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Abstract

Existing approaches to neural machine trans-
lation (NMT) generate the target language
sequence token-by-token from left to right.
However, this kind of unidirectional decod-
ing framework cannot make full use of the
target-side future contexts which can be pro-
duced in a right-to-left decoding direction,
and thus suffers from the issue of unbal-
anced outputs. In this paper, we introduce
a synchronous bidirectional–neural machine
translation (SB-NMT) that predicts its outputs
using left-to-right and right-to-left decoding
simultaneously and interactively, in order to
leverage both of the history and future in-
formation at the same time. Specifically, we
first propose a new algorithm that enables syn-
chronous bidirectional decoding in a single
model. Then, we present an interactive decod-
ing model in which left-to-right (right-to-left)
generation does not only depend on its pre-
viously generated outputs, but also relies on
future contexts predicted by right-to-left (left-
to-right) decoding. We extensively evaluate
the proposed SB-NMT model on large-scale
NIST Chinese-English, WMT14 English-
German, and WMT18 Russian-English trans-
lation tasks. Experimental results demonstrate
that our model achieves significant improve-
ments over the strong Transformer model
by 3.92, 1.49, and 1.04 BLEU points, respec-
tively, and obtains the state-of-the-art per-
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formance on Chinese-English and English-
German translation tasks.1

1 Introduction

Neural machine translation has significantly im-
proved the quality of machine translation in recent
years (Sutskever et al., 2014; Bahdanau et al.,
2015; Zhang and Zong, 2015; Wu et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017). Recent
approaches to sequence-to-sequence learning typ-
ically leverage recurrence (Sutskever et al., 2014),
convolution (Gehring et al., 2017), or attention
(Vaswani et al., 2017) as basic building blocks.

Typically, NMT adopts the encoder-decoder
architecture and generates the target translation
from left to right. Despite their remarkable suc-
cess, NMT models suffer from several weak-
nesses (Koehn and Knowles, 2017). One of the
most prominent issues is the problem of unbal-
anced outputs in which the translation prefixes are
better predicted than the suffixes (Liu et al., 2016).
We analyze translation accuracy of the first and
last 4 tokens for left-to-right (L2R) and right-to-
left (R2L) directions, respectively. As shown in
Table 1, the statistical results show that L2R per-
forms better in the first 4 tokens, whereas R2L
translates better in terms of the last 4 tokens.
This problem is mainly caused by the left-to-
right unidirectional decoding, which conditions
each output word on previously generated out-
puts only, but leaving the future information from
target-side contexts unexploited during transla-
tion. The future context is commonly used in
reading and writing in human cognitive process

1The source code is available at https://github.
com/wszlong/sb-nmt.
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Model The first 4 tokens The last 4 tokens
L2R 40.21% 35.10%
R2L 35.67% 39.47%

Table 1: Translation accuracy of the first 4 tokens
and last 4 tokens in NIST Chinese-English translation
tasks. L2R denotes left-to-right decoding and R2L
means right-to-left decoding for conventional NMT.

(Xia et al., 2017), and it is crucial to avoid under-
translation (Tu et al., 2016; Mi et al., 2016).

To alleviate the problems, existing studies usu-
ally used independent bidirectional decoders for
NMT (Liu et al., 2016; Sennrich et al., 2016a).
Most of them trained two NMT models with left-
to-right and right-to-left directions, respectively.
Then, they translated and re-ranked candidate
translations using two decoding scores together.
More recently, Zhang et al. (2018) presented
an asynchronous bidirectional decoding algo-
rithm for NMT, which extended the conventional
encoder-decoder framework by utilizing a back-
ward decoder. However, these methods are more
complicated than the conventional NMT frame-
work because they require two NMT models or
decoders. Furthermore, the L2R and R2L de-
coders are independent from each other (Liu et al.,
2016), or only the forward decoder can utilize
information from the backward decoder (Zhang
et al., 2018). It is therefore a promising direction
to design a synchronous bidirectional decoding
algorithm in which L2R and R2L generations can
interact with each other.

Accordingly, we propose in this paper a novel
framework (SB-NMT) that utilizes a single de-
coder to bidirectionally generate target sentences
simultaneously and interactively. As shown in
Figure 1, two special labels (〈l2r〉 and 〈r2l〉) at
the beginning of the target sentence guide trans-
lating from left to right or right to left, and the
decoder in each direction can utilize the previ-
ously generated symbols of bidirectional decod-
ing when generating the next token. Taking L2R
decoding as an example, at each moment, the gen-
eration of the target word (e.g., y3) does not only
rely on previously generated outputs (y1 and y2)
of L2R decoding, but also depends on previously
predicted tokens (yn and yn−1) of R2L decod-
ing. Compared with the previous related NMT
models, our method has the following advan-
tages: 1) We use a single model (one encoder and
one decoder) to achieve the decoding with left-

Figure 1: Illustration of the decoder in the synchronous
bidirectional NMT model. L2R denotes left-to-right
decoding guided by the start token 〈l2r〉 and R2L
means right-to-left decoding indicated by the start
token 〈r2l〉. SBAtt is our proposed synchronous bi-
directional attention (see § 3.2). For instance, the
generation of y3 does not only rely on y1 and y2, but
also depends on yn and yn−1 of R2L.

to-right and right-to-left generation, which can
be processed in parallel. 2) Via the synchronous
bidirectional attention model (SBAtt, §3.2), our
proposed model is an end-to-end joint framework
and can optimize bidirectional decoding simulta-
neously. 3) Compared with two-phase decoding
scheme in previous work, our decoder is faster and
more compact, using one beam search algorithm.

