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Abstract

The best solution of structured prediction mod-
els in NLP is often inaccurate because of
limited expressive power of the model or to
non-exact parameter estimation. One way to
mitigate this problem is sampling candidate
solutions from the model’s solution space,
reasoning that effective exploration of this
space should yield high-quality solutions.
Unfortunately, sampling is often computation-
ally hard and many works hence back-off to
sub-optimal strategies, such as extraction of
the best scoring solutions of the model, which
are not as diverse as sampled solutions. In
this paper we propose a perturbation-based
approach where sampling from a probabilis-
tic model is computationally efficient. We
present a learning algorithm for the variance
of the perturbations, and empirically demon-
strate its importance. Moreover, while finding
the argmax in our model is intractable, we
propose an efficient and effective approxima-
tion. We apply our framework to cross-lingual
dependency parsing across 72 corpora from
42 languages and to lightly supervised depen-
dency parsing across 13 corpora from 12 lan-
guages, and demonstrate strong results in terms
of both the quality of the entire solution list
and of the final solution.1

1 Introduction

Structured prediction problems are ubiquitous
in Natural Language Processing (NLP) (Smith,
2011). Although in most cases models for such
problems are designed to predict the highest
quality structure of the input example (e.g., a
sentence or a document), in many cases a diverse

∗Both authors contributed equally to this work.
1Our code is at: https://github.com/ramyazdi/

perturbations.

list of meaningful structures is of fundamental
importance.

This can stem from several reasons. First, it
can be a defining property of the task. For exam-
ple, in extractive summarization (Nenkova and
McKeown, 2011) good summaries are those that
consist of a high quality and diverse list of sen-
tences extracted from the text. In other cases the
members of the solution list are exploited when
solving an end goal application. For example,
dependency forests were used in order to improve
machine translation (Tu et al., 2010; Ma et al.,
2018) and sentiment analysis (Tu et al., 2012).

In yet other cases it is a first step towards
learning a high quality structure that cannot be
learned by the model through standard argmax
inference. For example, in the well-studied rerank-
ing setup (Collins, 2002; Collins and Koo, 2005;
Charniak and Johnson, 2005; Son et al., 2012;
Kalchbrenner and Blunsom, 2013), a K-best list of
solutions is first extracted from a baseline learner,
which typically has a limited feature space, and
is then transferred to another feature-rich model
that chooses the best solution from this list.
Other examples include bagging (Breiman, 1996;
Sun and Wan, 2013) and boosting (Bawden and
Crabbé, 2016) as well as other ensemble methods
(Surdeanu and Manning, 2010; Täckström et al.,
2013; Kuncoro et al., 2016) that are often applied
when the data available for model training is
limited, in cases where exact argmax inference
in the model is indefeasible, or when training is
not deterministic. In such cases, an ensemble of
approximated solutions is fed into another model
that extracts a final high quality solution.

Unfortunately, both alternatives suffer from
inherent limitations. K-best lists can be extracted
by extensions of the argmax inference algorithm
for many models: the K-best Viterbi algo-
rithm (Golod, 2009) for Hidden Markov Models
(Rabiner, 1989) and Conditional Random Fields
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(Lafferty et al., 2001), K-best Maximum Spanning
Tree (MST) algorithms for graph-based depen-
dency parsing (Camerini et al., 1980; Hall, 2007),
and so forth. However, the members of K-best
lists are typically quite similar to each other and do
not substantially deviate from the argmax solution
of the model.2 Ensemble techniques, in contrast,
are often designed to encourage diversity of the
K-list members, but they require the training of
multiple models (often one model per solution in
the K-list) which is prohibitive for large K values.

In this work we propose a new method for
learning K-lists from machine learning models,
focusing on structured prediction models in NLP.
Our method is based on the MAP-perturbations
model (Hazan et al., 2016). A particularly appeal-
ing property of the perturbations framework is
that it supports computationally tractable sampling
from the perturbated model, although this comes
at the cost of the argmax operation often being
intractable. This property allows us to sample high
quality and diverse K-lists of solutions, while
training only the base (non-perturbated) learner
and a smooth noise function. We propose a
novel algorithm that automatically learns the noise
parameter of the perturbation model and show the
efficacy of this approach in generating high quality
K-lists (§ 2). To overcome the intractability of the
argmax operation we use an approximation and
experimentally demonstrate its efficacy.

Particularly, we introduce a Gibbs-perturbation
model: a model that augments a given machine
learning model with an additive or multiplicative
Gaussian noise function (Keshet et al., 2011;
Hazan et al., 2013). In order to approximate the
argmax of the perturbated model we use a max
over marginals (MOM) procedure over the K-list
members. We learn the variance of the Gaussian
noise function such that the final solution distilled
from the K-list is as close to the gold standard
solution as possible. To the best of our knowledge,
the final solution distillation method and the
variance learning algorithm are novel in the
context of perturbation-based learning.

To evaluate our framework, we consider two
dependency parsing setups: cross-language trans-
fer and lightly supervised training. We focus on

2Many machine translation (MT) works aimed to generate
diverse K-lists of translated sentences (e.g., Macherey et al.,
2008; Gimpel et al., 2013; Li and Jurafsky, 2016). However,
these methods are specific to MT, whereas we focus on a
general framework for structured prediction in NLP.

these tasks because they are prominent NLP chal-
lenges where the model (the non-perturbated
dependency parser) is a good fit to the task
and data, as indicated by the high quality trees
generated in mono-lingual setups with abundance
of in-domain training data, but the training setup
makes parameter estimation challenging. Hence,
the argmax solution of the model is often not
the highest quality one. In such cases it is likely
that a diverse list of high-quality solutions will be
valuable.

Particularly, we experiment with the Universal
Dependencies (UD) Treebanks (Nivre et al.,
2016; McDonald et al., 2013). For cross-language
parser transfer we consider 72 corpora from 42
languages. We train a perturbated delexicalized
parser for each target language. The non-pertur-
bated parser is first trained on data from all
languages except from the target language and
then we learn the variance of the noise distribution
on additional data from those languages. Finally,
we use the trained perturbated parser K times
to the target language test set, perturbating the
parameters of the base parser using noise sampled
from the trained noise distribution. The final
solution is extracted from this K-list by the
MOM algorithm. The experiments in the lightly
supervised setup are similar, except that we con-
sider 13 UD corpora (written in 12 languages)
that have limited training data. This setup is
monolingual, we train and test on data from the
same corpus.

Our results demonstrate the quality of the K-
lists generated by our algorithm and of the tree
returned by the MOM procedure. We compare our
lists and final solution to those of a variety of alter-
native algorithms for K-list generation, including
the K-best variant of the parser’s argmax infer-
ence algorithm, and demonstrate substantial gains.
Finally, even though we integrate our method into
a linear parser (Huang and Sagae, 2010), our
modified parser outperforms a state-of-the-art
(non-perturbated) BiLSTM parser (Kiperwasser
and Goldberg, 2016) on our tasks.

