
International Conference RANLP 2009 - Borovets, Bulgaria, pages 94–98

Edlin: an easy to read linear learning framework

Kuzman Ganchev ∗
University of Pennsylvania

3330 Walnut St, Philaldelphia PA
kuzman@seas.upenn.edu

Georgi Georgiev
Ontotext AD

135 Tsarigradsko Ch., Sofia , Bulgaria
georgi.georgiev@ontotext.com

Abstract
The Edlin toolkit provides a machine
learning framework for linear models,
designed to be easy to read and un-
derstand. The main goal is to provide
easy to edit working examples of im-
plementations for popular learning algo-
rithms. The toolkit consists of 27 Java
classes with a total of about 1400 lines
of code, of which about 25% are I/O and
driver classes for examples. A version
of Edlin has been integrated as a pro-
cessing resource for the GATE architec-
ture, and has been used for gene tagging,
gene name normalization, named entity
recognition in Bulgarian and biomedical
relation extraction.

Keywords

Information Extraction, Classification, Software Tools

1 Introduction

The Edlin toolkit provides a machine learn-
ing framework for linear models, designed to
be easy to read and understand. The main
goal is to provide easy to edit working exam-
ples of implementations for popular learning
algorithms. To minimize programmer over-
head, Edlin depends only on GNU Trove1 for
fast data structures and JUnit2 for unit tests.
A version of Edlin has been integrated as a
processing resource for the GATE [7] architec-
ture, and has been used in-house for gene tag-
ging, gene name normalization, named entity
recognition in Bulgarian and biomedical rela-
tion extraction. For researchers we expect the

∗Supported by ARO MURI SUBTLE W911NF-07-
1-0216 and by the European projects AsIsKnown (FP6-
028044) and LTfLL (FP7-212578)
1 http://trove4j.sourceforge.net/
2 http://www.junit.org

main advantage of Edlin is that its code is easy
to read, understand and modify, meaning that
variations are easy to experiment with. For in-
dustrial users, the simplicity of the code as well
as relatively few dependencies means that it is
easier to integrate into existing codebases.

Edlin implements learning algorithms for
linear models. Currently implemented are:
Naive Bayes, maximum entropy models, the
Perceptron and one-best MIRA (optionally
with averaging), AdaBoost, structured Percep-
tron and structured one-best MIRA (option-
ally with averaging) and conditional random
fields. Because of the focus on clarity and con-
ciseness, some optimizations that would make
the code harder to read have not been made.
This makes the framework slightly slower than
it could be, but implementations are asymp-
totically fast and suitable for use on medium
to large datasets.

The rest of this paper is organized as fol-
lows: §2 describes the code organization; §3-§4
describes an integration with the GATE frame-
work and an example application; §5 describes
related software; and §6 discusses future work
and concludes the paper.

2 Overview of the code

The goal of machine learning is to choose from
a (possibly infinite) set of functions mapping
from some input space to some output space.
Let x ∈ X be a variable denoting an input ex-
ample and y ∈ Y range over possible labels for
x. A linear model will choose a label according
to

h(x) = arg max
y

f(x, y) · w (1)

where f(x, y) is a feature function and w is a
parameter vector. We take the inner product
of the feature vector with the model parame-
ters w and select the output y that has high-

94



est such score. The feature function f(x, y) is
specified by the user, while the parameter vec-
tor w is learned using training data.