Specifically, we make the following contribu-
tions in this paper:

• We propose a synchronous bidirectional
NMT model that adopts one decoder to
generate outputs with left-to-right and right-
to-left directions simultaneously and interac-
tively. To the best of our knowledge, this is
the first work to investigate the effectiveness
of a single NMT model with synchronous
bidirectional decoding.

• Extensive experiments on NIST Chinese-
English, WMT14 English-German and WMT18
Russian-English translation tasks demon-
strate that our SB-NMT model obtains
significant improvements over the strong
Transformer model by 3.92, 1.49, and 1.04
BLEU points, respectively. In particular, our
approach separately establishes the state-of-
the-art BLEU score of 51.11 and 29.21 on
Chinese-English and English-German trans-
lation tasks.

2 Background

In this paper, we build our model based on the
powerful Transformer (Vaswani et al., 2017) with
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Figure 2: (left) Scaled Dot-Product Attention. (right)
Multi-Head Attention.

an encoder-decoder framework, where the en-
coder network first transforms an input sequence
of symbols x = (x1, x2, ..., xn) to a sequence
of continues representations z = (z1, z2, ..., zn),
from which the decoder generates an output se-
quence y = (y1, y2, ..., ym) one element at a time.
Particularly, relying entirely on the multi-head
attention mechanism, the Transformer with beam
search algorithm achieves the state-of-the-art
results for machine translation.

Multi-head attention allows the model to jointly
attend to information from different representa-
tion subspaces at different positions. It operates
on queries Q, keys K, and values V . For multi-
head intra-attention of encoder or decoder, all of
Q,K, V are the output hidden-state matrices of
the previous layer. For multi-head inter-attention
of the decoder, Q are the hidden states of the pre-
vious decoder layer, and K-V pairs come from
the output (z1, z2, ..., zn) of the encoder.

Formally, multi-head attention first obtains h
different representations of (Qi,Ki, Vi). Specif-
ically, for each attention head i, we project the
hidden-state matrix into distinct query, key, and
value representations Qi = QWQ

i , Ki = KWK
i ,

Vi=VW V
i , respectively. Then we perform scaled

dot-product attention for each representation,
concatenate the results, and project the concate-
nation with a feed-forward layer.

MultiHead(Q,K, V ) = Concati(headi)WO

headi = Attention(QWQ
i ,KW

K
i , V W

V
i )

(1)

where WQ
i , WK

i , W V
i , and WO are parameter

projection matrices.

Figure 3: Illustration of the standard beam search
algorithm with beam size 4. The black blocks denote
the ongoing expansion of the hypotheses.

Scaled dot-product attention can be described
as mapping a query and a set of key-value pairs
to an output. Specifically, we can then multiply
query Qi by key Ki to obtain an attention weight
matrix, which is then multiplied by value Vi
for each token to obtain the self-attention token
representation. As shown in Figure 2, scaled dot-
product attention operates on a query Q, a key K,
and a value V as:

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V (2)

where dk is the dimension of the key. For the sake
of brevity, we refer the reader to Vaswani et al.
(2017) for more details.

Standard Beam Search Given the trained
model and input sentence x, we usually employ
beam search or greedy search (beam size = 1)
to find the best translation ŷ = argmaxyP (y|x).
Beam size N is used to control the search space
by extending only the top-N hypotheses in the
current stack. As shown in Figure 3, the blocks
represent the four best token expansions of the
previous states, and these token expansions are
sorted top-to-bottom from most probable to least
probable. We define a complete hypothesis as
a hypothesis which outputs EOS, where EOS
is a special target token indicating the end of
sentence. With the above settings, the translation
y is generated token-by-token from left to right.

3 Our Approach

In this section, we will introduce the approach of
synchronous bidirectional NMT. Our goal is to
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design a synchronous bidirectional beam search
algorithm (§3.1) which generates tokens with
both L2R and R2L decoding simultaneously and
interactively using a single model. The central
module is the synchronous bidirectional atten-
tion (SBAtt, see §3.2). By using SBAtt, the two
decoding directions in one beam search process
can help and interact with each other, and can
make full use of the target-side history and future
information during translation. Then, we apply
our proposed SBAtt to replace the multi-head
intra-attention in the decoder part of Transformer
model (§3.3), and the model is trained end-to-end
by maximum likelihood using stochastic gradient
descent (§3.4).

3.1 Synchronous Bidirectional Beam Search
Figure 4 illustrates the synchronous bidirectional
beam search process with beam size 4. With two
special start tokens which are optimized during
the training process, we let half of the beam
keep decoding from left to right guided by the
label 〈l2r〉, and allow the other half beam to
decode from right to left, indicated by the label
〈r2l〉. More importantly, via the proposed SBAtt
(§3.2) model, L2R (R2L) generation does not only
depend on its previously generated outputs, but
also relies on future contexts predicted by R2L
(L2R) decoding.

