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Abstract

It is intuitive that semantic representations can
be useful for machine translation, mainly be-
cause they can help in enforcing meaning pre-
servation and handling data sparsity (many
sentences correspond to one meaning) of ma-
chine translation models. On the other hand,
little work has been done on leveraging se-
mantics for neural machine translation (NMT).
In this work, we study the usefulness of
AMR (abstract meaning representation) on
NMT. Experiments on a standard English-to-
German dataset show that incorporating AMR
as additional knowledge can significantly
improve a strong attention-based sequence-
to-sequence neural translation model.

1 Introduction

It is intuitive that semantic representations ought
to be relevant to machine translation, given that
the task is to produce a target language sentence
with the same meaning as the source language
input. Semantic representations formed the core of
the earliest symbolic machine translation systems,
and have been applied to statistical but non-neural
systems as well.

Leveraging syntax for neural machine trans-
lation (NMT) has been an active research topic
(Stahlberg et al., 2016; Aharoni and Goldberg,
2017; Li et al., 2017; Chen et al., 2017; Bastings
et al., 2017; Wu et al., 2017; Chen et al.,
2018). On the other hand, exploring semantics
for NMT has so far received relatively little
attention. Recently, Marcheggiani et al. (2018)
exploited semantic role labeling (SRL) for NMT,
showing that the predicate–argument information

from SRL can improve the performance of an
attention-based sequence-to-sequence model by
alleviating the ‘‘argument switching’’ problem,1

one frequent and severe issue faced by NMT
systems (Isabelle et al., 2017). Figure 1(a) shows
one example of semantic role information, which
only captures the relations between a predicate
(gave) and its arguments (John, wife, and present).
Other important information, such as the relation
between John and wife, cannot be incorporated.

In this paper, we explore the usefulness of
abstract meaning representation (AMR) (Banarescu
et al., 2013) as a semantic representation for
NMT. AMR is a semantic formalism that encodes
the meaning of a sentence as a rooted, directed
graph. Figure 1(b) shows an AMR graph, in
which the nodes (such as give-01 and John) rep-
resent the concepts and edges (such as :ARG0 and
:ARG1) represent the relations between concepts
they connect. Comparing with semantic roles,
AMRs capture more relations, such as the rela-
tion between John and wife (represented by the
subgraph within dotted lines). In addition, AMRs
directly capture entity relations and abstract away
inflections and function words. As a result, they
can serve as a source of knowledge for machine
translation that is orthogonal to the textual input.
Furthermore, structural information from AMR
graphs can help reduce data sparsity when training
data is not sufficient for large-scale training.

Recent advances in AMR parsing keep push-
ing the boundary of state-of-the-art performance
(Flanigan et al., 2014; Artzi et al., 2015; Pust
et al., 2015; Peng et al., 2015; Flanigan et al.,
2016; Buys and Blunsom, 2017; Konstas et al.,
2017; Wang and Xue, 2017; Lyu and Titov, 2018;

1That is, flipping arguments corresponding to different
roles.
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Figure 1: (a) A sentence with semantic roles
annotations; (b) the corresponding AMR graph of that
sentence.

Peng et al., 2018; Groschwitz et al., 2018; Guo
and Lu, 2018), and have made it possible for
automatically generated AMRs to benefit down-
stream tasks, such as question answering (Mitra
and Baral, 2015), summarization (Takase et al.,
2016), and event detection (Li et al., 2015a).
However, to our knowledge, no existing work has
exploited AMR for enhancing NMT.

We fill in this gap, taking an attention-based
sequence-to-sequence system as our baseline, which
is similar to Bahdanau et al. (2015). To leverage
knowledge within an AMR graph, we adopt a
graph recurrent network (GRN) (Song et al.,
2018; Zhang et al., 2018) as the AMR encoder.
In particular, a full AMR graph is considered as
a single state, with nodes in the graph being its
substates. State transitions are performed on the
graph recurrently, allowing substates to exchange
information through edges. At each recurrent step,
each node advances its current state by receiving
information from the current states of its adjacent
nodes. Thus, with increasing numbers of recurrent
steps, each word receives information from a
larger context. Figure 3 shows the recurrent tran-
sition, where each node works simultaneously.
Compared with other methods for encoding AMRs
(Konstas et al., 2017), GRN keeps the original graph
structure, and thus no information is lost (Song
et al., 2018). For the decoding stage, two separate
attention mechanisms are adopted in the AMR
encoder and sequential encoder, respectively.