Even though the learning and inference algo-
rithms are generic, and can be used for differ-
ent applications, Edlin is implemented with an
natural language tasks in mind. The classes
related to classification, are implemented in
the classification package, while those re-
lated to sequence tasks are implemented in the
sequence package. The code to perform gra-
dient ascent and conjugate gradient is in an
algo package. There are three helper pack-
ages. Two (experiments and io) are code for
reading input and for driver classes for the ex-
amples. The final package, called types con-
tains infrastructure code such as an implemen-
tation of sparse vectors, elementary arithmetic
operations such as the inner product, and other
widely used operations whose implementation
is not interesting from the point of view of un-
derstanding the learning algorithms. This code
organization, as well as the data structures we
employ are similar to other learning packages
such as StructLearn [12] and MALLET [11].
One attribute that distinguishes Edlin from
both of these packages is the decomposition of
the feature function into

f(x, y) = f2(f1(x), y) (2)

where f1 maps the input into a sparse vector
and f2 combines it with a possible output in or-
der to generate the final sparse vector used to
assess the compatibility of the label for this in-
put. By contrast, many other learning frame-
works only allow the user to specify f1 and
hard-code an implementation of f2 as conjoin-
ing the input predicates (f1 in the notation
above) with the label. By allowing the user
to specify f2, we allow them to tie parameters
and add domain information about how differ-
ent outputs are related. See the illustration
below for an example.

2.1 Example Application

Perhaps the best way to describe the minimal
amount to make reading the code easy is to
trace how information is propagated and trans-
formed in an example application. Take a POS
tagging task as an example. Suppose we are
given a collection of sentences that have been
manually annotated and these have been split
for us into a training set and a testing set. The

sentences are read from disk and converted to
a sparse vector representing f1(x) by a class
in the io package. For example we might ex-
tract suffixes of length 2 to 5 from each word
in a sentence. We look these up in an al-
phabet that maps them to a unique dimen-
sion, and store the counts of the words in a
sparse vector for each word. The alphabet and
sparse vector are implemented in Alphabet
and SparseVector respectively. The array
of sparse vectors for a sentence (recall there
is one for each word) and alphabet are bun-
dled together in an SequenceInstance object
along with the true label. Next we want to
train a linear sequence model using the percep-
tron algorithm on the training portion of our
data. We construct a sequence.Perceptron
object and call its batchTrain method. Fig-
ure 1 reproduces the implementation. The
method takes the training data as a Java
ArrayList of SequenceInstance objects, and
the Perceptron class has parameters for
whether averaging is turned on and the num-
ber of passes to make over the data. It also
contains a SequenceFeatureFunction object
(fxy in Figure 1) that implements f2 from
above. For part of speech tagging, it is typ-
ical to let ft(x, y(t−1), y(t)) conjoin f1(x) with
y(t) and also conjoin y(t) with y(t−1), but not
to have any features that look at x, y(t) and
y(t−1) all at the same time. By contrast
for named entities it is typical to have fea-
tures that look at all three. The linear se-
quence model is created in the first line of the
batchTrain method as a LinearTagger ob-
ject, which has access to the alphabet used
in the initial construction of the sparse vec-
tors, the label alphabet (yAlphabet in Figure
1) and f2 (fxy in Figure 1). It computes the
prediction which is represented as an int array,
with the interpretation yhat[t]=j as word t
has the label at position j in the label alphabet
(accessible via yAlphabet.lookupIndex(j)).
The batchTrain method returns the linear se-
quence model.

3 GATE integration

GATE [8, 7] is a framework for engineering
NLP applications along with a graphical de-
velopment environment for developing compo-
nents. GATE divides language processing re-
sources into language resources, processing re-

95



public LinearTagger batchTrain(
ArrayList<SequenceInstance> trainingData) {

LinearTagger w = new LinearTagger(xAlphabet,
yAlphabet, fxy);

LinearTagger theta = null;
if (performAveraging)

theta = new LinearTagger(xAlphabet, yAlphabet,
fxy);

for (int iter = 0; iter < numIterations; iter++) {
for (SequenceInstance inst : trainingData) {

int[] yhat = w.label(inst.x);
// if y = yhat then this update won’t change w.
StaticUtils.plusEquals(w.w, fxy.apply(inst.x,

inst.y));
StaticUtils.plusEquals(w.w, fxy.apply(inst.x,

yhat), -1);
if (performAveraging)