Note that (1) at each time step, we choose the
best items of the half beam from L2R decoding
and the best items of the half beam from R2L
decoding to continue expanding simultaneously;
(2) L2R and R2L beams should be thought of
as parallel, with SBAtt computed between items
of 1-best L2R and R2L, items of 2-best L2R and
R2L, and so on2; (3) the black blocks denote
the ongoing expansion of the hypotheses, and
decoding terminates when the end-of-sentence
flag EOS is predicted; (4) in our decoding
algorithm, the complete hypotheses will not
participate in subsequent SBAtt, and the L2R
hypothesis attended by R2L decoding may change
at different time steps, while the ongoing partial
hypotheses in both directions of SBAtt always
share the same length; (5) finally, we output the

2We also did experiments in which all of L2R hypotheses
attend to the 1-best R2L hypothesis, and all the R2L
hypotheses attend to the 1-best L2R hypothesis. The results
of the two schemes are similar. For the sake of simplicity, we
employed the previous scheme.

Figure 4: The synchronous bidirectional decoding of
our model. 〈l2r〉 and 〈r2l〉 are two special labels, which
indicate the target-side translation direction in L2R and
R2L modes, respectively. Our model can decode with
both L2R and R2L directions in one beam search by
using SBAtt, simultaneously and interactively. SBAtt
means the synchronous bidirectional attention (§3.2)
performed between items of L2R and R2L decoding.

translation result with highest probability from
all complete hypotheses. Intuitively, our model
is able to choose from L2R output or R2L out-
put as final hypothesis according to their model
probabilities, and if an R2L hypothesis wins, we
reverse the tokens before presenting it.

3.2 Synchronous Bidirectional Attention
Instead of multi-head intra-attention which pre-
vents future information flow in the decoder to
preserve the auto-regressive property, we propose
a synchronous bidirectional attention (SBAtt)
mechanism. With the two key modules of syn-
chronous bidirectional dot-product attention (§3.2.1)
and synchronous bidirectional multi-head atten-
tion (§3.2.2), SBAtt is capable of capturing and
combining the information generated by L2R and
R2L decoding.

3.2.1 Synchronous Bidirectional
Dot-Product Attention

Figure 5 shows our particular attention Syn-
chronous Bidirectional Dot-Product Attention
(SBDPA). The input consists of queries ([

−→
Q ;
←−
Q ]),

keys ([
−→
K ;
←−
K ]), and values ([

−→
V ;
←−
V ]) which are

all concatenated by forward (L2R) states and
backward (R2L) states. The new forward state−→
H and backward state

←−
H can be obtained by
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Figure 5: Synchronous bidirectional attention model
based on scaled dot-product attention. It operates on
forward (L2R) and backward (R2L) queries Q, keys K,
values V.

synchronous bidirectional dot-product attention.
For the new forward state

−→
H , it can be calcu-

lated as:

−→
Hhistory = Attention(

−→
Q,
−→
K,
−→
V )

−→
H future = Attention(

−→
Q,
←−
K,
←−
V )

−→
H = Fusion(

−→
Hhistory,

−→
H future)

(3)

where
−→
Hhistory is obtained by using conven-

tional scaled dot-product attention as introduced
in Equation 2, and its purpose is to take ad-
vantage of previously generated tokens, namely
history information. We calculate

−→
H future using

forward query (
−→
Q ) and backward key-value pairs

(
←−
K ,
←−
V ), which attempts at making use of future

information from R2L decoding as effectively as
possible in order to help predict the current to-
ken in L2R decoding. The role of Fusion(·) (green
block in Figure 5) is to combine

−→
Hhistory and−→

H future by using linear interpolation, nonlinear
interpolation, or gate mechanism.

Linear Interpolation
−→
Hhistory and

−→
H future

have different importance to prediction of cur-
rent word. Linear interpolation of

−→
Hhistory and−→

H future produces an overall hidden state:

−→
H =

−→
Hhistory + λ ∗ −→H future (4)

where λ is a hyper-parameter decided by the
performance on development set.3

Nonlinear Interpolation
−→
H is equal to

−→
Hhistory

in the conventional attention mechanism, and−→
H future means the attention information between
current hidden state and generated hidden states
of the other decoding. In order to distinguish
two different information sources, we present a
nonlinear interpolation by adding an activation
function to the backward hidden states:

−→
H =

−→
Hhistory + λ ∗AF (

−→
H future) (5)

where AF denotes activation function, such as
tanh or relu.

Gate Mechanism We also propose a gate mech-
anism to dynamically control the amount of
information flow from the forward and backward
contexts. Specifically, we apply a feed-forward
gating layer upon

−→
Hhistory as well as

−→
H future to

enrich the nonlinear expressiveness of our model:

rt, zt = σ(W g[
−→
Hhistory;

−→
H future])

−→
H = rt �

−→
Hhistory + zt �

−→
H future

(6)

where� denotes element-wise multiplication. Via
this gating layer, it is able to control how much
past information can be preserved from previous
context and how much reversed information can
be captured from backward hidden states.

Similar to the calculation of forward hidden
states

−→
H i, the backward hidden states

←−
H i can be

computed as follows.

←−
Hhistory = Attention(

←−
Q,
←−
K,
←−
V )

←−
H future = Attention(

←−
Q,
−→
K,
−→
V )

←−
H = Fusion(

←−
Hhistory,

←−
H future)

(7)

where Fusion(·) is the same as introduced in
Equations 4–6. Note that

−→
H and

←−
H can be cal-

culated in parallel. We refer to the whole proce-
dure formulated in Equation 3 and Equation 7 as
SBDPA(·).