2 K-lists in NLP

Structured models in NLP Many NLP tasks,
particularly tagging and parsing, involve the
inference of a high-dimensional discrete structure
y = (y1, . . . , ym). For example, in part-of-speech
(POS) tagging of ann-word input sentence, each yi
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variable corresponds to an input word (and hence
m = n), and is assigned a value in {1, . . . , P}
whereP is the number of POS tags. In dependency
parsing, a graph G = (V,E) is defined over
an n-word input sentence such that each vertex
corresponds to a word in the input sentence
(|V | = n) and each arc corresponds to an ordered
word pair (|E| = m = n2). In the structured
model, each ordered pair of words in the input
sentence is assigned a variable yi, and the resulting
parse tree is a vector (y1, . . . , ym) ∈ {0, 1}m that
forms a spanning tree in the graph G. For every
spanning tree ye = 1 if the arc e ∈ E is in
the spanning tree and ye = 0 otherwise. In what
follows, we proceed with the dependency parsing
notation although our ideas are equally relevant to
any task defined over discrete structures.3

The common practice in structured prediction
is that structures are scored by a function that
assigns favorable structures with high scores and
unfavorable ones with low scores. The number of
structures (|T |) is often exponential inm, as in our
running dependency parsing example. Hence, in
order to avoid exponential complexity, the scoring
function has to factorize. In our running example
this is done through:

θ(y1, . . . , ym) =
∑
e∈E

θeye (1)

The standard approach is to train the model
(estimate the θ parameters of the scoring function)
so that the highest scoring configuration (namely
y∗ = argmaxy∈T θ(y)) is as similar as possible
to the human generated (‘‘gold’’) structure. For
dependency parsing, this is equivalent to finding
the maximal spanning tree of the graph G.

Prediction with K-lists Unfortunately, often-
times the highest scoring structure is not the best
one. This may happen in cases the model is not
expressive enough, for example, in first-order
dependency parsing where only m local poten-
tials (θe) are used to score exponentially many
structures. This may also happen in cases where
the values of the potential functions are inaccu-
rate, as learning inherently has both statistical and
variational errors.

A popular solution to this problem is exploiting
the power of lists of structures. In the first stage

3To be more precise, our notation is that of the graph-
based first-order dependency parsing problem, where weights
are defined over individual candidate dependency arcs.

of this framework, the list members are extracted
and in the second stage, the final solution is
extracted from this list—either by selecting one
list member, or by distilling a new solution based
on the statistics of the list members.

Ideally, such a list should be high-quality and
diverse, in order to explore candidate structures
that add information over the structure returned by
the argmax inference problem. Yet, the prominent
approach in past research constructs a list of the
K best solutions according to the scoring function
(Equation 1). On the positive side, this approach is
computationally feasible as the argmax inference
algorithms of prominent structured NLP models
can be efficiently extended to find the top scoring
K structures (§ 1). However, in practice the top-
scoring K structures are similar to the top-scoring
structure (see our analysis in § 6), and important
parts of the solution space remain unexplored.4

This calls for another approach that explores
more diverse parts of the solution space. The
approach we take here is based on sampling from
probabilistic models.

Sampling-based K-lists Sampling is a possible
solution to the diversity problem. In practice, many
sampling algorithms require that the structured
model be defined as a probabilistic model. It is
natural to impose a probabilistic interpretation of
the model described in Equation 1. To do that, a
posterior distribution over all structures (i.e., the
Gibbs distribution) is realized from the scoring
function:

pθ(y1, . . . , ym) ∝ exp
(∑
e∈E

θeye
)

(2)

The highest scoring structure under this
probabilistic model is called the maximum a-
posteriori (MAP) assignment, and is identical to
the top scoring function from Equation 1:

y∗1, . . . , y
∗
m = arg max

y1,...,ym∈T
pθ(y1, . . . , ym) (3)

= arg max
y1,...,ym∈T

∑
e∈E

θeye

Likewise, the top K-list of this model—
consisting of the K most probable structures of
the Gibbs distribution—is also identical to that of

4As noted in § 1, the other prominent approach, based on
ensemble methods, is computationally demanding for high
K value, as K different models have to be trained. In the rest
of the paper we hence do not focus on this approach.
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the unnormalized model. As noted above, these
structures are likely to be of high quality but also
quite similar to each other.

The natural alternative that probabilistic models
make possible is to sample from the Gibbs
distribution instead. Such a strategy is likely to
detect high-quality structures even if they are
not very similar to the best scoring solution,
particularly in cases where the estimated model
parameters do not fit well the test data. A final tree
distilled from such a candidate list is more likely
to be of higher quality than the list distilled from
the list of the top scoring K structures, due to the
better representation of the solution space.

Unfortunately, this approach comes with a
caveat: sampling a structure from the Gibbs
distribution is often slower than finding the MAP
assignment (Goldberg and Jerrum, 2007; Sontag
et al., 2008). In our running example, the sampling
of first order graph-based dependency parsing
depends on the mean hitting time of a random
walk in a graph (Wilson, 1996; Zhang et al.,
2014), which is slower than finding the maximum
spanning tree of the same graph.

Perturbation-based K-lists Perturbation mod-
els define probability distributions over high-
dimensional discrete structures for which sampling
is as fast as solving the MAP problem of a base,
non-perturbated, model (Papandreou and Yuille,
2011; Tarlow et al., 2012; Hazan and Jaakkola,
2012; Maddison et al., 2014). In our setting,
perturbation models let us sample a spanning
tree as fast as finding a highest scoring spanning
tree of a base parser. In this setting, we can draw
samples from the perturbated model by perturbing
the potential functions of the base model and
solving the resulting MAP problem. The MAP-
perturbation approach samples random variables
γ1, . . . , γm from a posterior distribution around
the base model weights θ1, . . . , θm and solves the
randomly perturbed argmax problem:5

yγ = argmax
y∈T

{∑
e∈E

γeye

}
(4)

The posterior distribution around the model
weights qθ(γ) is defined such that it is centered

5In practice, feature-based models are a bit more
complicated. For example, linear models typically define
θe = W · fe and then the number of random noise variables
in the MAP-perturbation approach is |W |. For simplicity of
presentation we describe here a model with one parameter
per candidate edge (θe) and m noise variables.

around the model weights θ, namely, Eγ∼qθ [γ] =
θ. For example, qθ(γ) can be a Gaussian
probability density function:

qθ(γ) =
∏
e

1√
2π
e

(γe−θe)2
2 .

For now we assume that the variance of the
posterior qθ(γ) is 1 and defer its learning to § 3.
Perturbation models measure the probability a
structure is of maximal score, when considering
all perturbations:

pγ(y1, . . . , ym) = Pγ∼qθ [y
γ = y] (5)

A particular appealing property of Gibbs models
is that in many cases the most likely structure can
be computed or approximated efficiently using
dynamic programming or efficient optimization
techniques (Koller et al., 2009; Wainwright and
Jordan, 2008). For example, finding the most
likely dependency parse can be done by finding
the maximum spanning tree of a graph (McDonald
et al., 2005). In this work we want to enjoy the best
of both worlds, exploiting the capability of MAP-
perturbation models to sample by solving the MAP
problem of the base model, while building on the
efficient MAP approximation in Gibbs models.
We do that by composing a perturbation model
on top of a Gibbs model. This construction allows
us to effectively sample high quality and diverse
K-lists from MAP-perturbation models, and distill
a high quality final structure.

