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Abstract
Even leaving aside concerns of cognitive plausibil-
ity, incremental parsing is appealing for applications
such as speech recognition and machine translation be-
cause it could allow the incorporation of syntactic fea-
tures into the decoding process without blowing up the
search space. Nevertheless, incremental parsing is of-
ten associated with greedy parsing decisions and intol-
erable loss of accuracy. Would the use of lexicalized
grammars provide a new perspective on incremental
parsing?
In this paper we explore incremental left-to-right de-
pendency parsing using a lexicalized grammatical for-
malism that works with lexical categories (supertags)
and a small set of combinatory operators. A strictly
incremental parser would conduct only a single pass
over the input, use no lookahead and make only local
decisions at every word. We show that such a parser
suffers heavy loss of accuracy. Instead, we explore
the utility of a two-pass approach that incrementally
builds a dependency structure by first assigning a su-
pertag to every input word and then selecting an incre-
mental operator that allows assembling every supertag
with the dependency structure built thus far to its left.
We instantiate this idea in different models that al-
low a trade-off between aspects of full incrementality
and performance, and explore the differences between
these models empirically. Our exploration shows that
a semi-incremental (two-pass), linear-time parser that
employs fixed and limited look-ahead exhibits an ap-
pealing balance between the efficiency advantages of
incrementality and the achieved accuracy. Surpris-
ingly, taking local or global decisions matters very lit-
tle for the accuracy of this linear-time parser. Such
a parser fits seamlessly with the currently dominant
finite-state decoders for machine translation.

1 Introduction

As it processes an input sentence word-by-word in some
order (e.g., left-to-right for a language like English), anin-
crementalparser builds for each prefix of the input sentence
a partial parse that is a subgraph of the partial parse that it
builds for a longer prefix. An incremental parser may have
access only to a fixed, limited window of lookahead words.
The lookahead is equivalent to buffering a number of words
before processing them; as stated by [Marcus et. al., 1983],
a deterministic parser can buffer and examine a small num-
ber of words before adding them to the existing structure.
A parser might also make multiple incremental passes over
the input sentence where decisions made in an earlier pass
are refined in a subsequent pass. In this paper we refer to

an incremental, left-to-right parser without lookahead in-
formation taking a single pass over the input as afully in-
cremental parser. We refer to an incremental left-to-right
parser with limited lookahead capability as aweakly in-
cremental parser. And when the incremental parser makes
two passes over the input, we refer to it by the termsemi-
incremental.

Besides being cognitively plausible, an incremental
parser is more appealing for applications if its time
and space (worst-case) complexities are close to lin-
ear in input length. For example, an incremental,
linear-time parser should constitute a natural match
for the word-by-word decoding and pruning schemes
used within phrase-based statistical machine translation
(PB-SMT) and speech recognition. It is worth noting
that fully incremental parsers are cognitively plausi-
ble [Marslen-Wilson, 1973, Sturt & Lombardo, 2004],
while weakly incremental parsers can serve well for
syntax-based language modeling where a local context of
the word is usually provided for scoring.

The degree of possible incrementality in parsing depends
largely on the syntactic formalism underpinning the pars-
ing process. In this work, we adopt Combinatory Catego-
rial Grammar (CCG) [Steedman, 2000], which would ap-
pear to represent an appealing grammatical representation
for incremental parsing due to two main reasons. Firstly, as
highlighted in [Steedman, 2000], CCG can represent every
leftmost string as a constituent even if it is not a syntactic
constituent. This enables any left branching (left-to-right)
parser to work fully incrementally. Secondly, a fully in-
cremental dependency parser is only possible if the left-
most graph is fully connected at each parse state, which
was highlighted in [Nivre, 2004]. This is especially pos-
sible with grammars like CCG where the type raising and
compositional capabilities can be utilized to keep the graph
connected even when not resolving a dependency relation.

