, {I:0, VBP:1, JJ:2} } be a set of rules. When ap-
plying the rules to “I am happy .” with (W,∆) = (3, 2), we
check “I:0” first. “I:0” is inserted to Rs[1] because of {I:0}
⊂ RC. Then we check “am:1” with “{I:0}” in Rs[1],

and {I:0, am:1} is found. Finally we check “happy:2” with
Rs[1]. We check the other words like this. After checking
all the words from BOS to EOS direction, we start to check
rules that include dynamic-features from EOS to BOS di-
rection. If the dynamic-features of “am” and “happy” are
VBP and JJ, we check VBP and JJ with Rs. For exam-
ple, VBP is treated as “VBP:1” from the position of “I”
and “VBP:0” from the position of “am”. When we check
“VBP:1” with “{I:0}” in Rs[1], {I:0, VBP:1} is found and
inserted to Rs[1]. Then we check “JJ:2” with “I:0” and
{I:0, VBP:1} in Rs[1]. Then we check these dynamic-
features with Rs[2].

Unfortunately, the CSLR-rep has some drawbacks. One
of the drawbacks is the increase of dynamic-features.
When we convert rules that consist of more than a fea-
ture to CSLR-rep, the number of types of dynamic-features
increases. Since original rule representation only handles
dynamic-features within ∆, the total number of types of
dynamic-features is up to “∆ × CL”, where CL is the
number of classes in each task. However, the total num-
ber of dynamic-features in CSLR-rep is up to “ (W−1

2 +
∆ + max(W−1

2 ,∆) -1) × CL ” because we express each
feature with the relative location from the base-position of
each rule.

4 POS tagging and Text Chunking
4.1 English POS Tagging
We used the Penn Wall Street Journal treebank [8]. We
split the treebank into training (sections 0-18), develop-
ment (sections 19-21) and test (sections 22-24) as in [5].
We used the following features:
2 We use a TRIE structure called double array for representing rules [1].

To keep the statuses of rule applications, we store the last position in a
TRIE where each subset of rules reached.

163

##RC[rc]: pairs of score-positions and scores of rc
Rs[i]: subset of rules of i-th word
Initial value for each word is 0-feature-set
procedure ruleApplication({wd1, ..,wdN}, FN)
For Static-feature
For i′ = 1; i′ ≤ N ; i′++ # beginning position
For i = i′; i < i+W ; i++ # combination position
For j = 1; j ≤ |wdi|; j++# attributes
Foreach rc ∈ Rs[i′]
lm = i− i′ ## current location-marker
rc′ = rc + “wdi,j :lm”
IfRC[rc′] is applied,
assign the scores with base position i’
assignScores(RC[rc′], i′)
If rc′ ⊂ RC Rs[i′] = Rs[i′] ∪ rc′

endForeach
If no subset of rules for i′, go to i′ + 1-th word
If Rs[i′] = {φ} break
endFor
endFor
For Dynamic-feature : EOS to BOS direction
For i′ = N ; 1 ≤ i′; i′−− # beginning position
Checking rules including Dynamic-feature
db = i′ − W−1

2
−∆; de = i′ +max(W−1

2
,∆);

For i = db; i < de; i++
Foreach rc ∈ Rs[i]
lm = j − i′ ## current location-marker
rc′ = rc + “dfti′:lm” # dftj is the tag of i’-th word
assignScores(RC[rc′], i)
If rc′ ⊂ RC Rs[i] = Rs[i] ∪ rc′

endForeach
endFor
endFor

Fig. 4: Application of CSLR-rep based rules.
· words, words that are turned into all capitalized, in a W -
word window size, tags assigned to ∆ words on the right.
· whether the current word has a hyphen, a number, a capi-
tal letter, the current word is all capital, all small
· prefixes and suffixes of current word (up to 4)
· candidate-tags of words in a W -word window
We collect candidate POS tags of each word, called can-
didate feature, from the automatically tagged corpus pro-
vided for the shared task of English Named Entity recogni-
tion in CoNLL 2003 as in [5]. 3 4 We express these can-
didates with one of the following ranges decided by their
frequency fq: 10 ≤ fq < 100, 100 ≤ fq < 1000 and
1000 ≤ fq.

If ’work’ is annotated as NN 2000 times, we express
it like “1000≤NN”. If ’work’ is current word, we add
1000≤NN as a candidate POS tag feature of the current
word. If ’work’ appears the next of the current word, we
add 1000≤NN as a candidate POS tag of the next word.

4.2 Text Chunking
We used the data prepared for CoNLL-2000 shared tasks. 5

This task aims to identify 10 types of chunks, such as, NP,
VP and PP, and so on. The data consists of subsets of Penn
Wall Street Journal treebank: training (sections 15-18) and
test (section 20). We prepared the development set from
section 21 of the treebank as in [5]. 6

Each base phrase consists of one word or more. To iden-
tify word chunks, we use IOE2 representation. The chunks
are represented by the following tags: E-X is used for end
word of a chunk of class X. I-X is used for non-end word
in an X chunk. O is used for word outside of any chunk.