3 Effective Sampling and Learning with
MAP-Perturbation Models

A major practical issue when implementing pertur-
bation models is the magnitude of the perturbation
variables γ, or their variance. It is easy to see that
the variance of these variables greatly influences
the quality of the resulting probability model. If
this variance is too high, the perturbation noise can
easily shadow the signal learned from data, that is,∑

e γeye �
∑

e θeye with non-negligible prob-
ability, so the max-perturbation value becomes
meaningless. Therefore, in this work we learn the
variance of the perturbation posterior. For exam-
ple, for a Gaussian noise γ ∼ N(0, σ2

e) added to
the Gibbs model parameters θ = [θ1, . . . , θm], the
variance is introduced as

(additive) qθ,σ(γ) =
∏
e

1√
2πσe

e
(γe−θe)2

2σ2
e . (6)
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Our model is more flexible, and allows other types
of noise. For example, we can assume a Gaussian
multiplicative noise γ ∼ N(1, σ2

e) to get

(multiplicative) qθ,σ(γ) =
∏
e

1√
2πσe

e
(γe−θe)2

2θ2eσ
2
e . (7)

We divide this section in two parts. We first
discuss our approach to variance learning in per-
turbation models. Then, we detail our recipe for
learning with perturbation-based K-lists, so that
each test example is eventually assigned a single
structure.

Learning the variance of the perturbation
distribution Given a training set S =
{(xi, yi)}Ni=1 consisting of examples (xi) and
the structures with which they are labeled (yi),
we learn the variance with respect to the oracle
loss oracleK(). This loss penalizes the perturba-
tion parameters (γ1, . . . , γm) according to the
difference between the final structure extracted
from the K-list of each example xi and the gold
tree of that example, yi. In our running example,
dependency parsing, it is straightforward to define
this loss as:

oracleK({γj}Kj=1, xi, yi) = (8)

HamDist(MOM({γj}Kj=1, xi), yi)

where γj = (γj1 , . . . , γ
j
m) are the perturbation

parameters of the i-th example, MOM is the max-
over-marginals algorithm that distills a final tree
from the K sampled trees (§ 4), and HamDist is
the hamming distance between the MOM tree and
the gold tree yi:

HamDist(ym, yi) = (9)
n∑

j=1

{
1 if hym(j) = hyi(j)

0 Otherwise

where n is the number of words in the sentence,
and hy(j) is the head of the j-th word in y.6

We next define the expected empirical loss
(EEL) with respect to the variance of the pertur-
bation distribution:

EEL(σ, S) = (10)
1

N

∑
(xi,yi)∈S

Eγ1,...,γK∼qθ,σ[oracleK({γj}Kj=1, xi, yi)]

6The hamming distance is equivalent to the Unlabeled
Attachment Score (UAS) between the trees.

And the optimal σ will minimize this loss:

σ∗ = min
σ
EEL(σ, S) (11)

Whenever qθ,σ(γ), the perturbation probability
density function (pdf), is smooth in σ, the EEL
is the integral of a smooth function (the pdf
qθ,σ(γ)) and the non-smooth oracle function. In the
following we prove that this integral is a smooth
function of σ and therefore the optimal variance
can be learned from data by using a gradient
method to solve the problem in Equation 11.

Claim 1. If the probability density function
qθ,σ(γ) is smooth and its gradient is integrable, that
is,

∫
|∂qθ,σ(γj)/∂σe|dγj < ∞ then the gradient

of the EEL function with respect toσe as computed
on (xi, yi) ∈ S takes the form:

∂EEL(σ)

∂σe
= (12)

∑
(xi,yi)∈S

∫
∂qθ,σ(γ

j)

∂σe
oracleK({γj}Kj=1, xi, yi)dγ

j

Proof. The expectation

Eγ1,...,γK∼qθ,σ [oracleK({γj}Kj=1, xi, yi)]

is the integral

∫ K∏
j=1

qθ,σ(γ
j)f({γj}Kj=1)dγ

1 · · · dγK ,

where f({γj}Kj=1) = oracleK({γj}Kj=1, xi, yi)
is a non-differentiable function. Notably, the
function f({γj}Kj=1) is independent of σ and
therefore its non-differentiability does not affect
the differentiability of EEL(σ). Moreover,
f({γj}Kj=1) ≤ N for some constant N , therefore
the function qθ,σ(γ

j)f({γj}Kj=1) is bounded
by the integrable function Nqθ,σ(γ

j) and its
derivative with respect to σ is bounded by the
function N |∂qθ,σ(γj)/∂σe|. Following Theorem
2.27 by Folland (1999), the function EEL(σ)
is differentiable and its gradient is attained by
differentiating under the integral.

This claim shows how to learn the optimal
variance of the random perturbation variables with
a gradient method. Note that oracleK and hence
also EEL(σ, S) are defined with respect to a
given K-list size (K).K is a hyper-parameter that
can be estimated using, for example, a grid-search
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for optimal value using development data. Our
experiments are with: K = 10, 100, 200 (§ 5).

Once σ and K are determined, we can generate
meaningful samples, that is, the perturbation value
γeye will not shadow the data signal θeye. We are
now ready to provide a learning process with
perturbation-based K-lists.

Learning with perturbation-based K-lists Our
goal is to train a model so that it can event-
ually output a single high-quality structure, y∗,
hopefully of a higher quality than the output
(MAP) of the Gibbs (base) model. Because joint
learning of θ (the Gibbs model parameters) and
σ (the variance of the perturbation distribution) is
intractable, we first learn θ and then σ.

We assume two training sets: S = {(xi, yi)}Ni=1

and S′ = {(x′i, y′i)}N
′

i=1. Our training recipe is as
follows:

1. Learn the parameters θ of the Gibbs (base)
model with the training set S.

2. Learn the parameter σ and the hyper-
parameter K with the training set S ′ by
minimizing EEL(σ, S ′) while keeping the θ
parameters learned at step (1) fixed.

The test-time recipe for the i-th test example is:

1. SampleK values of the perturbation variables:
{γj ∼ qθ,σ|j ∈ {1, . . . , K}}.

2. for j ∈ {1, . . . ,K} find yγ
j

according to
Equation 4.

3. Extract the final structure y∗ from {yγj}Kj=1.

The only missing piece is the method for
extracting y∗ from {yγj}Kj=1. Note that this method
is employed both at step (2) of the training recipe
(as it is part of the definition of EEL(σ, S ′)) and
at step (3) of the test-time recipe. In the next
section we describe an approximation algorithm
for this problem.

4 Max Over Marginals (MOM) Inference

Our oracle loss considers the hamming distance
of max-over-marginals (MOM). For this aim, let
us consider the single variable (candidate edge)
marginal probabilities of the Gibbs-perturbation
model:

μe = Pγ [y
γ
e = 1] (13)

We then define the approximated argmax infer-
ence in the Gibbs-perturbation model as predicting
the best spanning tree with respect to the log of
these marginals:

y∗ = argmax
y∈T

{∑
e∈E

ye log μe

}
(14)

Notice that for first order parsing, our running
example in this paper, this approach is essentially
identical to the inference algorithm of Kuncoro
et al. (2016), which was aimed at distilling
a final solution from an ensemble of parsers.
However, this MOM approach can naturally be
extended beyond single variable potentials. For
example, we can consider variable pair potentials
or potentials over variable triplets and perform
exact (Koo and Collins, 2010) or approximated
(Martins et al., 2013; Tchernowitz et al., 2016)
inference for second and third order problems.
Here, for simplicity, we focus on single variable
potentials and solve the resulting MOM problem
directly with an exact MST algorithm.