In this paper we present a new approach to linear-time,
semi-incremental CCG parsing and explore the trade-off
between the degree of incrementality and parse accuracy.
On the one hand, it turns out to be not so easy to obtain
a fully incremental parser that maintains the same level
of accuracy as a parser that explores the full parse-forest
without worries about incrementality or linear-time pro-
cessing. On the other hand, we show that reasonable levels
of accuracy can be achieved when the requirements of in-
crementality are somewhat relaxed: allowing a two-pass
classification approach (a supertagger followed by an op-
erator tagger) and a limited use of look-ahead. Further-
more, when allowing for global search (as opposed to lo-
cal classification) during both supertagging and operator-
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tagging (thereby sacrificing a major aspect of incremental-
ity), small improvements in accuracy can be obtained. The
best performing models would fit seamlessly with linear-
time, finite state decoders used in MT and speech recog-
nition because they predict a single partial parse at every
word position in the input.

The structure of this paper is as follows. In section 2,
we discuss related work on incremental parsing, and in-
troduce our model of incremental CCG parsing in section
3. We then detail our method for transforming the canoni-
cal derivations in the CCGbank into left-to-right, incremen-
tal derivations (section 4). Given this incremental version
of the CCGbank, we study in section 5 a range of linear-
time parsing models, with varying degrees of incremental-
ity, and provide the results of a number of experiments in
section 6. We discuss our findings, and offer some conclu-
sions and avenues for further research in section 7.

2 Related Work

While there exist numerous recent efforts at (deter-
ministic) incremental (shallow) dependency parsing (e.g.
[Nivre, 2004, Shen & Joshi, 2005]), most current con-
stituency parsers are hard to classify as incremental. State-
of-the-art parsers (e.g. [Collins, 1999, Charniak, 2000])se-
lect the Viterbi parse only when the parse-space has been
spanned for the whole sentence; the Viterbi parse may
change as the prefix grows, violating incrementality. In
contrast, partial parsers such as [Abney, 1991] by default
do not output a full sequence of connected phrases, which
causes the constraint of incrementality to fail for a quite
different reason.

Among the many attempts at efficient (often determin-
istic) and incremental (dependency) parsing, we concen-
trate on the quite small number of research papers which
are most similar to our work [Yamada & Matsumoto, 2003,
Nivre, 2004, Shen & Joshi, 2005, Sagae & Lavie, 2006].
[Nivre, 2004] suggests that deterministic dependency pars-
ing (e.g. [Yamada & Matsumoto, 2003]) is a halfway
house between full and partial parsing, in that the build-
ing of a full parse of the input string is the aim, whilst at
the same time remaining robust, efficient and determinis-
tic. [Nivre, 2004] then describes his own approach to in-
cremental deterministic dependency parsing. While strict
incrementality was not possible using his framework, as
far as well-formed utterances are concerned, the degree
of incrementality achievable approaches 90%. In a sim-
ilar manner, [Sagae & Lavie, 2006] introduce a statistical
shift-reduce parser that uses a probabilistic framework to
determine the shift/reduce actions. Multiple possible parse
decisions are handled by a beam strategy.

[Shen & Joshi, 2005] use the term ‘semi-incremental’ to
refer to parsers (both left-corner [Collins & Roark, 2004]
and head-corner [Yamada & Matsumoto, 2003]) which
permit multiple iterations of left-to-right scans, ratherthan
just one. In contrast to these models, [Shen & Joshi, 2005]
introduce an approach for incremental parsing of spinal
Lexicalized Tree Adjoining Grammar, which supports full
adjunction, a dynamic treatment of coordination, as well as
non-projective dependencies. This can be seen as an incre-
mental version of Supertagging [Bangalore & Joshi, 1999].