3 http://www.cnts.ua.ac.be/conll2003 /ner/
4 We collected POS tags for each word that are annotated to the word

more than 9 times in the corpus as candidates.
5 http://lcg-www.uia.ac.be/conll2000/chunking/
6 We used http://ilk.uvt.nl/˜sabine/chunklink/chunklink 2-2-2000 for conll.pl for creating de-

velopment data.

Table 1: Training data for experiments. POS and ETC
indicate POS tagging and text chunking.] of S,] of cl and
M indicate the number samples, the number of class in
each data set and the distinct number of feature types for
each pair of (W,∆).

M (W,∆)
data] of S] of cl (3, 1) (5, 2) (7, 3)

POS 912,344 45 283,979 440,725 593,065
ETC 211,727 22 56,917 93,333 128,651

Table 2: Accuracy on Test Data.
POS tagging

-Atomic +Atomic
(W,∆)/ ζ 1 2 3 2 3
(3,1) 96.81 97.09 97.05 97.00 97.04
(5,2) 96.96 97.30 97.30 97.25 97.28
(7,3) 96.99 97.36 97.30 97.31 97.34

text chunking
-Atomic +Atomic

(W,∆)/ ζ 1 2 3 2 3
(3,1) 92.40 93.87 93.69 93.91 93.82
(5,2) 92.87 94.31 94.14 94.34 94.31
(7,3) 93.09 94.32 94.11 94.12 94.11

For instance, “[He] (NP) [reckons] (VP) [the current ac-
count deficit] (NP)...” is represented by IOE2 as follows;
“He/E-NP reckons/E-VP the/I-NP current/I-NP account/I-
NP deficit/E-NP”.

We used the following features:
· words and POS tags in a W -word window.
· tags assigned to ∆ words on the right.
· candidate-tags of words in a W -word window.
We collected the followings as candidate-tags for chunking
from the same corpus used in POS tagging.
• Candidate-tags expressed with frequency information as
in POS tagging
• The ranking of each candidate decided by frequencies in
the automatically tagged data
• Candidate tags of each word
If we collect “work” annotated as I-NP 2000 times and as
E-VP 100 times, we generate the following candidate-tags
for “work”; 1000≤I-NP, 100≤E-VP<1000, rank:I-NP=1
rank:E-NP=2, candidate=I-NP and candidate=E-VP. 7

5 Experiments
We testedR=200,000, |B|=1,000, ν = 10, ω=10, ζ={1,2,3}
and (W,∆)={(3,1), (5,2), (7,3)}. Table 1 shows that the
number of training samples, classes, features.

We examine two types of training, “-Atomic ” and “
+Atomic ”, in this experiment. “-Atomic ” indicates train-
ing with all the features as non-atomic. “ +Atomic ” in-
dicates training by using atomic features. We specify pre-
fixes, suffixes and candidate-tags as atomic for POS tag-
ging, and candidate-tags as atomic for text chunking.

To extend AdaBoost.SDFAN to handle multi-class prob-
lems, we used the one-vs-the-rest method. To identify
proper tag sequences, we use Viterbi search. 8

5.1 Tagging and Chunking Accuracy
Table 2 shows accuracy obtained with each rules on POS
tagging and text chunking. We calculate label accuracy for

7 We converted the chunk representation in the corpus to IOE2 and we
collected chunk tags of each word appearing more than 9 times.

8 We map the confidence value of each classifier into the range of 0 to 1
with sigmoid function defined as s(X) = 1/(1+exp(−βX)), where
X = F (x) is a output of a classifier. We used β=5 in this experiment.
We select a tag sequence which maximizes the sum of those log values
by Viterbi search.

164

Table 3: Tagging and Chunking Speed. Each number is
average processed words per second. We examine three
times measurements for each tagger or chunker. Each time
is obtained with all rules.

POS tagging
-Atomic + Atomic

without CSLR-rep
(W,∆)/ ζ 1 2 3 2 3
(3,1) 9477 4023 2505 5450 5096
(5,2) 8118 2564 1445 3915 3389
(7,3) 6615 1842 1007 3033 2464

with CSLR-rep
(W,∆)/ ζ 1 2 3 2 3
(3,1) 19467 4258 2013 10969 9644
(5,2) 18261 2807 1102 8212 5934
(7,3) 15658 2195 754 7474 4939

text chunking
-Atomic +Atomic

without CSLR-rep
(W,∆)/ ζ 1 2 3 2 3
(3,1) 14510 3995 1036 13975 12221
(5,2) 11266 1681 401 9571 7018
(7,3) 9434 961 230 6849 4595

with CSLR-rep
(W,∆)/ ζ 1 2 3 2 3
(3,1) 27705 4282 863 19496 16169
(5,2) 25471 2477 352 13692 8475
(7,3) 23338 1758 206 10058 5701

POS tagging as accuracy. As for text chunking, we calcu-
late F-measure (Fβ=1) given by 2rp/(r + p) as accuracy,
where r and p are recall and precision. Each accuracy on
a test data is calculated with the number of rules that show
the best accuracy on development data.

