
Neural Lattice Language Models

Jacob Buckman
Language Technologies Institute

Carnegie Mellon University
jacobbuckman@gmail.com

Graham Neubig
Language Technologies Institute

Carnegie Mellon University
gneubig@cs.cmu.edu

Abstract

In this work, we propose a new language mod-
eling paradigm that has the ability to perform
both prediction and moderation of informa-
tion flow at multiple granularities: neural lat-
tice language models. These models con-
struct a lattice of possible paths through a sen-
tence and marginalize across this lattice to cal-
culate sequence probabilities or optimize pa-
rameters. This approach allows us to seam-
lessly incorporate linguistic intuitions – in-
cluding polysemy and the existence of multi-
word lexical items – into our language model.
Experiments on multiple language modeling
tasks show that English neural lattice language
models that utilize polysemous embeddings
are able to improve perplexity by 9.95% rela-
tive to a word-level baseline, and that a Chi-
nese model that handles multi-character to-
kens is able to improve perplexity by 20.94%
relative to a character-level baseline.

1 Introduction

Neural network models have recently contributed to-
wards a great amount of progress in natural language
processing. These models typically share a common
backbone: recurrent neural networks (RNN), which
have proven themselves to be capable of tackling
a variety of core natural language processing tasks
(Hochreiter and Schmidhuber, 1997; Elman, 1990).
One such task is language modeling, in which we
estimate a probability distribution over sequences of
tokens that corresponds to observed sentences (§2).
Neural language models, particularly models con-
ditioned on a particular input, have many applica-
tions including in machine translation (Bahdanau et
al., 2016), abstractive summarization (Chopra et al.,
2016), and speech processing (Graves et al., 2013).

dogs chased the small cat

dogs chased the small

cat

dogs chased the

small

dogs chased

the

the_small

the_small_cat small_cat

dogs_chasedchased

chased_the dogs_chased_the

chased_the_small

Figure 1: Lattice decomposition of a sentence and its cor-
responding lattice language model probability calculation

Similarly, state-of-the-art language models are al-
most universally based on RNNs, particularly long
short-term memory (LSTM) networks (Jozefowicz
et al., 2016; Inan et al., 2017; Merity et al., 2016).

While powerful, LSTM language models usually
do not explicitly model many commonly-accepted
linguistic phenomena. As a result, standard mod-
els lack linguistically informed inductive biases, po-
tentially limiting their accuracy, particularly in low-
data scenarios (Adams et al., 2017; Koehn and
Knowles, 2017). In this work, we present a novel
modification to the standard LSTM language mod-
eling framework that allows us to incorporate some
varieties of these linguistic intuitions seamlessly:
neural lattice language models (§3.1). Neural lat-
tice language models define a lattice over possi-
ble paths through a sentence, and maximize the
marginal probability over all paths that lead to gen-
erating the reference sentence, as shown in Fig. 1.
Depending on how we define these paths, we can in-
corporate different assumptions about how language
should be modeled.

In the particular instantiations of neural lattice
language models covered by this paper, we focus on
two properties of language that could potentially be
of use in language modeling: the existence of multi-
word lexical units (Zgusta, 1967) (§4.1) and poly-

529

Transactions of the Association for Computational Linguistics, vol. 6, pp. 529–541, 2018. Action Editor: Holger Schwenk.
Submission batch: 8/2017; Revision batch: 1/2018; Published 8/2018.

c©2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

semy (Ravin and Leacock, 2000) (§4.2). Neural lat-
tice language models allow the model to incorporate
these aspects in an end-to-end fashion by simply ad-
justing the structure of the underlying lattices.

We run experiments to explore whether these
modifications improve the performance of the model
(§5). Additionally, we provide qualitative visualiza-
tions of the model to attempt to understand what
types of multi-token phrases and polysemous em-
beddings have been learned.