[
−→
H ;
←−
H ] = SBDPA([

←−
Q ;
−→
Q ], [
←−
K ;
−→
K ], [
←−
V ;
−→
V ])

(8)
3Note that we can also set λ to be a vector and learn

λ during training with standard back-propagation, and we
remain it as future exploration.
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3.2.2 Synchronous Bidirectional
Multi-Head Attention

Multi-head attention consists of h attention
heads, each of which learns a distinct attention
function to attend to all of the tokens in the
sequence, where mask is used for preventing
leftward information flow in decoder. Compared
with the multi-head attention, our inputs are the
concatenation of forward and backward hidden
states. We extend standard multi-headed attention
by letting each head attend to both forward and
backward hidden states, combined via SBDPA(·):

MultiHead([
←−
Q ;
−→
Q ], [
←−
K ;
−→
K ], [
←−
V ;
−→
V ])

= Concat([
−→
H 1;
←−
H 1], ..., [

−→
Hh;
←−
Hh])WO

(9)

and [
−→
H i;
←−
H i] can be computed as follows, which

is the biggest difference from conventional multi-
head attention:

[
−→
H i;
←−
H i] = SBDPA([

←−
Q ;
−→
Q ]WQ

i ,

[
←−
K ;
−→
K ]WK

i , [
←−
V ;
−→
V ]W V

i )
(10)

whereWQ
i ,WK

i ,W V
i andWO are parameter pro-

jection matrices, which are the same as standard
multi-head attention introduced in Equation 1.

3.3 Integrating Synchronous Bidirectional
Attention into NMT

We apply our synchronous bidirectional attention
to replace the multi-head intra-attention in the
decoder, as illustrated in Figure 6. The neural
encoder of our model is identical to that of the
standard Transformer model. From the source
tokens, learned embeddings are generated which
are then modified by an additive positional
encoding. The encoded word embeddings are
then used as input to the encoder which consists
of N blocks each containing two layers: (1) a
multi-head attention layer (MHAtt), and (2) a
position-wise feed-forward layer (FFN).

The bidirectional decoder of our model is
extended from the standard Transformer decoder.
For each layer in the bidirectional decoder, the
lowest sub-layer is our proposed synchronous
bidirectional attention network, and it also uses
residual connections around each of the sublayers,
followed by layer normalization:

sld = LayerNorm(sl−1 + SBAtt(sl−1, sl−1, sl−1))
(11)

Figure 6: The new Transformer architecture with the
proposed synchronous bidirectional multi-head atten-
tion network, namely SBAtt. The input of decoder is
concatenation of forward (L2R) sequence and back-
ward (R2L) sequence. Note that all bidirectional
information flow in decoder runs in parallel and only
interacts in synchronous bidirectional attention layer.

where l denotes layer depth, and subscript d
means the decoder-informed intra-attention rep-
resentation. SBAtt is our proposed synchronous
bidirectional attention, and sl−1 is equal to
[−→s l−1;←−s l−1] containing forward and backward
hidden states. In addition, the decoder stacks an-
other two sub-layers to seek translation-relevant
source semantics to bridge the gap between the
source and target language:

sle = LayerNorm(sld + MHAtt(sld, h
N , hN ))

sl = LayerNorm(sle + FFN(sle))
(12)

where MHAtt denotes the multi-head attention in-
troduced in Equation 1, and we use e to denote
the encoder-informed inter-attention representa-
tion; hN is the source top layer hidden state, and
FFN means feed-forward networks.

Finally, we use a linear transformation and
softmax activation to compute the probability of
the next tokens based on sN = [−→s N ;←−s N ],
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namely the final hidden states of forward and
backward decoding:

p(−→y j |−→y <j ,
←−y <j , x, θ) = Softmax(−→s NW )

p(←−y j |←−y <j ,
−→y <j , x, θ) = Softmax(←−s NW )

(13)

where θ is shared weight for L2R and R2L de-
coding, and W is the weight matrix.

3.4 Training

We design a simple yet effective strategy to enable
synchronous bidirectional translation within a
decoder. We separately add the special labels
(〈l2r〉 and 〈r2l〉) at the beginning of target
sentence (−→y and←−y ) to guide translating from left
to right or right to left. Given a set of training
examples {x(z), y(z)}Zz=1, the training algorithm
aims to find the model parameters that maximize
the likelihood of the training data:

J(θ) =
1

Z

Z∑
z=1

M∑
j=1

{log p(−→y (z)
j |
−→y (z)

<j ,
←−y (z)

<j , x
(z),

θ) + log p(←−y (z)
j |
←−y (z)

<j ,
−→y (z)

<j , x
(z), θ)}

(14)

Similar to asynchronous bidirectional decod-
ing (Zhang et al., 2018) and bidirectional lan-
guage models in BERT (Devlin et al., 2018),
the proposed SB-NMT model also faces the
same training problem: the bidirectional decoding
would allow the words (the second half of the de-
coding sequence) to indirectly “see themselves”
from the other decoding direction. To ensure con-
sistency between model training and testing, we
construct pseudo references ←−y p (−→y p) for gold
−→y g (←−y g). More specifically, we first train an
L2R model using (x, −→y g) and an R2L model
using (x, ←−y g). Then we use the two models to
translate source sentences x into pseudo target
sentences −→y p and ←−y p, respectively. Finally, we
get two triples (x,−→y p,

←−y g) and (x,−→y g,
←−y p) as

our training data.
Once the proposed model is trained, we

employ the bidirectional beam search algorithm
to predict the target sequence, as illustrated in
Figure 4. Compared with previous work that
usually adopts a two-phase scheme to translate
input sentences (Liu et al., 2016; Sennrich et al.,
2017; Zhang et al., 2018), our decoding approach
is more compact and effective.