Experiments on WMT16 English-to-German
data (4.17M) show that adopting AMR signifi-

cantly improves a strong attention-based sequence-
to-sequence baseline (25.5 vs 23.7 BLEU). When
trained with small-scale (226K) data, the im-
provement increases (19.2 vs 16.0 BLEU), which
shows that the structural information from AMR
can alleviate data sparsity when training data are
not sufficient. To our knowledge, we are the first
to investigate AMR for NMT.

Our code and parallel data (training/dev/test)
with automatically parsed AMRs are available at
https://github.com/freesunshine0316/semantic-nmt.

2 Related Work

Most previous work on exploring semantics
for statistical machine translation (SMT) studies
the usefulness of predicate–argument structure
from semantic role labeling (Wong and Mooney,
2006; Wu and Fung, 2009; Liu and Gildea,
2010; Baker et al., 2012). Jones et al. (2012)
first convert Prolog expressions into graphical
meaning representations, leveraging synchronous
hyperedge replacement grammar to parse the
input graphs while generating the outputs. Their
graphical meaning representation is different
from AMR under a strict definition, and their
experimental data are limited to 880 sentences.
We are the first to investigate AMR on a large-
scale machine translation task.

Recently, Marcheggiani et al. (2018) investi-
gated SRL on NMT. The predicate–argument
structures are encoded via graph convolutional
network (GCN) layers (Kipf and Welling, 2017),
which are laid on top of regular BiRNN or CNN
layers. Our work is in line with exploring seman-
tic information, but different in exploiting AMR
rather than SRL for NMT. In addition, we lever-
age a GRN (Song et al., 2018; Zhang et al., 2018)
for modeling AMRs rather than GCN, which
is formally consistent with the RNN sentence
encoder. Since there is no one-to-one correspon-
dence between AMR nodes and source words,
we adopt a doubly attentive LSTM decoder, which
is another major difference from Marcheggiani
et al. (2018).

GRNs have recently been used to model graph
structures in NLP tasks. In particular, Zhang
et al. (2018) use a GRN model to represent
raw sentences by building a graph structure of
neighboring words and a sentence-level node,
showing that the encoder outperforms BiLSTMs
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and Transformer (Vaswani et al., 2017) on
classification and sequence labeling tasks; Song
et al. (2018) build a GRN for encoding AMR
graphs for text generation, showing that the
representation is superior compared to BiLSTM
on serialized AMR. We extend Song et al. (2018)
by investigating the usefulness of AMR for neu-
ral machine translation. To our knowledge, we
are the first to use GRN for machine translation.

In addition to GRNs and GCNs, there have
been other graph neural networks, such as graph
gated neural network (GGNN) (Li et al., 2015b;
Beck et al., 2018). Because our main concern is to
empirically investigate the effectiveness of AMR
for NMT, we leave it to future work to compare
GCN, GGNN, and GRN for our task.

3 Baseline: Attention-Based BiLSTM

We take the attention-based sequence-to-sequence
model of Bahdanau et al. (2015) as the baseline,
but use LSTM cells (Hochreiter and Schmidhuber,
1997) instead of GRU cells (Cho et al., 2014).

3.1 BiLSTM Encoder
The encoder is a bidirectional LSTM on the
source side. Given a sentence, two sequences of
states [

←−
h 1,
←−
h 2, . . . ,

←−
hN ] and [

−→
h 1,
−→
h 2, . . .

−→
hN ]

are generated for representing the input word
sequence x1, x2, . . . , xN in the right-to-left and
left-to-right directions, respectively, where for
each word xi,

←−
h i = LSTM(

←−
h i+1, exi)

−→
h i = LSTM(

−→
h i−1, exi)

exi is the embedding of word xi.

3.2 Attention-Based Decoder
The decoder yields a word sequence in the target
language y1, y2, . . . , yM by calculating a sequence
of hidden states s1, s2 . . . , sM recurrently. We
use an attention-based LSTM decoder (Bahdanau
et al., 2015), where the attention memory (H) is
the concatenation of the attention vectors among
all source words. Each attention vector hi is the
concatenation of the encoder states of an input
token in both directions (

←−
h i and

−→
h i):

hi = [
←−
h i;
−→
h i]

H = [h1;h2; . . . ;hN ].

N is the number of source words.