2 Background

2.1 Language Models
Consider a sequence X for which we want to cal-
culate its probability. Assume we have a vocabulary
from which we can select a unique list of |X| tokens
x1, x2, . . . , x|X| such that X = [x1;x2; . . . ;x|X|],
i.e. the concatenation of the tokens (with an appro-
priate delimiter). These tokens can be either on the
character level (Hwang and Sung, 2017; Ling et al.,
2015) or word level (Inan et al., 2017; Merity et al.,
2016). Using the chain rule, language models gen-
erally factorize p(X) in the following way:

p(X) = p(x1, x2, . . . , x|X|)

=

|X|∏

t=1

p(xt | x1, x2, . . . , xt−1). (1)

Note that this factorization is exact only in the
case where the segmentation is unique. In character-
level models, it is easy to see that this property is
maintained, because each token is unique and non-
overlapping. In word-level models, this also holds,
because tokens are delimited by spaces, and no word
contains a space.

2.2 Recurrent Neural Networks
Recurrent neural networks have emerged as the
state-of-the-art approach to approximating p(X). In
particular, the LSTM cell (Hochreiter and Schmid-
huber, 1997) is a specific RNN architecture which
has been shown to be effective on many tasks, in-
cluding language modeling (Press and Wolf, 2017;
Jozefowicz et al., 2016; Merity et al., 2016; Inan et
al., 2017).1 LSTM language models recursively cal-

1In this work, we utilize an LSTM with linked input and
forget gates, as proposed by Greff et al. (2016).

culate the hidden and cell states (ht and ct respec-
tively) given the input embedding et−1 correspond-
ing to token xt−1:

ht, ct = LSTM(ht−1, ct−1, et−1, θ), (2)

then calculate the probability of the next token given
the hidden state, generally by performing an affine
transform parameterized by W and b, followed by a
softmax:

p(xt | ht) := softmax(W ∗ ht + b). (3)

3 Neural Lattice Language Models

3.1 Language Models with Ambiguous
Segmentations

To reiterate, the standard formulation of language
modeling in the previous section requires splitting
sentence X into a unique set of tokens x1, . . . , x|X|.
Our proposed method generalizes the previous for-
mulation to remove the requirement of uniqueness
of segmentation, similar to that used in non-neural
n-gram language models such as Dupont and Rosen-
feld (1997) and Goldwater et al. (2007).

First, we define some terminology. We use the
term “token”, designated by xi, to describe any in-
divisible item in our vocabulary that has no other
vocabulary item as its constituent part. We use the
term “chunk”, designated by ki or xji , to describe
a sequence of one or more tokens that represents a
portion of the full string X , containing the unit to-
kens xi through xj : x

j
i = [xi, xi+1; . . . ;xj]. We

also refer to the “token vocabulary”, which is the
subset of the vocabulary containing only tokens, and
to the “chunk vocabulary”, which similarly contains
all chunks.

Note that we can factorize the probability of any
sequence of chunks K using the chain rule, in pre-
cisely the same way as sequences of tokens:

p(K) = p(k1, k2, . . . , k|K|)

=

|K|∏

t=1

p(kt | k1, k2, . . . , kt−1). (4)

We can factorize the overall probability of a to-
ken list X in terms of its chunks by using the chain
rule, and marginalizing over all segmentations. For
any particular token list X , we define a set of valid

530

segmentations S(X), such that for every sequence
s ∈ S(X), X = [xs1−1s0 ;xs2−1s1 ; . . . ;x

s|s|
s|s|−1

]. The
factorization is:

p(X) =
∑

S

p(X,S) =
∑

S

p(X|S)p(S) =
∑

S∈S(X)

p(S)

=
∑

S∈S(X)

|S|∏

t=1

p(xst−1st−1
| xs1−1s0 , xs2−1s1 , . . . , xst−1−1

st−2
).

(5)

Note that, by definition, there exists a unique seg-
mentation of X such that x1, x2, . . . are all tokens,
in which case |S| = |X|. When only that one unique
segmentation is allowed per X , S contains only that
one element, so summation drops out, and therefore
for standard character-level and word-level models,
Eq. (5) reduces to Eq. (4), as desired. However,
for models that license multiple segmentations per
X , computing this marginalization directly is gener-
ally intractable. For example, consider segmenting
a sentence using a vocabulary containing all words
and all 2-word expressions. The size of S would
grow exponentially with the number of words in X ,
meaning we would have to marginalize over tril-
lions of unique segmentations for even modestly-
sized sentences.