Incremental dependency parsing of Categorial Grammar
was attempted in [Milward, 1995] using a state-transition
(or dynamic) processing model, where each state consists

John loves Mary

S0 NP (S\NP)/NP NP
> NOP

S1: NP
> TRFC

S2: S/NP
> FA

S3: S

Fig. 1: A sentence and possible supertag-, operator- and
state-sequences. NOP: No Operation; TRFC: Type Raising
follwed by Forward Composition.

of a syntactic type together with an associated semantic
value. The model of incremental parsing for CCG that we
propose here is largely inspired by ideas presented in the
latter two papers.

3 Semi-Incremental CCG Parsing

As it processes the sentence left-to-right, word-by-word,
our parser specifies for every word a supertag and a com-
binatory operator, and maintains a parse-state (henceforth
‘state’). Each state is represented by a composite CCG cat-
egory. Apart from the first word in the sentence, this com-
posite CCG category is the result of applying the combi-
natory operator to the preceding state and current supertag;
at the first word in the sentence, the state consists solely
of the supertag of that word. In terms of CCG represen-
tations, a CCG composite category specifies a functor and
the arguments that are expected to the right of the current
word. Crucially, given a sentence and its state sequence,
the dependency structure can be retrieved unambiguously.
At each state the partial dependency structure can be rep-
resented as a directed graph with nodes representing words
and arcs representing dependency relations. Figure 1 illus-
trates the workings of this incremental parser, where the
sequence of supertags is shown, then the operators that ap-
ply from left-to-right in order to build the state sequence
incrementaly.

From the description above it is conceptually appealing
to describe our parser in two parts: (i) a Supertag-Operator
Tagger which proposes a supertag–operator pair for the
current word, and (ii) a State-Realizer, which realizes the
current state by applying the current operator to the previ-
ous state and the current supertag. In this work, the State-
Realizer is a deterministic function, whereas the supertag-
operator tagger is a statistical one trained on our own in-
cremental version of the CCGbank. While this concep-
tual view describes a baseline, fully incremental version,
in what follows we will consider refinements that trade off
some aspects of incrementality for accuracy (i) by employ-
ing lookahead in predicting supertag–operator pairs, (ii)by
predicting the supertag and using that for predicting the
operator (a cascade of per-word classifiers possibly with
lookahead), and (iii) by using a two-pass, semi-incremental
approach where supertags and operators are chosen glob-
ally using Viterbi decoding (rather than per-word by means
of classifiers). All these versions remain linear-time and
space (worst-case complexity).

To train the statistical components, we transform the
CCGbank normal form derivations into strictly left-to-right
derivations, with operators specifically chosen to allow in-
crementality while satisfying the dependencies in the CCG-
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bank. In the next section we present our transformation
technique developed to obtain the appropriate training data.

4 Transforming the CCGbank into
left-to-right derivations

The goal of the transformation is to obtain training data
for our incremental parsing approach. The result of the
transform is an incremental CCGbank where sentences are
annotated with supertags as well as combinatory opera-
tors that allow left-to-right, incremental building of a parse
while satisfying the dependencies specified in the CCG-
bank.

For each sentence in the CCGbank, we apply the follow-
ing procedure:

• Initialize empty operator sequence and empty unsatisfied
dependencies;

• For each word:

1. Add current dependencies to unsatisfied dependen-
cies.

2. Check unsatisfied dependencies:

(a) If adjacent dependency with simple categories,
assignapplicationoperators;

(b) If adjacent dependency with complex categories,
assigncompositionoperators;

(c) If long-range dependency, applyType Raising
followed byForward Composition.

3. Handle special cases if any:

(a) Coordination (section 4.1),
(b) Apposition & Interruptions (section 4.2),
(c) WH-movement (section 4.3),

4. Update Current state;

5. Assign selected operator to the operator sequence;

6. Update the dependencies by removing satisfied de-
pendencies.

This procedure deploys the dependencies available in the
CCGbank in order to assign the simplest possible operator
sequence that is able to satisfy, and reproduce, the depen-
dency structure of the sentence under investigation.