While generating the m-th word, the decoder
considers four factors: (1) the attention memory
H; (2) the previous hidden state of the LSTM
model sm−1; (3) the embedding of the current
input (previously generated word) eym ; and (4)
the previous context vector ζm−1 from attention
memory H . When m = 1, we initialize ζ0 as a
zero vector, set ey1 to the embedding of sentence
start token ‘‘<s>’’, and calculate s0 from the last
step of the encoder states via a dense layer:

s0 =W 1[
←−
h 0;
−→
hN ] + b1,

whereW 1 and b1 are model parameters.
For each decoding step m, the decoder feeds

the concatenation of the embedding of the current
input eym and the previous context vector ζm−1
into the LSTM model to update its hidden state:

sm = LSTM(sm−1, [eym ; ζm−1]).

Then the attention probabilityαm,i on the attention
vector hi ∈ H for the current decode step is
calculated as:

εm,i = v
ᵀ
2 tanh(W hhi +W ssm + b2)

αm,i =
exp(εm,i)∑N
j=1 exp(εm,j)

.

W h, W s, v2, and b2 are model parameters. The
new context vector ζm is calculated via

ζm =
N∑
i=1

αm,ihi.

The output probability distribution over the target
vocabulary at the current state is calculated by

P vocab = softmax(V 3[sm, ζm] + b3), (1)

where V 3 and b3 are learnable parameters.

4 Incorporating AMR

Figure 2 shows the overall architecture of our
model, which adopts a BiLSTM (bottom left)
and our graph recurrent network (GRN)2 (bottom
right) for encoding the source sentence and AMR,
respectively. An attention-based LSTM decoder
is used to generate the output sequence in the
target language, with attention models over both
the sequential encoder and the graph encoder. The

2We show the advantage of our graph encoder by com-
paring with another popular method for encoding AMRs in
Section 6.3.
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John        wants           to            go

... ...

möchte gehen

möchte

Figure 2: Overall architecture of our model.

attention memory for the graph encoder is from
the last step of the graph state transition process,
which is shown in Figure 3.

4.1 Encoding AMR with GRN

Figure 3 shows the overall structure of our graph
recurrent network for encoding AMR graphs,
which follows Song et al. (2018). Formally, given
an AMR graph G = (V ,E), we use a hidden
state vector aj to represent each node vj ∈ V .
The state of the graph can thus be represented as:

g = {aj}|vj∈V .

In order to capture non-local interaction between
nodes, information exchange between nodes is
executed through a sequence of state transitions,
leading to a sequence of states g0, g1, . . . , gT ,
where gt = {a

j
t}|vj∈V , and T is the number of

state transitions, which is a hyperparameter. The
initial state g0 consists of a set of initial node
states aj0 = a0, where a0 is a vector of all zeros.

A recurrent neural network is used to model the
state transition process. In particular, the transi-
tion from gt−1 to gt consists of a hidden state tran-
sition for each node (such as from ajt−1 to ajt ),
as shown in Figure 3. At each state transition
step t, our model conducts direct communication
between a node and all nodes that are directly con-
nected to the node. To avoid gradient diminishing
or bursting, LSTM (Hochreiter and Schmidhuber,
1997) is adopted, where a cell cjt is taken to re-
cord memory for ajt . We use an input gate ijt , an
output gate ojt , and a forget gate f j

t to control in-
formation flow from the inputs and to the output ajt .

The inputs include representations of edges
that are connected to vj , where vj can be either

Figure 3: Architecture of the graph recurrent network.

the source or the target of the edge. We define
each edge as a triple (i, j, l), where i and j are
indices of the source and target nodes, respec-
tively, and l is the edge label. xl

i,j is the repre-
sentation of edge (i, j, l), detailed in Section 4.1.1.
The inputs for vj are grouped into incoming and
outgoing edges before being summed up:

φj =
∑

(i,j,l)∈Ein(j)

xl
i,j

φ̂j =
∑

(j,k,l)∈Eout(j)

xl
j,k

whereEin(j) andEout(j) are the sets of incoming
and outgoing edges of vj , respectively.

In addition to edge inputs, our model also takes
the hidden states of the incoming and outgoing
neighbors of each node during a state transition.
Taking vj as an example, the states of its incoming
and outgoing neighbors are summed up before
being passed to the cell and gate nodes:

ψj =
∑

(i,j,l)∈Ein(j)

ait−1

ψ̂j =
∑

(j,k,l)∈Eout(j)

akt−1.