4 Experiments

We evaluate the proposed model on three transla-
tion datasets with different sizes, including NIST
Chinese-English, WMT14 English-German, and
WMT18 Russian-English translations.

4.1 Datasets
For Chinese-English, our training data includes
about 2.0 million sentence pairs extracted from
the LDC corpus.4 We use the NIST 2002 (MT02)
Chinese-English dataset as the validation set and
NIST 2003-2006 (MT03-06) as our test sets.
We use BPE (Sennrich et al., 2016b) to encode
Chinese and English, respectively. We learn 30K
merge operations and limit the source and target
vocabularies to the most frequent 30K tokens.

For English-German translation, the training set
consists of about 4.5 million bilingual sentence
pairs from WMT 2014.5 We use newstest2013 as
the validation set and newstest2014 as the test
set. Sentences are encoded using BPE, which
has a shared vocabulary of about 37,000 tokens.
To evaluate the models, we compute the BLEU
metric (Papineni et al., 2002) on tokenized, true-
case output.6

For Russian-English translation, we use the
following resources from the WMT parallel data7:
ParaCrawl corpus, Common Crawl corpus, News
Commentary v13, and Yandex Corpus. We do not
use Wiki Headlines and UN Parallel Corpus V1.0.
The training corpus consists of 14M sentence
pairs. We employ the Moses Tokenizer8 for pre-
processing. For subword segmentation, we use
50,000 joint BPE operations and choose the most
frequent 52,000 tokens as vocabularies. We use
newstest2017 as the development set and the
newtest2018 as the test set.

4The corpora includes LDC2000T50, LDC2002T01,
LDC2002E18, LDC2003E07, LDC2003E14, LDC2003T17,
and LDC2004T07. Following previous work, we also
use case-insensitive tokenized BLEU to evaluate Chinese-
English which have been segmented by Stanford word
segmentation and Moses Tokenizer, respectively.

5http://www.statmt.org/wmt14/translation-task.html. All
preprocessed datasets and vocab can be directly download in
tensor2tensor website https://drive.google.com/
open?id=0B_bZck-ksdkpM25jRUN2X2UxMm8.

6This procedure is used in the literature to which we
compare (Wu et al., 2016; Gehring et al., 2017; Vaswani
et al., 2017).

7http://www.statmt.org/wmt18/translation-task.html.
8https://github.com/moses-smt/mosesdecoder/blobv/master/

scripts/tokenizer/tokenizer.perl.
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4.2 Setting
We build the described models by modifying the
tensor2tensor9 toolkit for training and evaluating.
For our bidirectional Transformer model, we em-
ploy the Adam optimizer with β1 = 0.9, β2 =
0.998, and ε = 10−9. We use the same warmup
and decay strategy for learning rate as Vaswani
et al. (2017), with 16,000 warmup steps. During
training, we employ label smoothing of value
εls=0.1. For evaluation, we use beam search with
a beam size of k = 4. For SB-NMT, we use two
L2R and R2L hypotheses, respectively, and length
penalty α = 0.6. Additionally, we use 6 encoder
and decoder layers, hidden size dmodel = 1, 024,
16 attention heads, 4,096 feedforward inner-layer
dimensions, and Pdropout = 0.1. Our settings
are close to transformer_big setting as defined
in Vaswani et al. (2017). We employ three Titan
Xp GPUs to train English-German and Russian-
English translation, and one GPU for Chinese-
English translation pairs. In addition, we use a
single model obtained by averaging the last 20
checkpoints for English-German and Russian-
English and do not perform checkpoint averaging
for Chinese-English.

4.3 Baselines
We compare the proposed model against the fol-
lowing state-of-the-art statistical machine transla-
tion (SMT) and NMT systems10:

• Moses: an open source phrase-based SMT
system with default configuration and a 4-gram
language model trained on the target portion
of training data.

• RNMT (Luong et al., 2015): it is a state-of-
the-art RNN-based NMT system with default
setting.

• Transformer: it has obtained the state-of-
the-art performance on machine translation,
which predicts target sentence from left to
right relying on self-attention (Vaswani et al.,
2017).

• Transformer (R2L): it is a variant of
Transformer that generates translation in a
right-to-left direction.

9https://github.com/tensorflow/tensor2tensor.
10For fair comparison, Rerank-NMT and ABD-NMT are

based on strong Transformer models.

Fusion λ = 0.1 λ = 0.5 λ = 1.0

Linear 51.05 50.71 46.98

Nonlinear tanh 50.99 50.72 50.96
relu 50.79 50.57 50.71

Gate 50.51

Table 2: Experiment results on the development set
using different fusion mechanism with different λs.

• Rerank-NMT: Via exploring the agreement
on left-to-right and right-to-left NMT models
(Liu et al., 2016; Sennrich et al., 2016a),
first run beam search for forward and reverse
models independently to obtain two k-best
lists, and then re-score the union of two k-
best lists (k = 10 in our experiments) using
the joint model (adding logprobs) to find the
best candidate.