In what follows we first show that the MOM
approach—recovering the best spanning tree
according to the log-marginals of one Gibbs-
perturbation model—can be interpreted as a
MAP approach over marginal probabilities of a
continuous-discrete Gibbs model. We then discuss
how we estimate the marginal probabilities μe
(Equation 13).

MOM as MAP of a Continuous-discrete Gibbs
Model We show that MOM in one Gibbs-
perturbation model can be interpreted as MAP
over marginals in another continuous-discrete
Gibbs model.

pM(y1, . . . , ym) ∝ exp
(∑
e∈E

ye logμe
)

∝
∏
e

μyee

∝
∏
e

(Pγ [y
γ
e = 1])ye

∝
∏
e

(
Eγ1[y

γ
e = 1]

)ye

(∗) ∝ Eγ(1),...,γ(m)

∏
e

(1[yγ
(e)

e =1])ye

The starred equivalence holds when the product
function of expectations is the expectation of the
same product function. This equivalence holds
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when the random variables 1[yγe = 1] are inde-
pendent. To enforce the independence assumption,
the starred equivalence requires an independent
perturbation vector γ(e) = (γ

(e)
1 , . . . , γ

(e)
m ) for

each edge.
Using this independence assumption we are able

to represent pM (y1, . . . , ym) as the expectation of
a product of functions, qθ,σ(γ(e))1[y

γ(e)

e = 1]. This
factorization naturally lends a Gibbs model over

the factorsψe(γ
(e), ye)

def
= log(qθ,σ(γ

(e))1[yγ
(e)

e =
1]). Hence, the MAP assignment of Equation 14
is the MAP over the structure variables y of the
marginals over the continuous variables γ of the
discrete-continuous Gibbs model:

p(y, γ) ∝ exp
(∑

e

ψe(γ
(e), ye)

)
(15)

Marginals Estimation The last detail required
for the implementation of the MOM inference
approach in Gibbs-perturbation models is recov-
ering the marginals μe. Unfortunately, we are not
aware of any direct way to do that. Instead, we
propose to approximate the marginals by sampling
K times from the model and computing the
marginals using a maximum-likelihood approach
on this sample. Particularly, in our first-order
dependency parsing example we set μe to be the
number of trees in the K-list that contain the edge e.

As noted above, the idea of computing an MST
over single-edge marginals has been proposed in
Kuncoro et al. (2016) where the marginals were
computed in a manner similar to ours, using the
K parse trees of their K ensemble members. Our
novelty is with respect to the way the dependency
trees in the K-list are extracted: while they built
on the non-convexity of neural networks and
ran an LSTM-based parser (Dyer et al., 2015)
from different random initializations, we develop
a perturbation-based framework. Our method for
K-list generation is often more efficient than that
of Kuncoro et al. (2016). Whereas we train a
parser and a noise function and can then generate
the K-list by solving K argmax problems, their
method requires the training of K LSTM parsers.

5 Tasks, Models, and Experiments

5.1 Tasks and Data

Data. We consider two dependency parsing
tasks: cross-lingual and monolingual but lightly
supervised. For both tasks we consider Version

2.0 of the UD Treebanks (Nivre et al., 2016;
McDonald et al., 2013).7 The data set consists of
77 corpora from 45 languages. We use the gold
POS tags in our experiments.

We excluded 3 languages (Hindi, Urdu, and
Japanese) with 5 corpora from the data set, as all
models we experiment with (perturbated or not)
demonstrated very poor results on these languages.
An analysis revealed that the head-modifier
distributions in these five corpora are very differ-
ent from the corresponding distributions in the
other corpora, which might explain the poor
performance of the parsers.

Task1: Cross-lingual Dependency Parsing. In
this setup, for each corpus we train on all the
training sets of the corpora in the data set as
long as they are of another language (the source
languages training sets), and test on the test set
of the target corpus. For this purpose, for each
of the 72 corpora we constructed a training set
of 1000 sentences and a development set of
100 sentences, taken from the training and the
development sets of the corpora, respectively.8

Then, for each target corpus we train the parser
parameters (θ) on a training set that consists of
the training sets of all the corpora except from
those of the target language (the source languages
corpora), where for the non-perturbated models
(see below) this training set is augmented with the
development sets of the source language corpora.
For the perturbated models, the development sets
of the source languages are used for learning the
noise parameter (σ). For test we keep the original
test sets of the UD corpora.

To make the data suitable for cross-language
transfer we discard words from the corpora. The
parsers are then fed with the universal POS tags,
that are identical across languages.

Task2: Lightly Supervised Monolingual Depen-
dency Parsing. For this setup we chose 12
low-resource languages (13 corpora) that have
between 300 and 5k training sentences: Danish,
Estonian, Greek, Hungarian, Indonesian, Korean,
Latvian, Old Church Slavonic, Persian, Turkish
(2 corpora), Urdu, and Vietnamese. For each lan-
guage we randomly sample 300 sentences for its
training set and test on its UD Treebank test set.

7https://universaldependencies.org/.
8Eight corpora had less than 1000 training sentences, and

8 corpora had less than 100 development sentences. For these
we took the entire training or development set, respectively.
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In this setup, to keep with the low resource lan-
guage spirit, we do not learn the noise parameter
(σ) but rather use fixed noise parameters for the
perturbated models (see below). As opposed to the
cross-lingual setup, all the parsers are lexicalized,
as this is a mono-lingual setup.

Previous Work Recent years have seen sub-
stantial efforts devoted to our setups. For cross-
lingual parsing, the proposed approaches include
the use of typological features (Naseem et al.,
2012; Täckström et al., 2013; Zhang and Barzilay,
2015; Ponti et al., 2018; Scholivet et al., 2019),
annotation projection and other means of using
parallel text from the source and target languages
(Hwa et al., 2005; Ganchev et al., 2009; McDonald
et al., 2011; Tiedemann, 2014; Ma and Xia, 2014;
Rasooli and Collins, 2015; Lacroix et al., 2016;
Agić et al., 2016; Vilares et al., 2016; Schlichtkrull
and Søgaard, 2017), similarity modeling for
parser selection (Rosa and Zabokrtsky, 2015),
late decoding (Søgaard and Schlichtkrull, 2017)
and synthetic languages (Wang and Eisner, 2016,
2018b,a). Likewise, lightly supervised parsing has
been addressed with a variety of approaches,
including co-training (Steedman et al., 2003),
self-training (Reichart and Rappoport, 2007) and
inter-sentence consistency constraints (Rush et al.,
2012).