StaticUtils.plusEquals(theta.w, w.w, 1);
}

}
if (performAveraging) return theta;
return w;

}

Fig. 1: Edlin’s perceptron implementation, re-
produced verbatim to show code organization.

sources, and graphical interfaces. We have
integrated a version of Edlin into the GATE
framework as a set of processing resources,
by defining interfaces in Edlin for training,
classification, and sequence tagging. These
interfaces are used to communicate between
Edlin’s machine learning implementations and
the concrete implementations of tagger and
classifier processors in GATE. The integration
allows Edlin to be used for robust, complex
text processing applications, relying on GATE
processors such as tokenizers, sentence split-
ters and parsers, to preprocess the data. The
integration also makes it easy to pipeline Edlin-
trained linear models using the GATE infras-
tructure for processing pipelines. Since Edlin
has very readable code, this makes it easy for a
researcher or engineer to try a modified learn-
ing algorithm if they already use the GATE
framework.

4 Biomedical Relation Ex-
traction

In this section we show an example text pro-
cessing application within the Edlin and GATE
architectures, focusing on the text processing
components organization. Our problem do-
main is the BioNLP 2009 shared task [17],
a biomedical relation extraction task. The
goal is to identify relations between genes/gene
products. We chose this task as an exam-
ple because it is relatively complex and uses

both Edlin and several GATE processing com-
ponents. The results are described in [9].

Following BioNLP terminology, we use the
term proteins to refer to both genes and gene
products. Both trigger chunks and proteins are
called participants. For example, the text “...
phosphorylation of TRAF2 ...” would be a re-
lation of type Phosphorylation with a theme of
TRAF2. The relation is called an event, while
the string “phosphorylation” is called a trig-
ger. Gene boundary annotations are provided
by the task organizers. In general, there are
events with multiple participants in addition to
the trigger. The event instances are organized
into the structure of the Gene Ontology [5].

We separated the task in two main sub-tasks
(i) recognition of trigger chunks using an Edlin
sequence tagger and, (ii) classification of trig-
gers and proteins as either forming an event
from one of 9 predefined types or not partici-
pating in an event together. At the end of the
section we discuss the final pipeline of proces-
sors used in this relation extraction task.

4.1 Gene and Trigger Tagging

The trigger chunks are simply words and
phrases that describe the events linking pro-
teins. For instance binds is such a trigger word
that would link two or more genes in a Bind-
ing event. We used the Edlin GATE integra-
tion described in Section 3 to create one GATE
processing resource that trains an Edlin lin-
ear sequence model and another that uses that
Edlin sequence model to tag trigger chunks.

Both processors work in a pipeline with
GATE preprocessors including a tokenizer,
sentence splitter, POS tagger and chunker. Be-
cause Edlin represents linear models trained
using different algorithms in the same way it
was easy for us to compare different learning
algorithms for the task. For this application
tagger recall is an upper bound on system per-
formance, and used MIRA with a loss function
designed to achieve high recall since that per-
formed best.

4.2 Relation Extraction

We separate the process of relation extraction
into two stages: in the first stage, we gener-
ate events corresponding to relations between a
trigger word and one or more proteins (simple
events), while in the second stage, we gener-

96



ate events that correspond to relations between
trigger words, proteins and simple events (we
call the new events complex events).

For the purpose of this task we designed and
implemented four GATE processing resources
for two for training and two for classification of
genes and trigger chunks into the 9 predefined
types of events. The training of an Edlin lin-
ear model and classification using that model
are again done using the Edlin-GATE integra-
tion, and are integrated in a GATE pipeline
that now also includes dependency and phrase-
structure parsers.

As with finding trigger words in the previous
section, the uniform representation of linear
models allowed us to compare different learn-
ing methods. We compared max entropy, per-
ceptron and one-best MIRA, and again chose
MIRA with a loss function designed to increase
recall, since getting high recall was the most
challenging part of the task. Finally, this tun-
able loss function was appealing for us because
it allows application-specific tuning. For exam-
ple, a search might require high recall, but high
precision might be more important for adding
relations to a knowledge base.