Based on the above definitions of φj , φ̂j , ψj ,
and ψ̂j , the state transition from gt−1 to gt, as
represented by ajt , can be defined as:

ijt = σ(W iφj + Ŵ iφ̂j +U iψj + Û iψ̂j + bi)

ojt = σ(W oφj + Ŵ oφ̂j +Uoψj + Ûoψ̂j + bo)

f j
t = σ(W fφj + Ŵ f φ̂j +Ufψj + Ûf ψ̂j + bf )

uj
t = σ(W uφj + Ŵ uφ̂j +Uuψj + Ûuψ̂j + bu)

cjt = f
j
t � c

j
t−1 + i

j
t � u

j
t

aj
t = o

j
t � tanh(cjt ),
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where ijt , o
j
t , and f j

t are the input, output, and for-
get gates mentioned earlier. W x, Ŵ x, Ux, Ûx,
bx, where x ∈ {i, o, f, u}, are model parameters.

With this state transition mechanism, infor-
mation of each node is propagated to all its
neighboring nodes after each step. So after several
transition steps, each node state contains the in-
formation of a large context, including its an-
cestors, descendants, and siblings. For the worst
case where the input graph is a chain of nodes,
the maximum number of steps necessary for
information from one arbitrary node to reach
another is equal to the size of the graph. We
experiment with different numbers of transition
steps to study the effectiveness of global encoding.

4.1.1 Input Representation
The edges of an AMR graph contain labels,
which represent relations between the nodes they
connect, and are thus important for modeling the
graphs. The representation for each edge (i, j, l)
is defined as:

xl
i,j =W 4

(
[el; evi ]

)
+ b4,

where el and ei are the embeddings of edge label
l and source node vi, and W 4 and b4 are model
parameters.

4.2 Incorporating AMR Information with a
Doubly Attentive Decoder

There is no one-to-one correspondence between
AMR nodes and source words. To incorporate
additional knowledge from an AMR graph, an
external attention model is adopted over the base-
line model. In particular, the attention mem-
ory from the AMR graph is the last graph state
gT = {ajT }|vj∈V . In addition, the contextual
vector based on the graph state is calculated as:

ε̃m,i = ṽ
ᵀ
2 tanh(W aa

i
T + W̃ ssm + b̃2)

α̃m,i =
exp(ε̃m,i)∑N
j=1 exp(ε̃m,j)

.

W a, W̃ s, ṽ2, and b̃2 are model parameters.
The new context vector ζ̃m is calculated via∑N

i=1 α̃m,ia
i
T . Finally, ζ̃m is incorporated into the

calculation of the output probability distribution
over the target vocabulary (previously defined in
Equation 1):

P vocab = softmax(V 3[sm, ζm, ζ̃m] + b3). (2)

5 Training

Given a set of training instances {(X(1),Y (1)),
(X(2),Y (2)), . . . }, we train our models using the
cross-entropy loss over each gold-standard target
sequence Y (j) = y

(j)
1 , y

(j)
2 , . . . , y

(j)
M :

l = −
M∑

m=1

log p(y(j)m |y
(j)
m−1, . . . , y

(j)
1 ,X(j);θ).

X(j) represents the inputs for the jth instance,
which is a source sentence for our baseline, or
a source sentence paired with an automatically
parsed AMR graph for our model. θ represents
the model parameters.

6 Experiments

We empirically investigate the effectiveness of
AMR for English-to-German translation.

6.1 Setup
Data We use the WMT163 English-to-German
dataset, which contains around 4.5 million sen-
tence pairs for training. In addition, we use a sub-
set of the full dataset (News Commentary v11
[NC-v11], containing around 243,000 sentence
pairs) for development and additional experi-
ments. For all experiments, we use newstest2013
and newstest2016 as the development and test
sets, respectively.

To preprocess the data, the tokenizer from
Moses4 is used to tokenize both the English
and German sides. The training sentence pairs
where either side is longer than 50 words are
filtered out after tokenization. To deal with rare
and compound words, byte-pair encoding (BPE)5

(Sennrich et al., 2016) is applied to both sides.
In particular, 8,000 and 16,000 BPE merges are
used on the News Commentary v11 subset and
the full training set, respectively. On the other
hand, JAMR6 (Flanigan et al., 2016) is adopted
to parse the English sentences into AMRs before
BPE is applied. The statistics of the training data
and vocabularies after preprocessing are shown in
Tables 1 and 2, respectively. For the experiments
with the full training set, we used the top 40K

3http://www.statmt.org/wmt16/translation-task.html.
4http://www.statmt.org/moses/.
5https://github.com/rsennrich/subword-nmt.
6https://github.com/jflanigan/jamr.
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Dataset #Sent. #Tok. (EN) #Tok. (DE)
NC-v11 226K 6.4M 7.3M
Full 4.17M 109M 118M
News2013 3000 84.7K 95.6K
News2016 2999 88.1K 98.8K

Table 1: Statistics of the dataset. Numbers of tokens
are after BPE processing.