Our goal is to provide a technique that can
enhance any machine learning model for struc-
tured prediction in NLP in cases where high
quality parameter estimation is challenging and
the argmax solution is likely not to be the highest
quality solution. We choose the tasks of cross-
lingual and lightly supervised dependency parsing
since they form prominent NLP examples for
our problem. We hence focus our experiments
on an in-depth exploration of the impact of our
framework on a dependency parser, rather than
on a thorough comparison to previously proposed
approaches.

5.2 Models and Experiments
Parsing model. We implemented our method
within the linear time incremental parser of Huang
and Sagae (2010).9 Although our method is appli-
cable to any parameterized data-driven machine
learning model, including deep neural networks,
we chose to focus here on a linear parser in

9https://github.com/lianghuang3/
lineardpparser.

which noise injection is straight-forward: all the
weights in the weight vector of the model are
perturbated. We chose to avoid implementation
within LSTM-based parsers (Dyer et al., 2015;
Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017), as in such models the pertur-
bation parameters may be multiplied by each other
(due to the deep, recurrent, nature of the network)
causing second-order effects. We leave decisions
relevant for neural parsing, (e.g., which subset of
the LSTM parameter set should be perturbated
in order to achieve the most effective model) for
future research.

Models and Baselines We compare seven models.
The main two models are our perturbation-based
parsing models, where the variance is learned
from data. We consider additive learned noise
(ALN) and multiplicative learned noise (MLN)
(Equations 6 and 7). In order to quantify the im-
portance of data-driven noise learning we compare
to two identical models where the variance is not
learned from data but is rather fixed to be 1.10

These baselines are denoted with AFN and MFN,
for additive fixed noise and multiplicative fixed
noise, respectively. As noted above, for the mono-
lingual setup we do not implement the ALN and
MLN models so that to keep the small training
data spirit.

The fifth model is the baseline "1-best" parser–
that is, the linear incremental parser with its orig-
inal inference algorithm that outputs the solution
with the best score under the model’s scor-
ing function. The sixth model, denoted as the
‘‘K-best parser’’ is a variant of the incremental
parser that outputs the K top scoring solutions
under the parser’s scoring function. The K-best
inference algorithm is described in Huang and
Sagae (2010) and is implemented in the parser
code that we use.

Finally, although we do not explore the inte-
gration of perturbations into LSTM-based parsers
in this paper, we do want to verify that our meth-
ods can boost a linear parser to improve over such
neural parsers. For this aim, we also compare our
results to the 1-best solution of the transition-based

10In our models that do learn the variance, variance values
were in the (0,2) range. We hence consider the value of 1
as a decent proxy to the condition where the variance is not
learned from data.

650

https://github.com/lianghuang3/lineardpparser
https://github.com/lianghuang3/lineardpparser


Method Av. UAS (M) Md. UAS (M) Av. UAS (O) Md. UAS (O) # Cor. (M) # Cor. (O)
1-best 66.4 70.2 66.4 70.2 0 0
K-best 58.5 62.8 74.8 77.1 0 0
AFN 66.6 70.6 73.4 76.9 0 0
MFN 62.6 65.2 77.1 78.7 5 14
ALN 66.9 70.9 76.9 80.4 4 0
MLN 67.4 71.4 80.3 83.4 39 58
KG 66.6 69.9 66.6 69.9 26 0

Table 1: Results summary, cross-lingual parsing, K = 100. We report average (Av.) and median
(Md.) UAS (across languages) of each model with MOM inference (M) and with an oracle that
chooses the best tree out of the K-list produced by the model (O). The # Cor. columns report the
number of corpora for which the model is the best scoring one (in case two models perform best
on the same language, it counts for both). For 1-best and KG (1-best), both MOM (M) and Oracle
(O) refer to the single tree produced by the model.

BiLSTM parser of Kiperwasser and Goldberg
(2016). We refer to this parser as KG (1-best).11

We further explored alternatives to the MOM
inference algorithm for distilling the final tree
from the various K-lists. Among these are training
a feature-rich reranker to extract the best tree
from the list, and extracting the tree that is most
or least similar to the other trees. As all these
alternatives were strongly outperformed by the
MOM algorithm, we do not discuss them further.

Hyper-Parameters The only hyper-parameter
of the perturbation method is K–the size of the
K-list. As noted in § 3, K can be estimated using,
for example, a grid-search for optimal value on
development data. Here we keep with K = 100
as the majorK value throughout our experiments.
However, to obtain a better understanding of the
behavior of our models as a function of K we
also consider the setups where K = 10 and
K = 200.12 All hyper-parameters for both the
incremental parser and the baseline BiLSTM
parser are set to the default values that come with
the authors’ code.

6 Results

Cross-lingual Results: MOM Inference. Our
results are summarized in Table 1. The final
trees extracted by the MOM inference algorithm
from the K-lists of the perturbated models with
learned noise (the additive model ALN and the

11Code was downloaded from the first author’s homepage.
12For K = 200, we set the beam width parameter of the

parser’s inference algorithm to 5000. Yet, even with this value
the parser did not produce 200 trees for all sentences. The
same pattern was observed for smaller K values, although
less frequently.

multiplicative model MLN) are clearly the best
ones, with MLN being the best model both in
terms of averaged and median UAS (67.4 and
71.4, respectively) and in terms of the number of
corpora for which it performs best (39 out of 72).

Perturbation models with fixed noise (AFN and
MFN) compare favorably to K-best inference.
However, in comparison to 1-best inference, AFN
performs very similarly and MFN is outperformed
in terms of averaged and median UAS. This
emphasizes the importance of noise (variance)
learning from data. Interestingly, the final tree
extracted by the MOM algorithm from the parser’s
K-best list is worse than the parser’s 1-best tree
(averaged UAS of 58.5 vs. 66.4, median UAS of
62.8 vs. 70.2). Both the K-best and 1-best variants
of the incremental parser do not provide the best
UAS on any of the 72 corpora.

The 1-best solution of the KG BiLSTM parser
is very similar to the 1-best solution of the in-
cremental parser in terms of averaged and median
UAS. This indicates that the incremental parser
to which we integrate our perturbation algorithm
does not lag behind a more modern neural parser
when the training data is not a good representative
of the test data—the case of interest in this work.
Additionally, the KG parser is less stable—it is
the best performing parser on 26 of 72 corpora,
but on 34 corpora it is outperformed by the 1-best
solution of the incremental parser, of which on 9
corpora the gap is larger than 3%. Detailed per
language results are presented in Table 3.

Cross-lingual Results: List Quality. Because
the focus of this paper is on the quality of the
K-list, the table also reports the quality of each
model assuming an oracle that selects the best
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Figure 1: Cross-lingual parsing, K = 100. Top:
Averaged UAS of the trees in the M-th percentile
of the K-list of each model (values were computed for
M = 1, 25, 50, 75, 100). Bottom: Percentage of trees
in each 10% UAS bin, for the K-list of each model. In
both cases the values are calculated across all the trees
in the lists produced for all test sets.

tree from the K-list. Here the table clearly shows
that perturbation with learned variance (MLN and
ALN) provides substantially better K-lists. For
example, MLN achieves an averaged UAS of
80.3, a median UAS of 83.4, and it is the best
performing model on 58 of 72 corpora.