Sentence splitter

G
A
T

E
ap

p
lication

P
ip

elin
e

Tokenizer

POS tagger, chunker

Edlin trigger tagger

parsers

Edlin simple event extractor

Edlin complex event extractor

Fig. 2: Graphical view of our relation extrac-
tion system pipeline.

Figure 2 shows our event extraction pipeline,
stringing together different GATE text proces-
sors. The first stages of the pipeline as well
as the parsers are included in order to create
features useful for later stages.

As described above, the trigger tagging stage
uses an Edlin GATE processor trained us-
ing one-best MIRA. Furthermore, we employ
a maximum entropy constituency parser [1]
and a dependency parser [13]. These compo-
nents are also represented as GATE processors.
In the last stage of the pipeline we use two
components, one for simple and one for com-
plex events, based on the classification version
of one-best MIRA algorithm implemented in
Edlin and used as GATE processors.

5 Related Work

There are a number of machine learning tools
available either as open source packages, or
with source code for research purposes. To
our knowledge Edlin is the only framework
that represents linear models in a uniform
fashion, and is also the only learning frame-
work that prioritizes code readability. The
NLTK [3, 4] (natural language toolkit) empha-
sizes code readability but focuses on natural
language processing rather than learning.

MALLET [11] is a Java toolkit for machine
learning. MALLET implements most of the
learning algorithms available in Edlin in addi-
tion to many others. The exceptions are per-
ceptron and MIRA, which are available as a
separate MALLET-compatible package called
StructLearn [12, 6]. For sequence data, one of
MALLET’s main strengths is a way to easily
create predicate functions (f1 in the notation of
Section 2). Edlin does not have sophisticated
code for feature engineering, and in our ex-
periments we used GATE to generate features.
MALLET also contains a very general imple-
mentation of CRFs that allows linear-chain
models with varying order n Markov proper-
ties. These enhancements lead to a larger and
hence harder to read code-base. For example
the CRF model implementation in MALLET
comprises 1513 lines of code compared to 56 for
Edlin’s simplistic implementation.3 Note that
the authors actively recommend MALLET in
particular for CRFs, however it serves a differ-
ent need than Edlin. While MALLET is very
general and easy to use, Edlin is very simple
and easy to understand.

LingPipe[2] is a Java toolkit for linguistic
analysis of free text. The framework provides
tools for classification, sequence tagging, clus-
tering and a variety of problem-specific tasks
such as spelling correction, word segmentation
named entity normalization and parsing for
biomedical text among others. Some trained
models are provided, but it is possible to train
a new models for new tasks and data. The soft-
ware is available along with source code. We
did not investigate source code complexity due
to time constraints, but the full featured nature
of the software and its marketing to enterprise
customers suggests that its focus is on stabil-
ity, and scalability rather than code simplicity
and readability.

3 Counted with cloc http://cloc.sourceforge.net/

97



Weka [18] is a widely used framework de-
veloped at the University of Waikato in New
Zealand and comprises a collection of learning
algorithms for classification, clustering, feature
selection, and visualizations. Weka includes a
very friendly graphical user interface, and is
targeted largely at researchers in the sciences
or social sciences who would like to experi-
ment with different algorithms to analyze their
data. Weka does not contain code for struc-
tured learning and is more suitable for use as a
versatile black box than for reading and mod-
ifying source code. For example Weka’s per-
ceptron algorithm is implemented in 600 lines
of code compared to 38 for Edlin. By contrast
Weka has a very good graphical user interface
and allows visualization not implemented in
Edlin. GATE integration allows some visual-
izations and evaluation for Edlin, but special-
ized only for text.