3.2 Lattice Language Models

To avoid this, it is possible to re-organize the com-
putations in a lattice, which allows us to dramati-
cally reduce the number of computations required
(Dupont and Rosenfeld, 1997; Neubig et al., 2010).

All segmentations of X can be expressed as the
edges of paths through a lattice over token-level pre-
fixes of X: x<1, x<2, . . . , X . The infimum is the
empty prefix x<1; the supremum isX; an edge from
prefix x<i to prefix x<j exists if and only if there
exists a chunk xji in our chunk vocabulary such that
[x<i;x

j
i] = x<j . Each path through the lattice from

x<1 to X is a segmentation of X into the list of to-
kens on the traversed edges, as seen in Fig. 1.

The probability of a specific prefix p(x<j) is
calculated by marginalizing over all segmentations
leading up to xj−1

p(x<j) =
∑

S∈S(x<j)

|S|∏

t=1

p(xst−1st−1
| x<st−1), (6)

where by definition s|S| = j. The key insight here
that allows us to calculate this efficiently is that this
is a recursive formula and that instead of marginaliz-
ing over all segmentations, we can marginalize over
immediate predecessor edges in the lattice,Aj . Each
item in Aj is a location i (= st−1), which indicates
that the edge between prefix x<i and prefix x<j , cor-
responding to token xji , exists in the lattice. We can
thus calculate p(x<j) as

p(x<j) =
∑

i∈Aj

p(x<i)p(x
j
i | x<i). (7)

Since X is the supremum prefix node, we can use
this formula to calculate p(X) by setting j = |X|.
In order to do this, we need to calculate the proba-
bility of each of its |X| predecessors. Each of those
takes up to |X| calculations, meaning that the com-
putation for p(X) can be done in O(|X|2) time. If
we can guarantee that each node will have a maxi-
mum number of incoming edgesD so that |Aj | ≤ D
for all j, then this bound can be reduced to O(D|X|)
time.2

The proposed technique is completely agnostic to
the shape of the lattice, and Fig. 2 illustrates several
potential varieties of lattices. Depending on how the
lattice is constructed, this approach can be useful in
a variety of different contexts, two of which we dis-
cuss in §4.

3.3 Neural Lattice Language Models
There is still one missing piece in our attempt to ap-
ply neural language models to lattices. Within our
overall probability in Eq. (7), we must calculate the
probability p(xji | x<i) of the next segment given
the history. However, given that there are potentially
an exponential number of paths through the lattice
leading to xi, this is not as straightforward as in the
case where only one segmentation is possible. Pre-
vious work on lattice-based language models (Neu-
big et al., 2010; Dupont and Rosenfeld, 1997) uti-
lized count-based n-gram models, which depend on
only a limited historical context at each step mak-
ing it possible to compute the marginal probabilities
in an exact and efficient manner through dynamic
programming. On the other hand, recurrent neural

2Thus, the standard token-level language model where D =
1 takes O(|X|) computations.

531

the dog barked .

the dog barked .

the dog
dog barked .

the dog barked .

the dog
dog barked

barked .

the
dog1 barked1 .

dog2 barked2

(a)

(b)

(c)

(d)

Figure 2: Example of (a) a single-path lattice, (b) a sparse
lattice, (c) a dense lattice with D = 2, and (d) a multilat-
tice with D = 2, for sentence “the dog barked .”

models depend on the entire context, causing them
to lack this ability. Our primary technical contribu-
tion is therefore to describe several techniques for
incorporating lattices into a neural framework with
infinite context, by providing ways to approximate
the hidden state of the recurrent neural net.

3.3.1 Direct Approximation
One approach to approximating the hidden state

is the TreeLSTM framework described by Tai et al.
(2015).3 In the TreeLSTM formulation, new states
are derived from multiple predecessors by simply
summing the individual hidden and cell state vec-
tors of each of them. For each predecessor location
i ∈ Aj , we first calculate the local hidden state h̃
and local cell state c̃ by combining the embedding
eji with the hidden state of the LSTM at x<i using
the standard LSTM update function as in Eq. (2):

h̃i, c̃i = LSTM(hi, ci, e
j
i , θ) for i ∈ Aj .