The gaps from the 1-best and K-best inference
algorithms of the incremental parser as well as
from the KG BiLSTM parser are substantial in this
evaluation. For example, the average and median
UAS of the KG BiLSTM parser are only 66.6
and 69.9, reflecting a gap of 13.7 and 13.5 UAS
points from MLN. Moreover, the non-perturbated
methods do not provide the best results on any of
the 72 corpora in this oracle selection evaluation:
MLN is the best performing inference algorithm
in 58 cases and MFN in 14 cases.

As in MOM inference, noise learning (MLN
and ALN) continues to outperform perturbation
with fixed noise (MFN and AFN) both in terms
of averaged and median USA. For example, the
averaged UAS of MLN is 80.3 compared to 77.1
for MFN, and the number of corpora on which

Figure 2: Cross-lingual parsing, K = 100. Graphs
format is identical to Figure 1, but the comparison is
between the full K-list and the unique trees in the K-list
for each model.

MLN performs best is 58, compared to 14 of
MFN.

The oracle results are very important as they
indicate that improving the MOM inference
method has a great potential to make cross-lingual
parsing substantially better. None of the other
models we consider extracts K-lists with candidate
trees of the quality that our perturbated models do.

We next consider the quality of the full K-lists of
the different methods, rather than of the oracle best
solutions. Figure 1 (top) compares the averaged
UAS of the trees in the 1, 25, 50, 75, and 100
percentiles of the K-lists produced by the various
inference methods. The K-lists of the perturbation
based methods are clearly better than those of the
K-best list, with the ALN, AFN, and MLN
methods performing particularly well. Likewise,
Figure 1 (bottom) demonstrates that the percentage
of trees that fall into higher 10% UAS bins is
substantially higher for MLN and ALN compared
to K-best inference (the figure considers all the
K-lists from the 72 test sets). That is, the pertur-
bated lists are of higher quality than the K-best
lists both when the oracle solution is considered
and when the full lists are evaluated.
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Method A-U (M) M-U (M) A-U (O) M-U (O) #-C (M) #-C (O) A-U-T M-U-T

10-best 63.1 67.4 72.7 75.5 3 5 9.8 10
MLN-10 66.6 70.5 75.1 78.1 69 67 6.86 8
200-best 57.2 60.7 75.1 77.3 0 1 126.1 130
MLN-200 67.6 71.6 83.2 85.8 72 71 92.7 96

Table 2: Cross-lingual parsing results as a function of K, the size of the K list for the K-best and
MLN parsers. A-U and M-U refer to average and median UAS across languages, respectively.
#-C refers to the number of corpora for which the model is the best scoring one. (M) refers to
MOM inference, while (O) refers to oracle selection of the best tree from the list. A-U-T and
M-U-T refer to the average and median number of unique trees in the list, respectively. As noted
above, the K-best model cannot generate K trees for all sentences.

Figure 2 compares the full lists of MLN and
ALN to the unique trees of the lists, in terms of
averaged UAS (the bottom graph is limited to
MLN, but the pattern for ALN is similar). The
consistent pattern we observe is that the average
quality of the full lists is higher than that of the
unique trees of the lists. This means that the full
lists have multiple copies of their higher quality
trees, a property we consider desirable as our goal
is to sample from the score space of the model
and hence higher quality trees should be over-
represented.

Cross-lingual Results: Results as a Function
of K. Finally, Table 2 compares the K-lists of
the MLN and the K-best inference algorithms for
list size values (K) of 10 and 200. MLN is clearly
much better both when the final tree is selected
with MOM inference and when it is selected by
the oracle. The two rightmost columns of the table
indicate that the number of unique trees is much
higher in the K-best list, as discussed above.

Lightly Supervised Mono-lingual Results
Table 4 (which is equivalent to Table 1 for cross-
lingual parsing) and Figure 3 (which is equivalent
to Figure 1) summarizes the results for the mono-
lingual setup. We present these results more briefly
due to space limitations. We recall that in this setup
we do not learn the noise, due to the shortage
of training data, but rather used the fixed noise
variance parameter of 1 (§5.2).

The table shows that MFN is the best per-
forming model both when MOM inference is used
and when the best tree is selected by an oracle.
As in the cross-lingual setup, the gap in the oracle
selection case is much larger (e.g., an averaged
UAS gap of 14.8 points from the 1-best parser, the
second best model) than in the MOM inference

setup (an averaged UAS gap of 1.5 points from
1-best).

However, in certain aspects the results in this
setup indicate a stronger impact of perturbations.
First, MFN performs best on 12 of 13 corpora
with MOM inference and in 13 of 13 corpora
with oracle selection. Moreover, its gap from the
BiLSTM parser is larger than in the cross-lingual
setup, probably due to the strong dependence of
neural models on large training corpora.

Finally, Figure 3 presents a similar effect to
Figure 1. The K-lists of the perturbated models are
clearly better than those of the K-best inference,
which is reflected both by the percentile analysis
(top graph) and the UAS histogram that is taken
across all 13 experiments (bottom graph).

7 Additional Setups and Limitations

Our experimental setup has made several limiting
assumptions. Here we address three of these as-
sumptions and explore the extent to which they
reflect true limitations of our framework.

Additional Task: Cross-lingual POS Tagging
Our main results were achieved with a single
incremental linear parser. We next explore the im-
pact of our framework on another task: cross-
lingual POS tagging. Training and development
are performed with the training and development
portions of the English (en) UD corpus (16371
and 3414 sentences, respectively) and the trained
model is applied to six languages (11 corpora)
from four different families: Italian Portuguese
(both are Italic, Romance), modern Hebrew and
Arabic (both are Semitic), Chinese and Japanese.

Our POS tagger is a BiLSTM with two fully
connected (FC) classification layers that are fed
with the hidden vector produced for each input
word. MLN noise was injected only to the final
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Corpus 1-best K-best ALN MLN AFN MFN KG