Dataset EN-ori EN AMR DE
NC-v11 79.8K 8.4K 36.6K 8.3K
Full 874K 19.3K 403K 19.1K

Table 2: Sizes of vocabularies. EN-ori represents
original English sentences without BPE.

of the AMR vocabulary, which covers more than
99.6% of the training set.

For our dependency-based and SRL-based base-
lines (which will be introduced in Baseline Sys-
tems), we choose Stanford CoreNLP Manning
et al. (2014) and IBM SIRE to generate depen-
dency trees and semantic roles, respectively. Since
both dependency trees and semantic roles are
based on the original English sentences without
BPE, we used the top 100K frequent English words,
which cover roughly 99.0% of the training set.

Hyperparameters We use the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
0.0005. The batch size is set to 128. Between
layers, we apply dropout with a probability of
0.2. The best model is picked based on the
cross-entropy loss on the development set. For
model hyperparameters, we set the graph state
transition number to 10 according to development
experiments. Each node takes information from
at most six neighbors. BLEU (Papineni et al.,
2002), TER (Snover et al., 2006), and Meteor
(Denkowski and Lavie, 2014) are used as the
metrics on cased and tokenized results.

For experiments with the NC-v11 subset, both
word embedding and hidden vector sizes are set
to 500, and the models are trained for at most
30 epochs. For experiments with full training set,
the word embedding and hidden state sizes are set
to 800, and our models are trained for at most
10 epochs. For all systems, the word embeddings are
randomly initialized and updated during training.

Baseline Systems We compare our model with
the following systems. Seq2seq represents our
attention-based LSTM baseline (Section 3), and

Figure 4: DEV BLEU scores against transition steps for
the graph encoders. The state transition is not applicable
to Seq2seq, so we draw a dashed line to represent its
performance.

Dual2seq is our model, which takes both a se-
quential and a graph encoder and adopts a
doubly attentive decoder (Section 4). To show the
merit of AMR, we further contrast our model with
the following baselines, all of which adopt the
same doubly attentive framework with a BiLSTM
for encoding BPE-segmented source sentences:
Dual2seq-LinAMR uses another BiLSTM for
encoding linearized AMRs. Dual2seq-Dep and
Dual2seq-SRL adopt our graph recurrent net-
work to encode original source sentences with
dependency and semantic role annotations, re-
spectively. The three baselines are useful for
contrasting different methods of encoding AMRs
and for comparing AMRs with other popular
structural information for NMT.

We also compare with Transformer (Vaswani
et al., 2017) and OpenNMT (Klein et al.,
2017), trained on the same dataset and with the
same set of hyperparameters as our systems. In
particular, we compare with Transformer-tf, one
popular implementation7 of Transformer based
on TensorFlow, and we choose OpenNMT-tf, an
official release8 of OpenNMT implemented with
TensorFlow. For a fair comparison, OpenNMT-tf
has one layer for both the encoder and the decoder,
and Transformer-tf has the default configuration
(N = 6), but with parameters being shared among
different blocks.

6.2 Development Experiments

Figure 4 shows the system performances as a
function of the number of graph state transitions

7https://github.com/Kyubyong/transformer.
8https://github.com/OpenNMT/OpenNMT-tf.
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System
NC-V11 FULL

BLEU TER↓ Meteor BLEU TER↓ Meteor
OpenNMT-tf 15.1 0.6902 0.3040 24.3 0.5567 0.4225
Transformer-tf 17.1 0.6647 0.3578 25.1 0.5537 0.4344
Seq2seq 16.0 0.6695 0.3379 23.7 0.5590 0.4258
Dual2seq-LinAMR 17.3 0.6530 0.3612 24.0 0.5643 0.4246
Duel2seq-SRL 17.2 0.6591 0.3644 23.8 0.5626 0.4223
Dual2seq-Dep 17.8 0.6516 0.3673 25.0 0.5538 0.4328
Dual2seq 19.2* 0.6305 0.3840 25.5* 0.5480 0.4376

Table 3: TEST performance. NC-v11 represents training only with the NC-v11 data, while Full means using the
full training data. * represents significant (Koehn, 2004) result (p < 0.01) over Seq2seq. ↓ indicates the lower
the better.

on the development set. Dual2seq (self) represents
our dual-attentive model, but its graph encoder
encodes the source sentence, which is treated
as a chain graph instead of an AMR graph.
Compared with Dual2seq, Dual2seq (self) has
the same number of parameters, but without
semantic information from AMR. Due to hardware
limitations, we do not perform an exhaustive
search by evaluating every possible state transition
number, but only transition numbers of 1, 5, 10,
and 12.