We then sum the local hidden and cell states:

hj =
∑

i∈Aj

h̃i cj =
∑

i∈Aj

c̃i.

3This framework has been used before for calculating neural
sentence representations involving lattices by Su et al. (2016)
and Sperber et al. (2017), but not for the language models that
are the target of this paper.

This formulation is powerful, but comes at the
cost of sacrificing the probabilistic interpretation of
which paths are likely. Therefore, even if almost
all of the probability mass comes through the “true”
segmentation, the hidden state may still be heavily
influenced by all of the “bad” segmentations as well.

3.3.2 Monte-Carlo Approximation
Another approximation that has been proposed is

to sample one predecessor state from all possible
predecessors, as seen in Chan et al. (2017). We can
calculate the total probability that we reach some
prefix x<j , and we know how much of this prob-
ability comes from each of its predecessors in the
lattice, so we can construct a probability distribution
over predecessors in the lattice:

M(x<i | θ) =
p(x<i | θ)p(xji | x<i; θ)

p(x<j | θ)
. (8)

Therefore, one way to update the LSTM is to sam-
ple one predecessor x<i from the distributionM and
simply set hj = h̃i and cj = c̃i. However, sampling
is unstable and difficult to train: we found that the
model tended to over-sample short tokens early on
during training, and thus segmented every sentence
into unigrams. This is similar to the outcome re-
ported by Chan et al. (2017), who accounted for it
by incorporating an ε encouraging exploration.

3.3.3 Marginal Approximation
In another approach, which allows us to incorpo-

rate information from all predecessors while main-
taining a probabilistic interpretation, we can utilize
the probability distribution M to instead calculate
the expected value of the hidden state:

hj = Ex<i∼M [h̃i] =
∑

i∈Aj

M(x<i | θ)h̃i

cj = Ex<i∼M [c̃i] =
∑

i∈Aj

M(x<i | θ)c̃i.

3.3.4 Gumbel-Softmax Interpolation
The Gumbel-Softmax trick, or concrete distribu-

tion, described by Jang et al. (2017) and Maddi-
son et al. (2017), is a technique for incorporating
discrete choices into differentiable neural computa-
tions. In this case, we can use it to select a prede-
cessor. The Gumbel-Softmax trick works by taking
advantage of the fact that adding Gumbel noise to

532

the pre-softmax predecessor scores and then taking
the argmax is equivalent to sampling from the prob-
ability distribution. By replacing the argmax with a
softmax function scaled by a temperature τ , we can
get this pseudo-sampled distribution through a fully
differentiable computation:

N(x<i | θ) =
exp((log(M(x<i | θ)) + gi)/τ)∑

k∈Aj
exp((log(M(x<k | θ)) + gk)/τ)

.

This new distribution can then be used to calculate
the hidden state by taking a weighted average of the
states of possible predecessors:

hj =

j−1∑

i∈Aj

N(x<i | θ)h̃i cj =

j−1∑

i=j−L
N(x<i | θ)c̃i.

When τ is large, the values of N(x<i | θ) are
flattened out; therefore, all the predecessor hidden
states are summed with approximately equal weight,
equivalent to the direct approximation (§3.3.1). On
the other hand, when τ is small, the output distri-
bution becomes extremely peaky, and one predeces-
sor receives almost all of the weight. Each prede-
cessor x<i has a chance of being selected equal to
M(x<i | θ), which makes it identical to ancestral
sampling (§3.3.2). By slowly annealing the value of
τ , we can smoothly interpolate between these two
approaches, and end up with a probabilistic interpre-
tation that avoids the instability of pure sampling-
based approaches.

4 Instantiations of Neural Lattice LMs

In this section, we introduce two instantiations of
neural lattice languages models aiming to capture
features of language: the existence of coherent
multi-token chunks, and the existence of polysemy.