• ABD-NMT: it is an asynchronous bidirec-
tional decoding for NMT, which equipped
the conventional attentional encoder-decoder
NMT model with a backward decoder
(Zhang et al., 2018). ABD-NMT adopts a
two-phrase decoding scheme: (1) use back-
ward decoder to generate reverse sequence
states; (2) perform beam search on the for-
ward decoder to find the best translation
based on encoder hidden states and backward
sequence states.

4.4 Results on Chinese-English Translation
Effect of Fusion Mechanism We first investigate
the impact of different fusion mechanisms with
different λs on the development set. As shown
in Table 2, we find that linear interpolation is
sensitive to parameters λ. Nonlinear interpolation,
which is more robust than linear interpolation,
achieves the best performance when we use tanh
with λ = 0.1. Compared with gate mechanism,
nonlinear interpolation is much simpler and needs
less parameters. Therefore, we will use nonlinear
interpolation with tanh and λ = 0.1 for all
experiments thereafter.

Translation Quality Table 3 shows translation
performance for Chinese-English. Specifically,
the proposed model significantly outperforms
Moses, RNMT, Transformer, Transformer (R2L),
Rerank-NMT, and ABD-NMT by 13.23, 8.54,
3.92, 4.90, 2.91, and 2.82 BLEU points, respec-
tively. Compared with Transformer and Trans-
former (R2L), our model exhibits much better
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Model DEV MT03 MT04 M05 MT06 AVE ∆

Moses 37.85 37.47 41.20 36.41 36.03 37.78 −9.41
RNMT 42.43 42.43 44.56 41.94 40.95 42.47 −4.72
Transformer 48.12 47.63 48.32 47.51 45.31 47.19 -
Transformer (R2L) 47.81 46.79 47.01 46.50 44.13 46.11 −1.08
Rerank-NMT 49.18 48.23 48.91 48.73 46.51 48.10 +0.91
ABD-NMT 48.28 49.47 48.01 48.19 47.09 48.19 +1.00
Our Model 50.99 51.87 51.50 51.23 49.83 51.11 +3.92

Table 3: Evaluation of translation quality for Chinese-English translation tasks using case-insensitive BLEU
scores. All results of our model are significantly better than Transformer and Transformer (R2L) (p < 0.01).

Model TEST
GNMT‡ (Wu et al., 2016) 24.61
Conv‡ (Gehring et al., 2017) 25.16
AttIsAll‡ (Vaswani et al., 2017) 28.40

Transformer11 27.72
Transformer (R2L) 27.13
Rerank-NMT 27.81
ABD-NMT 28.22
Our Model 29.21

Table 4: Results of WMT14 English-German transla-
tion using case-sensitive BLEU. Results with ‡ mark
are taken from the corresponding papers.

performance. These results confirm our hypothe-
sis that the two directions are mutually beneficial
in bidirectional decoding. Furthermore, compared
with Rerank-NMT in which two decoders are
relatively independent and ABD-NMT where
only the forward decoder can rely on a backward
decoder, our proposed model achieves substantial
improvements over them on all test sets, which in-
dicates that joint modeling and optimizing with
left-to-right and right-to-left decoding behaves
better in leveraging bidirectional decoding.

4.5 Results on English-German Translation
We further demonstrate the effectiveness of our
model in WMT14 English-German translation
tasks, and we also display the performances of
some competitive models including GNMT (Wu
et al., 2016), Conv (Gehring et al., 2017), and
AttIsAll (Vaswani et al., 2017). As shown in
Table 4, our model also significantly outperforms
others and gets an improvement of 1.49 more

11The BLEU scores for Transformer model are our
reproduced results. Similar to footnote 7 in Chen et al.
(2018), our performance is slightly lower than those reported
in Vaswani et al. (2017). Additionally, we only use 3 GPUs
for English-German, whereas most papers employ 8 GPUs
for model training.

Model DEV TEST
Transformer 35.28 31.02
Transformer (R2L) 35.22 30.57
Our Model 36.38 32.06

Table 5: Results of WMT18 Russian-English transla-
tion using case-insensitive tokenized BLEU.

BLEU points than a strong Transformer model.
Moreover, our SB-NMT model establishes a state-
of-the-art BLEU score of 29.21 on the WMT14
English-German translation task.

4.6 Results on Russian-English Translation

Table 5 shows the results of large-scale WMT18
Russian-English translation, and our approach
still significantly outperforms the state-of-the-art
Transformer model in development and test sets
by 1.10 and 1.04 BLEU points, respectively. Note
that the BLEU score gains of English-German
and Russian-English are not as significant as
that on Chinese-English. The underlying reasons,
which have also been mentioned in Shen et al.
(2016) and Zhang et al. (2018), are that (1) the
Chinese-English datasets contain four reference
translations for each source sentence while the
English-German and Russian-English datasets
only have a single reference; (2) English is more
distantly related to Chinese than German and
Russian, leading to the predominant improve-
ments for Chinese-English translation when lever-
aging bidirectional decoding.

4.7 Analysis

We conduct analyses on Chinese-English transla-
tion to better understand our model from different
perspectives.