Our Dual2seq shows consistent performance
improvement by increasing the transition number
both from 1 to 5 (roughly +1.3 BLEU points)
and from 5 to 10 (roughly 0.2 BLEU points).
The former shows greater improvement than
the latter, showing that the performance starts
to converge after five transition steps. Further
increasing transition steps from 10 to 12 gives
a slight performance drop. We set the number
of state transition steps to 10 for all experiments
according to these observations.

On the other hand, Dual2seq (self) shows
only small improvements by increasing the state
transition number, and it does not perform
better than Seq2seq. Both results show that the
performance gains of Dual2seq are not due to an
increased number of parameters.

6.3 Main Results

Table 3 shows the TEST BLEU, TER, and Meteor
scores of all systems trained on the small-scale
News Commentary v11 subset or the large-scale
full set. Dual2seq is consistently better than the
other systems under all three metrics, showing
the effectiveness of the semantic information pro-
vided by AMR. Especially, Dual2seq is better
than both OpenNMT-tf and Transformer-tf. The

recurrent graph state transition of Dual2seq is
similar to Transformer in that it iteratively
incorporates global information. The improve-
ment of Dual2seq over Transformer-tf undoubt-
edly comes from the use of AMRs, which provide
complementary information to the textual inputs
of the source language.

In terms of BLEU score, Dual2seq is signif-
icantly better than Seq2seq in both settings, which
shows the effectiveness of incorporating AMR
information. In particular, the improvement is
much larger under the small-scale setting (+3.2
BLEU) than that under the large-scale setting
(+1.7 BLEU). This is an evidence that structural
and coarse-grained semantic information encoded
in AMRs can be more helpful when training data
are limited.

When trained on the NC-v11 subset, the gap
between Seq2seq and Dual2seq under Meteor
(around 5 points) is greater than that under BLEU
(around 3 points). Since Meteor gives partial credit
to outputs that are synonyms to the reference or
share identical stems, one possible explanation is
that the structural information within AMRs helps
to better translate the concepts from the source
language, which may be synonyms or paronyms
of reference words.

As shown in the second group of Table 3,
we further compare our model with other meth-
ods of leveraging syntactic or semantic infor-
mation. Dual2seq-LinAMR shows much worse
performance than our model and only slightly
outperforms the Seq2seq baseline. Both results
show that simply taking advantage of the AMR
concepts without their relations does not help very
much. One reason may be that AMR concepts,
such as John and Mary, also appear in the textual
input, and thus are also encoded by the other
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AMR Anno. BLEU
Automatic 16.8
Gold 17.5*

Table 4: BLEU scores of Dual2seq on The Little Prince
data, when gold or automatic AMRs are available.

(sequential) encoder.9 The gap between Dual2seq
and Dual2seq-LinAMR comes from modeling the
relations between concepts, which can be helpful
for deciding target word order by enhancing the
relations in source sentences. We conclude that
properly encoding AMRs is necessary to make
them useful.

Encoding dependency trees instead of AMRs,
Dual2seq-Dep shows a larger performance gap
with our model (17.8 vs 19.2) on small-scale
training data than on large-scale training data
(25.0 vs 25.5). It is likely because AMRs are more
useful on alleviating data sparsity than dependency
trees, since words are lemmatized into unified
concepts when parsing sentences into AMRs. For
modeling long-range dependencies, AMRs have
one crucial advantage over dependency trees by
modeling concept-concept relations more directly.
It is because AMRs drop function words; thus
the distances between concepts are generally
closer in AMRs than in dependency trees. Finally,
Dual2seq-SRL is less effective than our model,
because the annotations labeled by SRL are a
subset of AMRs.

We outperform Marcheggiani et al. (2018) on
the same datasets, although our systems vary
in a number of respects. When trained on the
NC-v11 data, they show BLEU scores of 14.9
only with their BiLSTM baseline, 16.1 using
additional dependency information, 15.6 using
additional semantic roles, and 15.8 taking both
as additional knowledge. Using Full as the training
data, the scores become 23.3, 23.9, 24.5, and 24.9,
respectively. In addition to the different seman-
tic representation being used (AMR vs SRL),
Marcheggiani et al. (2018) laid GCN (Kipf and
Welling, 2017) layers on top of a bidirectional
LSTM (BiLSTM) layer, and then concatenated
layer outputs as the attention memory. GCN
layers encode the semantic role information, while
BiLSTM layers encode the input sentence in the
source language, and the concatenated hidden

9AMRs can contain multi-word concepts, such as New
York City, but they are in the textual input.