4.1 Incorporating Multi-Token Phrases
4.1.1 Motivation

Natural language phrases often demonstrate sig-
nificant non-compositionality: for example, in En-
glish, the phrase “rock and roll” is a genre of mu-
sic, but this meaning is not obtained by viewing the
words in isolation. In word-level language model-
ing, the network is given each of these words as in-
put, one at a time; this means it must capture the id-
iomaticity in its hidden states, which is quite round-
about and potentially a waste of the limited param-
eters in a neural network model. A straightforward

solution is to have an embedding for the entire multi-
token phrase, and use this to input the entire phrase
to the LSTM in a single timestep. However, it is also
important that the model is able to decide whether
the non-compositional representation is appropriate
given the context: sometimes, “rock” is just a rock.

Additionally, by predicting multiple tokens in a
single timestep, we are able to decrease the num-
ber of timesteps across which the gradient must
travel, making it easier for information to be prop-
agated across the sentence. This is even more useful
in non-space-delimited languages such as Chinese,
in which segmentation is non-trivial, but character-
level modeling leads to many sentences being hun-
dreds of tokens long.

There is also psycho-linguistic evidence which
supports the fact that humans incorporate multi-
token phrases into their mental lexicon. Siyanova-
Chanturia et al. (2011) show that native speakers of
a language have significantly reduced response time
when processing idiomatic phrases, whether they are
used in an idiomatic sense or not, while Bannard and
Matthews (2008) show that children learning a lan-
guage are better at speaking common phrases than
uncommon ones. This evidence lends credence to
the idea that multi-token lexical units are a useful
tool for language modeling in humans, and so may
also be useful in computational models.

4.1.2 Modeling Strategy
The underlying lattices utilized in our multi-token

phrase experiments are “dense” lattices: lattices
where every edge (below a certain length L) is
present (Fig. 2, c). This is for two reasons. First,
since every sequence of tokens is given an oppor-
tunity to be included in the path, all segmentations
are candidates, which will potentially allow us to
discover arbitrary types of segmentations without a
prejudice towards a particular theory of which multi-
token units we should be using. Second, using a
dense lattice makes minibatching very straightfor-
ward by ensuring that the computation graphs for
each sentence are identical. If the lattices were not
dense, the lattices of various sentences in a mini-
batch could be different; it then becomes necessary
to either calculate a differently-shaped graph for ev-
ery sentence, preventing minibatching and hurting
training efficiency, or calculate and then mask out

533

the missing edges, leading to wasted computation.
Since only edges of length L or less are present,
the maximum in-degree of any node in the lattice
D is no greater than L, giving us the time bound
O(L|X|).

4.1.3 Token Vocabularies
Storing an embedding for every possible multi-

token chunk would require |V |L unique embed-
dings, which is intractable. Therefore, we construct
our multi-token embeddings by merging composi-
tional and non-compositional representations.

Non-compositional Representation We first es-
tablish a priori set of “core” chunk-level tokens, each
have a dense embedding. In order to guarantee full
coverage of sentences, we first add every unit-level
token to this vocabulary, e.g. every word in the cor-
pus for a word-level model. Following this, we also
add the most frequent n-grams (where 1 < n ≤ L).
This ensures that the vast majority of sentences will
have several longer chunks appear within them, and
so will be able to take advantage of tokens at larger
granularities.

Compositional Representation However, the
non-compositional embeddings above only account
for a subset of all n-grams, so we additionally
construct compositional embeddings for each chunk
by running a BiLSTM encoder over the individual
embeddings of each unit-level token within it (Dyer
et al., 2016). In this way, we can create a unique
embedding for every sequence of unit-level tokens.

We use this composition function on chunks
regardless of whether they are assigned non-
compositional embeddings or not, as even high-
frequency chunks may display compositional prop-
erties. Thus, for every chunk, we compute the chunk
embedding vector xji by concatenating the compo-
sitional embedding with the non-compositional em-
bedding if it exists, or otherwise with an <UNK>
embedding.

Sentinel Mixture Model for Predictions At each
timestep, we want to use our LSTM hidden state ht
to assign some probability mass to every chunk with
a length less than L. To do this, we follow Merity
et al. (2016) in creating a new “sentinel” token <s>
and adding it to our vocabulary. At each timestep,

we first use our neural network to calculate a score
for each chunk C in our vocabulary, including the
sentinel token. We do a softmax across these scores
to assign a probability pmain(Ct+1 | ht; θ) to every
chunk in our vocabulary, and also to<s>. For token
sequences not represented in our chunk vocabulary,
this probability pmain(Ct+1 | ht; θ) = 0.