Parameters and Speeds In contrast to the stan-
dard Transformer, our model does not increase
any parameters except for a hyper-parameter λ, as
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Speed
Model Param Train Test
Transformer 207.8M 2.07 19.97
Transformer (R2L) 207.8M 2.07 19.81
Rerank-NMT 415.6M 1.03 6.51
ABD-NMT 333.8M 1.18 7.20
Our Model 207.8M 1.26 17.87

Table 6: Statistics of parameters, training, and testing
speeds. Train denotes the number of global training
steps processed per second at the same batch-size
sentences; Test indicates the amount of translated
sentences in 1 second.

shown in Table 6. Rerank-NMT needs to train two
sets of NMT models, so its parameters are dou-
bled. The parameters of ABD-NMT are 333.8M
since it has two decoders containing a backward
decoder and a forward decoder. Hence, our model
is more compact because it only has a single
encoder-decoder NMT model.

We also show the training and testing speed
of our model and baselines in Table 6. During
training, our model performs approximately 1.26
training steps per second, which is faster than
Rerank-NMT and ABD-NMT. When it comes to
decoding procedure, the decoding speed of our
model is 17.87 sentences per second with batch
size 50, which is two or three times faster than
Rerank-NMT and ABD-NMT.

Effect of Unbalanced Outputs According to
Table 1, L2R usually does well on predicting the
left-side tokens of target sequences, while R2L
usually performs well on the right-side tokens.
Our central idea is to combine the advantage
of left-to-right and right-to-left modes. To test
our hypothesis, we further analyze the translation
accuracy of Rerank-NMT, ABD-NMT, and our
model, as shown in Figure 7. Rerank-NMT and
ABD-NMT can alleviate the unbalanced output
problem, but fail to improve prefix and suffix
accuracies at the same time. The experimental
results demonstrate that our model can balance the
outputs, and gets the best translation accuracy for
both the first four words and the last four words.
Note that our model chooses from L2R output
or R2L output as final results according to their
model probabilities, and the left-to-right decoding
contributes 58.6% on test set.

Effect of Varying Beam Size We observe that
beam search decoding only improves translation
quality for narrow beams and degrades translation

Figure 7: Translation accuracy of the first and last 4
tokens for Transformer, Transformer (R2L), Rerank-
NMT, ABD-NMT, and our proposed model.

Figure 8: Translation qualities (BLEU score) of our
L2R, R2L, and our SB-NMT model as beam size
becomes larger12.

quality when exposed to a larger search space for
L2R and R2L decoding, as illustrated in Figure 8.
Additionally, the gap between greedy search and
beam search is significant and can be up to
about 1–2 BLEU points. Koehn and Knowles
(2017) also demonstrate these phenomena in eight
translation directions.

As for our SB-NMT model, we investigate the
effect of different beam sizes k, as shown by the
red line of Figure 8. Compared with conventional
beam search, where worse translations are found
beyond an optimal beam size setting (e.g., in
the range of 4–32), the translation quality of
our proposed model remains stable as beam size
becomes larger. We attribute this to the ability of

12For greedy search in SB-NMT, it has one item L2R de-
coding and one item R2L decoding. In other words, its beam size
is equal to 2 compared to conventional beam search decoding.
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Figure 9: Performance of translations on the test set with respect to the lengths of the source sentences.

the combined objective to model both history and
future translation information.

Effect of Long Sentences A well-known flaw
of NMT models is the inability to properly trans-
late long sentences. We follow Bahdanau et al.
(2015) by grouping sentences of similar lengths
together and compute a BLEU score per group
(left picture). Figure 9 shows the BLEU score
and the averaged length of translations for each
group (right picture). Transformer and Trans-
former (R2L) perform very well on short source
sentences, but degrade on long source sentences.
Our model can alleviate this problem by taking
advantage of both history and future information.
In fact, incorporating synchronous bidirectional
attention boosts translation performance on all
source sentence groups.

Subjective Evaluation We follow Tu et al.
(2016) by conducting a subjective evaluation to
validate the benefit of the synchronous bidirec-
tional decoder, as shown in Table 7. Four human
evaluators are asked to evaluate the translations of
100 source sentences, which are randomly sam-
pled from the test sets, without knowing which
system the translation is selected from. These 100
source sentences have 2,712 words. We evaluate
over- or under-translation based on the number
of source words which are dropped or repeated
in translation13, though we use subword (Senrich
et al., 2016b) in training and inference. Trans-

13For our SB-NMT model, 2 source words are over-
translated and 147 source words are under-translated.
Additionally, it is interesting to combine with better scoring
methods and stopping criteria (Yang et al., 2018) to
strengthen the baseline and our model in the future.

Over-Trans Under-Trans
Model Ratio ∆ Ratio ∆
L2R 0.07% - 7.85% -
R2L 0.14% - 7.81% -
Ours 0.07% −0.00% 5.42% −30.6%

Table 7: Subjective evaluation on over-translation and
under-translation for Chinese-English. Ratio denotes
the percentage of source words which are over- or
under-translated; ∆ indicates relative improvement.

former and Transformer (R2L) suffer from seri-
ous under-translation problems with 7.85% and
7.81% errors. Our proposed model alleviates the
under-translation problems by exploiting the com-
bination of left-to-right and right-to-left decoding
directions, reducing 30.6% of under-translation
errors. It should be emphasized that the proposed
model is especially effective for alleviating the
under-translation problem, which is a more seri-
ous translation problem for Transformer systems,
as seen in Table 7.