Korean 40.4 35.9 40.3 38.1 40.4 41.8 37.9
English 69.2 56.3 69.3 70.1 69.1 67.5 69.1
English pud 70.1 64.1 70.8 70.9 70.7 66.5 69.6
English partut 72 66.6 72.6 72.8 72.4 69.9 72.8
English lines 71 61.4 71.5 72.2 71.3 68.4 70.9
Gothic 63.8 50.1 64 64.3 63.8 57.3 67.3
Czech pud 74.7 67.4 75.5 75.3 74.9 70.6 74.1
Czech cac 75.3 66 75.7 76.2 75.6 70.4 75.7
Czech cltt 69.6 66.3 70.9 71.8 70.3 61.5 64.4
Czech 72 64.2 72.7 73.2 72.3 66.7 72.5
Portuguese 79.1 73 79.7 79.7 79.5 75.2 81.2
Portuguese br 77.2 73.6 77.6 78 77.3 74 77.4
Portuguese pud 72.2 68.4 72.5 72.8 72.4 64.9 74
Chinese 34.2 33.4 34.7 35.2 34.5 35 33.9
Ancient Greek proiel 59.8 50.6 60.1 61 59.9 55.7 61.5
Ancient Greek 51.3 43.7 51.7 52.6 51.6 49.3 49.1
Uyghur 32.2 27.9 32.6 33.1 32.4 44.2 42.3
Indonesian 70.2 62.6 70.7 71.5 70.6 64.4 65.4
Romanian 71.9 66 72.8 72.6 72.6 65.4 71.2
Slovak 78 63 78.6 78.3 78 72 76.6
Galician 69.3 67.7 69.9 70 69.6 65.6 72.1
Galician treegal 77.5 72.2 77.8 78.5 77.7 72.4 80.7
Bulgarian 81.1 67.7 81.9 81.9 81.7 74.7 80.6
Hebrew 63.2 58.7 63.8 63.8 63.4 55.5 64.1
Croatian 72.7 66.8 73.8 73.6 73.3 64.8 73
Kazakh 45.6 33.4 46 47.3 45.7 47.6 53.3
Catalan 77.4 73.3 77.8 78.2 77.6 74.2 79.2
Latin ittb 63.3 53.8 64 64.3 63.5 60.4 60.8
Latin 49.5 38.4 49.6 50.4 49.2 52.2 47.8
Latin proiel 55.7 44.9 56.6 56.8 56 54.6 58.1
French 77.6 72.4 77.6 78.2 77 73.1 79.7
French pud 69.9 67.9 70.6 70.9 70.4 65 72.9
French sequoia 74.4 69.3 75.1 74.9 74.8 71.8 77.7
French partut 79.7 75.4 80.2 80.4 79.8 73.8 83
Latvian 54.8 41.7 55 55.9 54.8 53.4 54.1
Greek 75.5 69.3 76.5 76.9 76.3 70.2 74.4
Danish 71 62 71.3 71.8 71.2 66.7 72
Persian 55.7 53.2 57.9 59.1 56.6 55.1 44.2
Dutch lassysmall 68.5 56.1 68.4 69.1 68 64.6 65.2
Dutch 67.5 59.3 67.4 68 67.1 63.5 63.3
Ukrainian 76.8 64.6 77.6 77.8 77.4 71.7 75.4
Basque 47.4 34.9 47.8 48.4 47.3 42.8 47.3
Estonian 68 52.3 68.7 70.3 68.5 66.4 65.6
Spanish ancora 76.8 72.6 76.9 77.1 76.6 64.2 78.7
Spanish pud 72.8 69 73.2 73.7 73.2 66.8 74.4
Spanish 74.9 71.2 75.4 75.5 75.2 70.2 76
Arabic pud 66.8 58.8 67.2 67.1 66.5 58.8 68.5
Arabic 52.2 51 53.3 55.1 52.6 48.6 56.9
Polish 81.8 57.7 82.5 82.6 82.2 74.8 79.9
Hungarian 60.8 55.7 61.2 62.2 61 57.7 58.1
Italian pud 79.5 74.8 79.8 79.8 79.6 70.6 81.3
Italian 80.2 73.4 80.3 80.7 80.1 71.5 82
Swedish 76.5 65.1 76.6 76.8 76.5 71.7 76
Swedish pud 76.4 67.6 76.4 76.8 76.3 72.7 76.1
Swedish lines 76.5 63.6 76.5 77 76.5 71.5 77
Vietnamese 48.9 41.2 49.8 50.8 49.2 46 41.9
Norwegian nynorsk 74 64.3 74.1 74.1 73.8 68.2 72.9
Norwegian bokmaal 77.5 64.6 77.7 77.9 77.4 71.9 76.1
Old Church Slavonic 63.2 47.1 63 63.8 62.7 58.1 69.6
Russian syntagrus 61.4 58.9 61.9 62.4 61.5 59.2 60.6
Russian pud 72.2 65.8 72.6 73.2 72.3 66.5 71.2
Russian 70.7 63.1 70.6 71.1 70.5 63.9 70
Slovenian 80.8 71.7 81.4 82 81.1 69 80.5
Slovenian sst 64.7 54.2 65 65.4 64.8 56.3 58.5
Finnish pud 60 50.4 61.1 61.7 60.7 56.4 60.3
Finnish ftb 51.2 43.8 51.3 51.6 51.3 51.4 52.4
Finnish 60.9 48.3 61.1 61.4 60.8 54.3 61.3
Turkish pud 35.2 28.7 36.3 37.7 36 46.2 43.7
Turkish 34.4 28.2 34.7 35.3 34.7 44.2 39.1
Irish 61.2 54.3 61.7 63.4 61 57.9 62.3
German 70.2 60.4 70.9 71.4 70.5 69.5 65.8
German pud 75.8 68.1 76.5 76.7 76.3 71.3 69.9

Avg. 66.4 58.5 66.9 67.4 66.6 62.6 66.6

Table 3: Corpus UAS, cross-lingual parsing,
K = 100.

FC layer to avoid second-order effects where per-
turbation parameters are multiplied by each other.
While we consider here a deep learning model, the
noise injection scheme is very simple.13

To close the lexical gap between languages we
train the English model with the English fastText
word embeddings (Bojanowski et al., 2017; Grave

13BiLSTM layer sizes are: word embedding: 300, output
representations: 256, first FC: 512, second FC: 216.

et al.,2018. Then, at test time the target language
fastText embeddings are mapped to a bilingual
space with the English embeddings using the
Babylon alignment matrices (Smith et al., 2017).

We consider a K = 100 list size. For our
MLN method we perform greed search over two
ranges of the noise parameter: [0.001, 0.01] and
[0.1, 0.5]. Noticing that BiLSTMs predict the
POS of each word independently, beam search
cannot be applied for K-best list generation in this
model. Hence, we generate the K-best list with a
greedy search strategy that gets the 1-best solution
of the model as input and iteratively makes a
single word-level POS change with the minimal
(negative) impact on the model score. When we
do that, we keep track of previously generated
solutions so that to generate K unique solutions.
We distilled the final solution from the K-lists
(ours and the K-best) with a per-word majority
vote.

Our results indicate a clear advantage for the
perturbated model. Particularly, for all 11 target
corpora it is the final solution of this model that
scores best. On average across the 11 corpora, the
accuracy of our model is 53.05%, compared with
51.44% of the 1-best solution and 41.56% of the
solution distilled from the K-best list. This low
number of the latter solution is a result of its low
quality lists which contain many poor solutions.

Cross-lingual Parsing with Predicted POS Tags
Our main results were achieved with gold POS
tags. However, in low-resource setups gold POS
tags may be unavailable. To explore the impact of
gold POS tags availability on our results we run a
cross-lingual parsing setup identical to the one of
§ 5 with MLN andK = 100, except that the target
language sentences are automatically POS tagged
before they are fed to the parser. We consider
the 11 target corpora of the 6 languages in our
cross-lingual POS tagging experiments, and the
English-trained non-perturbated BiLSTM tagger.

The result pattern we observe is very similar
to the cross-lingual parsing with gold POS tags,
although the absolute numbers are lower. Partic-
ularly, the averaged UAS of the final solution of
our model is 29.8, compared to 26.7 for K-best
and 28.1 for 1-best. However, the quality of the
perturbated list is much higher than that of the
K-best list, as is indicated, for example, in the gap
between their best oracle solutions (46 vs. 37.6).
These results emphasize the importance of high
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Method Av. UAS (M) Md. UAS (M) Av. UAS (O) Md. UAS (O) # Cor. (M) # Cor. (O)
1-best 69.2 71.1 69.2 71.1 0 0
K-best 58.4 55.8 77.8 78 0 0
AFN 69.6 71.7 77.7 79.8 0 0
MFN 70.7 72.7 84 83.4 12 13
KG 65.8 66.9 65.8 66.9 1 0

Table 4: Results summary, mono-lingual parsing, K = 100. Table format is identical to Table 1.