Figure 2 illustrates the transformation process, step-by-
step, on a sentence of the CCGbank. At the beginning
of the process, we start with the words, the associated su-
pertags and the dependency relations, indicated by curved
dotted arrows in the figure. The purpose of the transforma-
tion process is to induce the state sequence and the operator
sequence. These sequences should be able to reproduce the
given dependency relations.

The transformation process proceeds word-by-word, and
at each word position we check all previous and current
unsatisfied dependencies. The transformation proceeds as
follows:

1. StateS1being an initial state, it is associated with operator
NOP.

2. Moving to StateS2, there is a dependency between the pre-
vious wordMr. and the current wordWarren. As this de-
pendency relation is adjacent and in the forward direction,
theFA operator is associated and so the state is transferred
to S2with categoryNP.

3. Moving to StateS3is triggered by the wordwill , which has
both backward and forward dependencies. Thus the opera-
tor TRFCis applied.

4. Moving to StateS4is triggered by the wordremain, which
being linked with the wordwill by a forward dependency
relation, causes theFC operator to be assigned. The state
becomes(S/PP), indicating that a prepositional phrase is re-
quired to the right.

5. Moving to StateS5 is triggered by the wordon which is
linked to the previous verbremain, and so theFC operator
is assigned.

6. Moving to StateS6 is triggered by the wordthe, which has
neither backward nor forward dependencies; however, it is
linked through a chain of dependencies with a future word
board. Thus we apply the compositeTRFCoperator to type
raise the current word to the required dependency category
and then perform forward composition.

7. Moving to StateS7is triggered by the wordcompany, which
has a forward dependency with the previous position, and so
theFA operator is applied.

8. Moving to StateS8is triggered by the word’s which has ad-
jacent forward and backward dependencies, so theFC oper-
ator is applied. This changes the state to(S/NP).

9. Finally, stateS9 is triggered by the wordboard. The FA
operator is finally applied to construct the complete category
S.

This detailed illustration shows how the CCGbank is trans-
formed. We started with a supertag sequence and a depen-
dency graph, and ended with the corresponding operator
and state sequences. However, the same procedure applies
during parsing, i.e. if we have the supertag and the operator
sequences, then we are able to construct both the incremen-
tal states and the dependency graph. As an indication of the
performance of our transformation process, on section 00
of the WSJ—our dev data (see section 6)—we managed
to successfully extract 97% of the CCGbank dependencies,
with the incremental approach failing to restore just 3% of
the dependencies. This defines the upper bound of the ac-
curacy expected from this incremental representation.

In the next three sections we describe the special oper-
ators we added for cases of coordination, apposition and
interruptions, and WH-movement.

4.1 Coordination

Cognitive studies [Sturt & Lombardo, 2004] view coor-
dination as an incremental operation. Unfortunately,
the CCGbank uses a simple categoryconj for coordi-
nation instead of the more elaborate category(X\X)/X,
which was originally defined for coordination in CCG
[Steedman, 2000]. The atomicconj operator is not effi-
cient for incremental parsing, because it does not provide
information on the coordinated elements. Therefore, we
use the dependency information to assign more elaborate
coordination categories. For example, if coordination is
performed between two noun phrases, the appropriate cat-
egory is(NP\NP)/NP. Furthermore, we added a new coor-
dination operator (COORD) to handle coordination in the
state-realizer. When such a conjunction is encountered, the
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Mr.   Warren    will     remain    on      the     company     's      board 

S1 S2 S3 S4 S5 S6 S7 S8 S9

S(S/NP)(S/(NP
\NP))

(S/(NP\NP))
/NP

(S/NP)(S/PP)S/(S\NP)NPNP/NPState 
Cat.

FAFCFATRFCFCFCTRFCFANOPOperator

NP(NP/NP)
\NP

NPNP/NP
PP/NP

(S\NP)
/PP

(S\NP)/ 
(S\NP)

NPNP/NPSupertag

Fig. 2: Illustration of the CCGbank transformation process into incremental derivations.