Figure 5: Test BLEU score of various sentence lengths.

states of both layers contain information from
both semantic role and source sentence. For
incorporating AMR, because there is no one-
to-one word-to-node correspondence between a
sentence and the corresponding AMR graph, we
adopt separate attention models. Our BLEU scores
are higher than theirs, but we cannot conclude that
the advantage primarily comes from AMR.

6.4 Analysis
Influence of AMR Parsing Accuracy To ana-
lyze the influence of AMR parsing on our model
performance, we further evaluate on a test set
where the gold AMRs for the English side are
available. In particular, we choose The Little
Prince corpus, which contains 1,562 sentences
with gold AMR annotations.10 Since there are no
parallel German sentences, we take a German-
version The Little Prince novel, and then perform
manual sentence alignment. Taking the whole The
Little Prince corpus as the test set, we measure the
influence of AMR parsing accuracy by evaluating
on the test set when gold or automatically parsed
AMRs are available. The automatic AMRs are
generated by parsing the English sentences with
JAMR.

Table 4 shows the BLEU scores of our
Dual2seq model taking gold or automatic AMRs
as inputs. Not listed in Table 4, Seq2seq achieves
a BLEU score of 15.6, which is 1.2 BLEU points
lower than using automatic AMR information.
The improvement from automatic AMR to gold
AMR (+0.7 BLEU) is significant, which shows
that the translation quality of our model can
be further improved with an increase of AMR
parsing accuracy. However, the BLEU score with
gold AMR does not indicate the potentially best

10https://amr.isi.edu/download.html.
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AMR: (s2 / say-01 :ARG0 (p3 / person :ARG1-of (h / have-rel-role-91 :ARG0 (p / person :ARG1-of (m2 /
meet-03 :ARG0 (t / they) :ARG2 15) :mod (m / mutual)) :ARG2 (f / friend)) :name (n2 / name :op1 ‘‘Carla’’ :op2
‘‘Hairston’’)) :ARG1 (a / and :op1 (p2 / person :name (n / name :op1 ‘‘Lamb’’))) :ARG2 (s / she) :time 20)
Src: Carla Hairston said she was 15 and Lamb was 20 when they met through mutual friends .
Ref: Carla Hairston sagte , sie war 15 und Lamm war 20 , als sie sich durch gemeinsame Freunde trafen .
Dual2seq: Carla Hairston sagte , sie war 15 und Lamm war 20 , als sie sich durch gegenseitige Freunde trafen .
Seq2seq: Carla Hirston sagte , sie sei 15 und Lamb 20 , als sie durch gegenseitige Freunde trafen .
AMR: (s / say-01 :ARG0 (m / media :ARG1-of (l / local-02)) :ARG1 (c2 / come-01 :ARG1 (v / vehicle :mod (p
/ police)) :manner (c3 / constant) :path (a / across :op1 (r / refugee :mod (n2 / new))) :time (s2 / since :op1 (t3 /
then)) :topic (t / thing :name (n / name :op1 (c / Croatian) :op2 (t2 / Tavarnik)))))
Src: Since then , according to local media , police vehicles are constantly coming across new refugees in Croatian
Tavarnik .
Ref: Laut lokalen Medien treffen seitdem im kroatischen Tovarnik ständig Polizeifahrzeuge mit neuen
Flüchtlingen ein .
Dual2seq: Seither kommen die Polizeifahrzeuge nach den örtlichen Medien ständig über neue Flüchtlinge in
Kroatische Tavarnik .
Seq2seq: Seitdem sind die Polizeiautos nach den lokalen Medien ständig neue Flüchtlinge in Kroatien
Tavarnik .
AMR: (b2 / breed-01 :ARG0 (p2 / person :ARG0-of (h / have-org-role-91 :ARG2 (s3 / scientist))) :ARG1 (w2 /
worm) :ARG2 (s2 / system :ARG1-of (c / control-01 :ARG0 (b / burst-01 :ARG1 (w / wave :mod (s / sound)))
:ARG1-of (p / possible-01)) :ARG1-of (n / nervous-01) :mod (m / modify-01 :ARG1 (g / genetics))))
Src: Scientists have bred worms with genetically modified nervous systems that can be controlled by bursts of
sound waves .
Ref: Wissenschaftler haben Würmer mit genetisch veränderten Nervensystemen gezüchtet , die von
Ausbrüchen von Schallwellen gesteuert werden können .
Dual2seq: Die Wissenschaftler haben die Würmer mit genetisch veränderten Nervensystemen gezüchtet,
die durch Verbrennungen von Schallwellen kontrolliert werden können .
Seq2seq: Wissenschaftler haben sich mit genetisch modifiziertem Nervensystem gezüchtet , die durch
Verbrennungen von Klangwellen gesteuert werden können .