Figure 3: Mono-lingual parsing, K = 100. Graphs
format is identical to Figure 1.

quality POS tags for cross-lingual parsing. Pre-
sumably, manual POS tagging is a substantially
easier task compared to dependency parsing so
this requirement is hopefully not very restricting.

Well Resourced Monolingual Parsing Finally,
our framework was developed with the motivation
of addressing cases where the argmax solution of
the model is likely not the highest quality one. We
hence focused our experiments in cross-lingual
and lightly supervised parsing setups. However,
it is still interesting to evaluate our framework in
setups where abundant labeled training data from
the target language is available.

For this aim we implemented an in-language
well-resourced parsing setup, identical to theK =
100 lightly supervised parsing setup of § 5, except
that the incremental linear parser and the MLN
parameter are trained, developed and tested on
the corresponding portions of a single UD corpus.

We run this experiment with 31 corpora of 14
UD languages: Arabic, German, English, Spanish,
French, Hebrew, Japanese, Korean, Dutch,
Portuguese, Slovenian, Swedish, Vietnamese, and
Chinese. We chose these languages in order to
experiment with a wide range of corpus sizes. As
in § 5, for the perturbation model the parser is
trained on the training set and the noise parameter
is learned on the development set, while the base
parser is trained on a concatenation of both sets.

In this more challenging setup, the distilled
solution of the perturbated parser does not out-
perform the 1-best solution: On average across
corpora its UAS is 82.5 whereas the 1-best scores
82.3. Interestingly, the distilled solution of the
K-best list achieves an average UAS of only 72.9.
However, in terms of list quality the perturbation
model still excels. For example, the averaged
UAS of its oracle best solution is 91.7 compared
to 87.3 of the K-best list. Likewise, its 25%, 50%,
and 75% percentile solutions score 70.1, 75.2, and
79.6 on average, respectively, while the respective
numbers for the K-best list are only 58.2, 63.6,
and 69.3. From these results we conclude that our
model can substantially contribute to the quality
and diversity of the extracted list of solutions even
in the well-resourced in-language setup, but that
its potential impact on a single final solution is
more limited.

8 Conclusions

We presented a perturbation-based framework for
structured prediction in NLP. Our algorithmic con-
tribution includes an algorithm for data-driven es-
timation of the perturbation variance and a MOM
algorithm for distilling a final solution from the
K-list. An appealing theoretical property of our
method is that it can augment any machine learn-
ing model, probabilistic or not, and draw samples
from a probabilistic model defined on top of that
base model. In setups like cross-lingual and lightly
supervised parsing where the training and the
test data are drawn from different distributions
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and the argmax solution of the base model is of
low quality, our method is valuable in extracting
a high quality solution list and it also modestly
improves the quality of the final solution. Yet,
we note that our current implementation mostly
applies to linear models, although we demonstrate
initial cross-lingual results with a BiLSTM POS
tagger.

In future work we will aim to develop bet-
ter algorithms for final solution distillation. Our
stronger list quality results indicate that an im-
proved distillation algorithm can increase the im-
pact of our framework. Note, however, that MOM
is used as part of the noise learning procedure (§3)
which yields high quality lists. We would also like
to develop means of effectively applying our ideas
to deep learning models. While theoretically our
framework equally applies to such models, their
layered organization requires a careful selection
of the perturbated parameters and noise values.
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D. Manning, Ryan McDonald, Slav Petrov,
Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty,
and Daniel Zeman. 2016. Universal depen-
dencies v1: A multilingual treebank collection.
In Proceedings of LREC, pages 1659–1666.

George Papandreou and Alan Yuille. 2011.
Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy
models. In Proceedings of ICCV , pages193–200.

Edoardo MariaPonti, RoiReichart, Anna Korhonen,
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Oscar Täckström, Ryan McDonald, and Joakim
Nivre. 2013. Target language adaptation of dis-
criminative transfer parsers. In Proceedings of
HLT-NAACL, pages 1061–1071.

Daniel Tarlow, Kevin Swersky, Richard S.
Zemel, Ryan Prescott Adams, and Brendan J.
Frey. 2012. Randomized optimum models for
structured prediction. InProceedings of AISTATS,
pages 1221–1229.

Ilan Tchernowitz, Liron Yedidsion, and Roi
Reichart. 2016. Effective greedy inference for
graph-based non-projective dependency pars-
ing. In Proceedings of EMNLP, pages 711–720.

Jörg Tiedemann. 2014. Rediscovering annotation
projection for cross-lingual parser induction. In
Proceedings of COLING, pages 1854–1864.

Zhaopeng Tu, Wenbin Jiang, Qun Liu, and
Shouxun Lin. 2012, Dependency forest for sen-
timent analysis, In Natural Language Processing
and Chinese Computing, pages 69–77. Springer.

Zhaopeng Tu, Yang Liu, Young-Sook Hwang,
Qun Liu, and Shouxun Lin. 2010. Dependency
forest for statistical machine translation. In
Proceedings of COLING, pages 1092–1100.

David Vilares, Carlos Gómez-Rodrı́guez, and
Miguel A. Alonso. 2016. One model, two lan-
guages: Training bilingual parsers with har-
monized treebanks. In Proceedings of ACL,
pages 425–431.

Martin J. Wainwright and Michael I. Jordan. 2008.
Graphical models, exponential families, and
variational inference. Foundations and Trends
in Machine Learning, 1(1–2):1–305.

Dingquan Wang and Jason Eisner. 2016. The
Galactic Dependencies treebanks: Getting more
data by synthesizing new languages. Trans-
actions of the Association for Computational
Linguistics, 4:491–505.

Dingquan Wang and Jason Eisner. 2018a. Surface
statistics of an unknown language indicate how
to parse it. Transactions of the Association for
Computational Linguistics, 6:667–685.

Dingquan Wang and Jason Eisner. 2018b. Syn-
thetic data made to order: The case of parsing.
In Proceedings of EMNLP, pages 1325–1337.

David Bruce Wilson. 1996. Generating random
spanning trees more quickly than the cover
time. In Proceedings of STOC, pages 296–303.

Yuan Zhang and Regina Barzilay. 2015.
Hierarchical low-rank tensors for multilingual
transfer parsing. In Proceedings of EMNLP,
pages 1857–1867.

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi
Jaakkola, and Amir Globerson. 2014. Steps
to excellence: Simple inference with refined
scoring of dependency trees. In Proceedings of
ACL, pages 197–207.

659


	Introduction
	K-lists in NLP
	Effective Sampling and Learning with MAP-Perturbation Models
	Max Over Marginals (MOM) Inference
	Tasks, Models, and Experiments
	Tasks and Data
	Models and Experiments

	Results
	Additional Setups and Limitations
	Conclusions