He plays football and tennis

S1 : NP (S\NP)/NP NP (NP\NP)/NP NP
> TRFC

S2: S/NP
> FA

S3: S
> COORD

S4: S/NP
> FA

S5: S

Fig. 3: Coordination Handling.

nearest previous state that is able to satisfy the coordina-
tion is retrieved from the state stack to become the current
state.1

The example shown in Figure 3 illustrates the handling
of coordination. At the transition fromS3 to S4a coordi-
nation operatorCOORDis encountered, which causes the
current stateS4to ‘go back’ to stateS2with structureS/NP,
i.e. expecting anNP to the right.

4.2 Apposition and Interruptions

Neither the CCGbank nor the WSJ treebank distin-
guish between the appositive and coordination commas
[Hockenmaier & Steedman, 2007]. The comma mostly
has a single supertag in the CCGbank that does not in-
dicate its actual role in the syntactic structure of the
sentence at hand. We adopted the syntactic patterns
in [Bayraktar et al., 1998] as a means of identifying the
comma’s different possible syntactic categories. Based on
these syntactic patterns, we enriched the supertags associ-
ated with the comma to indicate the correct syntactic role.
Furthermore, we added a new operator INTR for handling
cases of both apposition and interruptions.

4.3 WH-movement

A new operator is added to handle cases of WH-movement
where a syntactic category is required on the right but, hav-
ing moved, is available only on the left. Consider the sen-
tenceHe believes in what he plays.Hereplaysis of cate-
gory (S\NP)/NP, i.e. it is a transitive verb, where if it finds

1 This retrieval action of a previous state remains incremental because
the previous state sequence is not altered, and the retrieved state is
always an extension of the last state (it always adds arguments to a
given category rather than changing it to a different one).

an object NP to its right, and a subject NP to its left, a sen-
tence will have been formed. The NPwhat is expected as
the object somewhere to the right ofplays, but has already
moved to an appropriate position somewhere to its left. Ac-
cordingly, we added a new operator WHMV to handle such
cases in our framework.

5 Implementation Detail

After POS tagging, the parser works its way through
the sentence, left-to-right, assigning for every word a
supertag–operator pair, and deciding on a state using the
deterministic state-realizer. We describe the state-realizer
before delving into the implementation of different ver-
sions of the supertag-operator tagger.

Parse-State Realizer After assigning supertag–operator
pairs for the words of the input sentence (described in the
next section), thestate-realizerdeterministically realizes
the parse-states as well as the intermediate dependency
graphs between words using the CCG incremental oper-
ators (as defined in our incremental version of the CCG-
bank). Starting at the first word with (obviously) a null
previous state, the realizer performs the following steps for
each word in turn: (i) set the current supertag and operator
to those of the current word; (ii) at the current state apply
the current operator to the previous state and current su-
pertag; (iii) add edges to the dependency graphs between
words that are linked as CCG arguments; and (iv) if not at
the end of the sentence, set the previous state to the current
one, then set the current word to the next one, and iterate
from (i).

Figure 4 illustrates the realizer operation along with
the incrementally constructed partial dependency graphs at
each state. At the initial stateS0, theNOPOperator is ap-
plied to the previous state, a Null state, and the current su-
pertagNP; the resulting state isS1 with categoryNP and
the resulting dependency graph is simply the node repre-
senting the first wordJohn. The transition to the next state
S2 is triggered by the verblikes, where theTRFCopera-
tor is applied to the previous state and the current supertag,
resulting in a new stateS/NP. The dependency graph as-
sociated with stateS2 shows the realized dependency be-
tweenlikesandJohnwhich has resulted from the previous
operation. Finally the last word triggers the final state, and
the realizer is able to construct the full dependency graph
which is associated with the last stateS3.
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John likes Mary

NP (S\NP )/NP NP

NOP TRFC FAGFED@ABCS0
// GFED@ABCS1

// GFED@ABCS2
// GFED@ABCS3

NP S/NP S

S1
ONMLHIJKJohn

S2
ONMLHIJKJohn // ONMLHIJKlikes

S3
ONMLHIJKJohn // ONMLHIJKlikes WVUTPQRSMaryoo

Fig. 4: Illustration of the operation of the incremental
parse-state realizer and the associated intermediate depen-
dency graphs at each state.