Figure 6: Sample system outputs.

performance that our model can achieve. The
primary reason is that even though the test set
is coupled with gold AMRs, the training set is
not. Trained with automatic AMRs, our model
can learn to selectively trust the AMR structure.
An additional reason is the domain difference:
The Little Prince data are in the literary domain
while our training data are in the news domain.
There can be a further performance gain if the
accuracy of the automatic AMRs on the training
set is improved.

Performance Based on Sentence Length We
hypothesize that AMRs should be more beneficial
for longer sentences: Those are likely to contain
long-distance dependencies (such as discourse
information and predicate–argument structures),
which may not be adequately captured by linear
chain RNNs but are directly encoded in AMRs.
To test this, we partition the test data into four
buckets by length and calculate BLEU for each
of them. Figure 5 shows the performances of our
model along with Dual2seq-Dep and Seq2seq. Our

model outperforms the Seq2seq baseline rather
uniformly across all buckets, except for the first
one, where they are roughly equal. This may be
surprising. On the one hand, Seq2seq fails to
capture some dependencies for medium-length
instances; on the other hand, AMR parses are
more noisy for longer sentences, which prevents us
from obtaining extra improvements with AMRs.

Dependency trees have been proved useful
in capturing long-range dependencies. Figure 5
shows that AMRs are comparatively better than
dependency trees, especially on medium-length
(21–30) sentences. The reason may be that the
AMRs of medium-length sentences are much
more accurate than longer sentences, and thus are
better at capturing the relations between concepts.
On the other hand, even though dependency trees
are more accurate than AMRs, they still fail to
represent relations for long sentences. It is likely
because relations for longer sentences are more
difficult to detect. Another possible reason is that
dependency trees do not incorporate coreferences,
which AMRs consider.
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Human Evaluation We further study the trans-
lation quality of predicate–argument structures by
conducting a human evaluation on 100 instances
from the test set. In the evaluation, translations
of both Dual2seq and Seq2seq, together with the
source English sentence, the German reference,
and an AMR are provided to a German-speaking
annotator to decide which translation better
captures the predicate–argument structures in
the source sentence. To avoid annotation bias,
translation results of both models are swapped for
some instances, and the German annotator does
not know which model each translation belongs
to. The annotator either selects a ‘‘winner’’ or
makes a ‘‘tie’’ decision, meaning that both results
are equally good.

Out of the 100 instances, Dual2seq wins on
46, Seq2seq wins on 23, and there is a tie on
the remaining 31. Dual2seq wins on almost half
of the instances, about twice as often as Seq2seq
wins, indicating that AMRs help in translating
the predicate–argument structures on the source
side.

Case Study The outputs of the baseline system
(Seq2seq) and our final system (Dual2seq) are
shown in Figure 6. In the first sentence, the AMR-
based Dual2seq system correctly produces the
reflexive pronoun sich as an argument of the
verb trafen (meet), despite the distance between
the words in the system output, and despite the
fact that the equivalent English words each other
do not appear in the system output. This is
facilitated by the argument structure in the AMR
analysis.

In the second sentence, the AMR-based
Dual2seq system produces an overly literal trans-
lation for the English phrasal verb come across.
The Seq2seq translation, however, incorrectly
states that the police vehicles are refugees. The
difficulty for the Seq2seq probably derives in part
from the fact that are and coming are separated by
the word constantly in the input, while the main
predicate is clear in the AMR representation.

In the third sentence, the Dual2seq system
correctly translates the object of breed as worms,
while the Seq2seq translation incorrectly states
that the scientists breed themselves. Here the
difficulty is likely the distance between the object
and the verb in the German output, which causes
the Seq2seq system to lose track of the correct
input position to translate.

7 Conclusion

We showed that AMRs can improve neural
machine translation. In particular, the structural
semantic information from AMRs can be com-
plementary to the source textual input by intro-
ducing a higher level of information abstraction.
A graph recurrent network (GRN) is leveraged
to encode AMR graphs without breaking the
original graph structure, and a sequential LSTM
is used to encode the source input. The decoder
is a doubly attentive LSTM, taking the encoding
results of both the graph encoder and the sequential
encoder as attention memories. Experiments on
a standard benchmark showed that AMRs are
helpful regardless of the sentence length and are
more effective than other more popular choices,
such as dependency trees and semantic roles.
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