Case Study Table 8 gives three examples to show
the translations of different models, in order to
better understand how our model outperforms
others. We find that Transformer produces trans-
lations with good prefixes (red line or dotted
line), whereas Transformer (R2L) generates trans-
lations with better suffixes (blue line or

:::::
wave

:::
line). Therefore, they are often unable to translate
the whole sentence precisely. In contrast, the pro-
posed approach can make full use of bidirectional
decoding and remedy the errors in these cases.

5 Related Work

Our research is built upon a sequence-to-sequence
model (Vaswani et al., 2017), but it is also related
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Source 捷克总统哈维卸任
::
新

::::
总统

:::
仍

::
未

:::::
确定

Reference czech president havel steps down while new president still not chosen
L2R czech president leaves office
R2L

::
the

::::::::
outgoing

::::::::
president

::
of

:::
the

:::::
czech

:::::::
republic

::
is

::::
still

::::::::
uncertain

Ours czech president havel leaves office ,
:::
new

::::::::
president

:::
yet

::
to

:::
be

:::::::::
determined

Source 他们正在研制一种超大型 的
::::
叫做

:::::
炸弹

::
之

:::
母

::
。

Reference they are developing a kind of superhuge bomb called the mother of bombs .
L2R they are developing a super , big , mother , called the bomb .
R2L they are working on a much larger mother

:::::
called

:::
the

::::::
mother

::
of

::
a
:::::
bomb

:
.

Ours they are developing a super-large scale ,
::::
called

:::
the

:::::::
mother

::
of

:::
the

:::::
bomb

:
.

Table 8: Chinese-English translation examples of Transformer decoding in left-to-right and right-to-left way, and
our proposed models. L2R performs well in the first half sentence, whereas R2L translates well in

::
the

::::::
second

::::
half

:::::::
sentence.

to future modeling and bidirectional decoding.
We discuss these topics in the following.

Future Modeling Standard neural sequence
decoders generate target sentences from left to
right, and it has been proven to be important
to establish the direct information flow between
currently predicted word and previously gener-
ated words (Zhou et al., 2017b; Vaswani et al.,
2017). However, current methods still fail to es-
timate some desired information in the future.
To address this problem, reinforcement learning
methods have been applied to predict future prop-
erties (Li et al., 2017; Bahdanau et al., 2017; He
et al., 2017). Li et al. (2018) presented a target
foresight based attention which uses the POS tag
as the partial information of a target foresight
word to improve alignment and translation. In-
spired by human cognitive behaviors, Xia et al.
(2017) proposed a deliberation network, which
leverages global information by observing both
back and forward information in sequence decod-
ing through a deliberation process. Zheng et al.
(2018) introduced two additional recurrent layers
to model translated past contents and untranslated
future contents. The most relevant models in fu-
ture modeling are twin networks (Serdyuk et al.,
2018), which encourage the hidden state of the
forward network to be close to that of the back-
ward network used to predict the same token.
However, they still used two decoders, and the
backward network contributes nothing during in-
ference. Along the direction of future modeling,
we introduce a single synchronous bidirectional
decoder, where forward decoding can be used as
future information for backward decoding, and
vice versa.

Bidirectional Decoding In SMT, many ap-
proaches explored backward language models or
target-bidirectional decoding to capture right-to-
left target-side contexts for translation (Watanabe
and Sumita, 2002; Finch and Sumita, 2009; Zhang
et al., 2013). To address the issue of unbalanced
outputs, Liu et al. (2016) proposed an agree-
ment model to encourage the agreement between
L2R and R2L NMT models. Similarly, some
work attempted to re-rank the left-to-right de-
coding results by right-to-left decoding, leading
to diversified translation results (Sennrich et al.,
2016a; Hoang et al., 2017; Tan et al., 2017;
Sennrich et al., 2017; Liu et al., 2018; Deng
et al., 2018). Recently, Zhang et al. (2018) pro-
posed asynchronous bidirectional decoding for
NMT, which extended the conventional atten-
tional encoder-decoder framework by introducing
a backward decoder. Additionally, both Niehues
et al. (2016) and Zhou et al. (2017a) com-
bined the strengths of NMT and SMT, which can
also be used to combine the advantages of bidi-
rectional translation texts (Zhang et al., 2018).
Compared with previous methods, our method
has the following advantages: (1) We use a sin-
gle model to achieve the goal of synchronous
left-to-right and right-to-left decoding. (2) Our
model can leverage and combine the two decoding
directions in every layer of the Transformer
decoder, which can run in parallel. (3) By using
synchronous bidirectional attention, our model
is an end-to-end joint framework and can opti-
mize L2R and R2L decoding simultaneously. (4)
Compared with two-phase decoding schemes in
previous work, our decoder is more compact and
faster.
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6 Conclusions and Future Work

In this paper, we propose a synchronous bidi-
rectional NMT model that performs bidirectional
decoding simultaneously and interactively. The
bidirectional decoder, which can take full advan-
tage of both history and future information pro-
vided by bidirectional decoding states, predicts
its outputs by using left-to-right and right-to-left
directions at the same time. To the best of our
knowledge, this is the first attempt to integrate
synchronous bidirectional attention into a sin-
gle NMT model. Extensive experiments demon-
strate the effectiveness of our proposed model.
Particularly, our model respectively establishes
state-of-the-art BLEU scores of 51.11 and 29.21
on NIST Chinese-English and WMT14 English-
German translation tasks. In future work, we plan
to apply this framework to other tasks, such as
sequence labeling, abstractive summarization, and
image captioning.
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