Maximum Entropy Taggers We build different linear-
time models for assigning supertag–operator pairs to words
in order to explore the effect of the different grada-
tions of incrementality on parsing accuracy. All mod-
els present in this paper are based on MaxEnt classifiers
[Berger et al., 1996]. A MaxEnt classifier selects the class
that gives the highest conditional probability of any class
given a set of features of the input, where the probabil-
ity is expressed as a log-linear interpolation of weights of
features. The weights are trained in order to maximize
the likelihood of the given training data. In this work
we use sequential conditional generalized iterative scaling
[Goodman, 2002].

In building classifiers for sequence-tagging, as in the
present case, choices arise regarding the search strategy as
well as regarding the use of lookahead features:

• Search (GLOBAL/LOCAL):A MaxEnt model can be used
for sequence classification, either as a classifier (LOCAL) or
by converting the classification scores into probabilitiesand
then using standard dynamic programming (Viterbi search,
GLOBAL). Naturally, per-word (left-to-right) LOCAL clas-
sifiers facilitate a more incremental parser than GLOBAL
classifiers; in the latter case, the state-realizer has to wait till
the end of the sentence before it can realize the states.

• Lookahead: (Y-LH/N-LH): For training the classifiers,
lookahead features could either be included (Y-LH) or not
(N-LH). When lookahead is used, it refers to the lexical and
POS features from a window of two words two words to the
right of the focus word. Note that those features to the left
are always included in all models as history.

Crucially, the choice for a global search procedure is or-
thogonal to using a lookahead. This is because in a global
search the disambiguation weights are the accumulation
(assuming independence given the overlapping features)
of the weights of local classification decisions (per word)
for the whole input sentence, whereas the lookahead af-
fects the features used to estimate the local weights them-
selves. Hence, when assuming independence (multiplying)
between the local decisions, global search cannot substitute
for the use of lookahead.

Furthermore, given any choice of search strategy and
lookahead, there are two different architectures for assign-
ing supertag–operator pairs to words:

• Joint: We train a MaxEnt module to assign supertag–
operator pairs (as a single class) to words.

• Cascaded: We train two MaxEnt modules, one for su-
pertags, and one for operators, and use them in a cascade.
We limit the options here such that both classifiers (supertag
and operator) either use lookahead or not, i.e. we do not ex-
plore a mixed situation where one does and the other does
not. For the version that does use lookahead, while the su-
pertagger is trained using the standard feature set, the oper-
ator tagger is trained with the same window but with POS
and supertag features coming from the supertagger (no lex-
ical features).

As a baseline we start out from the Joint classifier, without
lookahead (N-LH) and with LOCAL search. We choose
this as a baseline as it is the most straightforward imple-
mentation of an incremental, linear-time CCG parser with-
out making any extra assumptions. The Cascaded architec-
ture with LOCAL search and without lookahead (N-LH)
might be seen as incremental but it embodies an extra set
of independence assumptions (i.e. different choices of fea-
tures for supertag and operator classifiers). Similarly, any
model using look-ahead and LOCAL search is slightly less
incremental since it employs still more resources than the
preceding models. If we move one further step away from
full to semi-incremental parsing, we arrive at models which
employ GLOBAL search (since the supertag–operator se-
quences are assigned only after the whole sentence has
been processed).

6 Experiments and Results

This section details a number of experiments carried out to
test the effectiveness of the supertagger, the operator tag-
ger, and our ability to capture the necessary dependencies
using a range of incremental parsers. We used the same
data split of the WSJ as in [Clark & Curran, 2007]. Sec-
tions 02–21 were used for training, section 00 for dev-
testing of intermediate taggers, and section 23 for testing
dependencies.