We obtain almost the same accuracy even if we use part
of features as atomic.

5.2 Tagging and Chunking Speed
Table 3 shows tagging and chunking speed. We measure
the number of words processed by per second.9 We ob-
tain faster processing speed by using CSLR-rep-based rules
traind with ζ = {1, 2} and - Atomic. These show that
CSLR-rep contributes to improved processing time. When
we use rules trained with ζ = 1, we can get more improve-
ment than using rules trained with ζ = 2.

However, the performance obtained with CSLR-rep-
based rules trained with (ζ = 3,−Atomic) is slower than
with the original rules. We guess this is caused due to the
following two reasons. Our CSLR-rep reduces the number
of times of rule evaluation up to 1/W . Thus CSLR-rep
reduces processing time linearly. However, the number of
combination of features exponentially increases. The other
reason is that the number of times to generate dynamic-
features is increased as described in the end of section 3.3.

We obtain much improvement by using atomic features
with CSLR-rep. For example, processing speed obtained
with the text chunker using rules (ζ = 3,W = 7, +Atomic)
is about 28 times faster than the speed obtained with the
chunker using rules (ζ = 3,W = 7, -Atomic).

6 Related Work
We list previous best results on English POS tagging and
Text chunking in Table 4. The tagger and chunker based on
AdaBoost.SDFAN show competitive F-measure with pre-
vious best results.

9 We used a machine with 3.6GHz DualCore Intel Xeon and 10 GB
memory.

Table 4: Comparison with previous best results.
POS tagging

Guided learning [12] 97.33
Boosting [5] 97.32
CRF [13] 97.40
This paper 97.34

Text Chunking
LaSo [2] 94.4
Boosting [5] 94.30
CRF [13] 95.15
This paper 94.34

As for fast classification methods, techniques for con-
verting or pruning models or rules generated by machine
learning algorithms are proposed. Model conversion tech-
niques for SVMs with polynomial kernel that converts
kernel-based classifier into a simple liner classifier are pro-
posed in [3, 6]. For AdaBoost, a pruning method for hy-
potheses is proposed in [9].

Our method uses a rule conversion technique for sequen-
tial labeling problems. Although CSLR-rep can only be
used in tasks that use each word as different features time
and again, such as POS tagging and text, we obtain faster
processing speed without loss in accuracy.
7 Conclusion and Future Work
We have proposed techniques for fast boosting-based POS
tagging and text chunking. To reduce time-consuming rule
evaluation, our method controls the generation of combi-
nation of features by specifying part of features that are not
used for combination. We have also proposed a rule rep-
resentation that enables us to merge similar rules. Experi-
mental results have showed our techniques improve classi-
fication speed while maintaining accuracy.

References
[1] J. Aoe. An efficient digital search algorithm by using a double-array structure.

In IEEE Transactions on Software Engineering, volume 15(9), 1989.

[2] H. Daumé III and D. Marcu. Learning as search optimization: approximate
large margin methods for structured prediction. In Proc. of ICML 2005, pages
169–176, 2005.

[3] H. Isozaki and H. Kazawa. Efficient Support Vector classifiers for named
entity recognition. In Proc. of COLING 2002, pages 390–396, 2002.

[4] T. Iwakura and S. Okamoto. Fast training methods of boosting algorithms for
text analysis. In Proc. of RANLP 2007, pages 274–279, 2007.

[5] T. Iwakura and S. Okamoto. A fast boosting-based learner for feature-rich
tagging and chunking. In Proc. of CoNLL 2008, pages 17–24, 2008.

[6] T. Kudo and Y. Matsumoto. Fast methods for kernel-based text analysis. In
Proc. of ACL-03, pages 24–31, 2003.

[7] T. Kudo, J. Suzuki, and H. Isozaki. Boosting-based parse reranking with sub-
tree features. In Proc. of ACL 2005, pages 189–196, 2005.

[8] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large anno-
tated corpus of english: The Penn Treebank. pages 313–330, 1994.

[9] D. D. Margineantu and T. G. Dietterich. Pruning adaptive boosting. In Proc.
of ICML 1997, pages 211–218, 1997.

[10] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-
rated predictions. Machine Learning, 37(3):297–336, 1999.

[11] R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text
categorization. Machine Learning, 39(2/3):135–168, 2000.

[12] L. Shen, G. Satta, and A. Joshi. Guided learning for bidirectional sequence
classification. In Proc. of ACL 2007, pages 760–767, 2007.

[13] J. Suzuki and H. Isozaki. Semi-supervised sequential labeling and segmenta-
tion using giga-word scale unlabeled data. In Proc. of ACL-08: HLT, pages
665–673, June 2008.

165