ABNER [16] is a tool for processing natu-
ral language text aimed at the biomedical do-
main. ABNER is widely used for annotation
of biomedical named entities such as genes and
gene products. It contains a CRF implemen-
tation and a graphical user interface for visu-
alization and modification of annotations, in
addition to domain specific tokenizers and sen-
tence segmenters. BioTagger [14] is a different
tool for named entity recognition in biomedi-
cal text also using linear-chain CRFs. It has
been applied to genes/gene products [14], ma-
lignancy mentions [10] and genomic variations
in the oncology domain [15].

6 Conclusions and Future
Work

We have presented a linear modeling toolkit of
implementations written specifically for read-
ability. We described the toolkit’s layout,
learning algorithms and an application we have
found it useful for. The main goal of Edlin is
to be easy to read and modify and we have
used the toolkit in teaching a Master’s level
class. While we have not performed a scientific
evaluation, initial feedback from students has
been positive and at least one fellow researcher
commented that he liked the organization and
simplicity of the code.

Future work includes the implementation of
maximal margin learning (i.e. support vector
machines) and further improvements to the in-

tegration between Edlin and GATE. Finally,
we intend to improve the implementation of
the optimization algorithms to improve train-
ing run-time for maximum entropy models and
CRFs.

References
[1] OpenNLP. http://opennlp.sourceforge.net, 2009.

[2] Alias-i. LingPipe. http://alias-i.com/lingpipe,
2008. (accessed 2008-04-20).

[3] S. Bird and E. Loper. Nltk: The natural language
toolkit. In Proceedings ACL. ACL, 2004.

[4] S. Bird and E. Loper. Natural language toolkit. http:
//www.nltk.org/, 2008.

[5] T. G. O. Consortium. Gene ontology: tool for the
unification of biology. Nature Genetics, 25(1):25–29,
2000.

[6] K. Crammer, R. McDonald, and F. Pereira. Scalable
large-margin online learning for structured classifica-
tion. Department of Computer and Information Sci-
ence, University of Pennsylvania, 2005.

[7] H. Cunningham. GATE – general architecture for
text engineering. http://gate.ac.uk/.

[8] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A framework and graphical de-
velopment environment for robust NLP tools and ap-
plications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational Lin-
guistics, 2002.

[9] G. Georgiev, K. Ganchev, V. Momchev, D. Pey-
chev, P. Nakov, and A. Roberts. Tunable domain-
independent event extraction in the mira framework.
In Proceedings of BioNLP. ACL, June 2009.

[10] Y. Jin, R. McDonald, K. Lerman, M. Mandel,
M. Liberman, F. Pereira, R. Winters, and P. White.
Identifying and extracting malignancy types in cancer
literature. In BioLink, 2005.

[11] A. McCallum. Mallet: A machine learning for lan-
guage toolkit. http://mallet.cs.umass.edu, 2002.

[12] R. McDonald, K. Crammer, K. Ganchev, S. P.
Bachoti, and M. Dredze. Penn StructLearn.
http://www.seas.upenn.edu/~strctlrn/StructLearn/
StructLearn.html.

[13] R. McDonald, K. Crammer, and F. Pereira. Online
large-margin training of dependency parsers. In Pro-
ceedings of ACL. ACL, 2005.

[14] R. McDonald and F. Pereira. Identifying gene and
protein mentions in text using conditional random
fields. BMC Bioinformatics, (Suppl 1):S6(6), 2005.

[15] R. McDonald, R. Winters, M. Mandel, Y. Jin,
P. White, and F. Pereira. An entity tagger for rec-
ognizing acquired genomic variations in cancer liter-
ature. Journal of Bioinformatics, 2004.

[16] B. Settles. ABNER: An open source tool for automat-
ically tagging genes, proteins, and other entity names
in text. Bioinformatics, 21(14):3191–3192, 2005.

[17] J. Tsujii. BioNLP’09 Shared Task on Event Extrac-
tion. http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
SharedTask/index.html, 2009.

[18] I. H. Witten and E. Frank. Data Mining: Practi-
cal machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005.

98