6.1 Supertagging Results

Given our introduction of new supertags for coordination,
apposition, interruption, and WH-movement, we used sec-
tion 00 to evaluate our supertagger’s accuracy compared
to the standard CCGbank set. Although our supertags
are more complex, we obtain an F-score of 91.7 (cf. Ta-
ble 1, last row, ‘Supertagging’ column), which compares
favourably with the supertagger of [Clark & Curran, 2007],
which scores 92.39 on the same dataset. While we have not
carried out significance testing at this stage, it is clear that
there is little difference between the two sets of scores, indi-
cating that our supertagger is robust as well as accurate. As
will be seen for all experiments in this section, this is only
true when lookahead is utilised; note that our best score of
91.7 dips to 68.62—an absolute drop of 23.08 points, or a
33.6% relative decrease in performance—when lookahead
is turned off.

6.2 Operator Tagging Results

In Table 1 we also present the results for our Operator tag-
ger. This displays a very high accuracy (90.9%, cf. last
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Architecture Lookahead Search Dependency Supertagging Operator Tagging Incremental
Accuracy Accuracy Accuracy

Joint NO LOCAL 56.02 67.47 Incr.
NO GLOBAL 56.13 68.31 Semi
YES LOCAL 82.17 84.34 Incr.+LH
YES GLOBAL 83.20 85.02 Semi+LH

Cascaded NO LOCAL 59.01 68.11 76.19 Incr.
NO GLOBAL 59.30 68.62 76.53 Semi
YES LOCAL 86.31 91.62 90.76 Incr.+LH
YES GLOBAL 86.70 91.70 90.90 Semi+LH

Table 1: All results (F-Score) of systems applied to input with POS tags output by POS tagger trained using Maxent with
feature window (+/-2) on the CCGbank POS data. The results with no lookahead use only left window features.

row, ‘Operator Tagging’ column) even when no lexical fea-
tures are used. We also contemplated a hypothetical situa-
tion in which we feed the correct (gold standard) previous
syntactic state as a feature to the system. In this scenario
an operator tagging score of 99.22% (8.32% absolute im-
provement, or 9.15% relative) was obtained, indicating that
a high gain is to be expected if this state were to be made
available to the operators classifier.

6.3 Dependency Results

In Table 1 we also present the results for unlabeled de-
pendency accuracy using our method. We use the same
evaluation criteria as [Clark & Curran, 2007] by comparing
the dependency output of the incremental parser with the
predicate-argument dependencies in the CCGbank. Test-
ing on section 23 of the WSJ, we obtain an F-score of 86.7
(last row, ‘Dependency’ column). The score with the gold
standard POS and supertags in the input is 87.5, 0.8% ab-
solute (or 0.92% relative) higher than the result when us-
ing the POS, supertags and operators hypothesized by the
system, but not by much. While this result is consider-
ably below the best known result for a non-incremental,
bottom-up chart parser [Clark & Curran, 2007]), we think
that our result is reasonably good for an extremely efficient,
semi-incremental parser. To put the efficiency gains in per-
spective, the parsers of [Collins, 1999], [Charniak, 2000]
and [Clark & Curran, 2007] take respectively 45, 28 and
1.9 mins to parse section 23 of the WSJ. By contrast,
our parser takes only 11 seconds, a speed-up of around
ten times relative to the fastest among these parsers
[Clark & Curran, 2007] (parsing times are measured on a
machine with the same specifications).

6.4 Cascaded vs. Joint Approach

The results reported above demonstrate the accuracy of the
cascaded approach using two cascaded taggers: the first for
supertags, and the second the operator tagger followed by
the deterministic state- realizer. In this section we compare
the cascaded model with a joint model, where we train a
single classifier that produces the supertags and operators
simultaneously in the same step. In Table 1 we give the
unlabeled dependency results for section 23 for the cas-
caded and joint models side-by-side for comparative pur-
poses. The cascaded model significantly outperforms the
joint model (by 3.5% absolute, or 4.2% relative; this rises
to 4.3% absolute, or 5.17% relative, if we compare the joint
model with the dependency score using the gold standard
POS and supertags, as described in the previous section).

Besides data sparseness, the joint model makes the choice
of an operator at a certain position in the sentence based on
supertag information only to the left of the current position
because the joint model must guess supertag–operatorpairs
at once.

Note that our Cascaded version with lookahead and
GLOBAL search is the semi-incremental model of
[Shen & Joshi, 2005]. They report an F-score of 89.3 on
section 23 using a semi-incremental approach. While not
directly comparable, we consider our performance to be on
a par with theirs, with a considerable improvement in pars-
ing time (they report a speed of 0.37 sent./sec.).

6.5 Effect of Lookahead

The present parser is just two words of lookahead away
from being fully incremental. Here, we examine the ef-
fect of lookahead features on the supertagger, operator tag-
ger and dependency results. We examine two versions of
a supertag- and operator-classifier, namely a weakly incre-
mental and a fully incremental version. The weakly incre-
mental version deploys features in a window of two words
to the left and two words to the right of the focus word.
The fully incremental parser deploys features in a window
of two words to the left only.

Looking at all the results in Table 1, the scores for the
weakly (semi-)incremental versions of the parser barely
differ from their fully incremental counterparts, whether
we are concerned with dependency, supertagging or oper-
ator accuracy; the scores are higher, on the whole, but not
by much.

By contrast, what isextremelysignificant is the ex-
tent to which lookahead is utilised. For all accuracy
measures—dependency, supertagging or operator—huge
improvements are to be seen when the parser avails of
lookahead. Clearly, full incrementality at this stage comes
at a high cost in accuracy, relative to the weakly incremen-
tal version, without any benefit in efficiency.

7 Conclusions and Future work

In this paper we introduced a novel, simple approach for
wide-coverage CCG analysis using a weakly incremental
parser. In addition to the standard CCG operators, we
added extensions to efficiently handle coordination, appo-
sition and interruptions, and WH-movement. Our supertag-
ger achieves results comparable with the state-of-the-artfor
CCG [Clark & Curran, 2004]. Moreover, the operator tag-
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ger, even without lexical features, performs well on our ex-
tended operator set.

Our empirical results show three main findings. Firstly,
despite being just two words of lookahead away from be-
ing fully incremental, our proposed cascaded weakly incre-
mental parser outperforms both the joint and fully incre-
mental approaches. Nevertheless, there is perhaps less of
a performance difference between the joint and cascaded
architectures on the one hand, and between global search
or local classification on the other. The fact that the lo-
cal search performs almost as well as global search for this
model implies that at least the local search could be eas-
ily integrated within speech-recognition or machine trans-
lation decoders.

Secondly, with respect to dependency parsing,
while our overall result is below the result reported
in [Clark & Curran, 2007] using a non-incremental
bottom-up parser, it is far more efficient being (weakly)
incremental. This speedup is, we feel, particularly
attractive for applications that incorporate in the de-
coder a word-prediction (or language) model, since this
semi-incremental parser works in a fashion similar to such
language models, i.e. the possible states are built on-the-fly
from the training data, just like any other non-parametric
method.

Thirdly, our results, using a state-of-the-art classifier,
highlight the fact that incremental parsing using CCG is
attainable at some tolerable cost in accuracy. Perhaps most
importantly, incremental parsing for CCG as suggested
here gives acceptable levels of accuracy only when looka-
head is used. Nevertheless, since our approach to parsing
is left-to-right and makes decisions at every word in the in-
put, one might actually question the effectiveness of taking
decisions at every word. It might turn out, for example, that
when the decision points are selected carefully, the need for
lookahead can be less crucial. This conjecture is left for the
future.

As for other avenues of future research, work on an im-
proved, fully incremental version is ongoing as well as an
investigation of the effect of incremental parsing in ma-
chine translation.
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