Next, the probability mass assigned to the sentinel
value, pmain(<s> | ht; θ), is distributed across all
possible tokens sequences of length less than L, us-
ing another LSTM with parameters θsub. Similar to
Jozefowicz et al. (2016), this sub-LSTM is initial-
ized by passing in the hidden state of the main lattice
LSTM at that timestep. This gives us a probability
for each sequence psub(c1, c2, . . . , cL | ht; θsub).

The final formula for calculating the probability
mass assigned to a specific chunk C is:

p(C | ht; θ) =pmain(C | ht; θ)+
pmain(<s> | ht; θ)psub(C | ht; θsub).

4.2 Incorporating Polysemous Tokens
4.2.1 Motivation

A second shortcoming of current language mod-
eling approaches is that each word is associated with
only one embedding. For highly polysemous words,
a single embedding may be unable to represent all
meanings effectively.

There has been past work in word embeddings
which has shown that using multiple embeddings for
each word is helpful in constructing a useful repre-
sentation. Athiwaratkun and Wilson (2017) repre-
sented each word with a multimodal Gaussian dis-
tribution and demonstrated that embeddings of this
form were able to outperform more standard skip-
gram embeddings on word similarity and entailment
tasks. Similarly, Chen et al. (2015) incorporate
standard skip-gram training into a Gaussian mixture
framework and show that this improves performance
on several word similarity benchmarks.

When a polysemous word is represented using
only a single embedding in a language modeling
task, the multimodal nature of the true embedding
distribution may causes the resulting embedding to
be both high-variance and skewed from the positions
of each of the true modes. Thus, it is likely useful
to represent each token with multiple embeddings
when doing language modeling.

534

4.2.2 Modeling Strategy
For our polysemy experiments, the underlying lat-

tices are multi-lattices: lattices which are also multi-
graphs, and can have any number of edges between
any given pair of nodes (Fig. 2, d). Lattices set up
in this manner allow us to incorporate multiple em-
beddings for each word. Within a single sentence,
any pair of nodes corresponds to the start and end
of a particular subsequence of the full sentence, and
is thus associated with a specific token. Each edge
between them is a unique embedding for that to-
ken. While many strategies for choosing the num-
ber of embeddings exist in the literature (Neelakan-
tan et al., 2014), in this work, we choose a number
of embeddings E and assign that many embeddings
to each word. This ensures that the maximum in-
degree of any node in the lattice D, is no greater
than E, giving us the time bound O(E|X|).

In this work, we do not explore models that in-
clude both chunk vocabularies and multiple embed-
dings. However, combining these two techniques, as
well as exploring other, more complex lattice struc-
tures, is an interesting avenue for future work.

5 Experiments

5.1 Data

We perform experiments on two languages: English
and Chinese, which provide an interesting contrast
in linguistic features.4

In English, the most common benchmark for
language modeling recently is the Penn Tree-
bank, specifically the version preprocessed by
Tomáš Mikolov (2010). However, this corpus is lim-
ited by being relatively small, only containing ap-
proximately 45,000 sentences, which we found to be
insufficient to effectively train lattice language mod-
els.5 Thus, we instead used the Billion Word Corpus
(Chelba et al., 2014). Past experiments on the BWC
typically modeled every word without restricting the
vocabulary, which results in a number of challenges
regarding the modeling of open vocabularies that are
orthogonal to this work. Thus, we create a pre-

4Code to reproduce datasets and experiments is
available at: http://github.com/jbuckman/
neural-lattice-language-models

5Experiments using multi-word units resulted in overfitting,
regardless of normalization and hyperparameter settings.

processed version of the data in the same manner
as Mikolov, lowercasing the words, replacing num-
bers with <N> tokens, and <UNK>ing all words
beyond the ten thousand most common. Addition-
ally, we restricted the data set to only include sen-
tences of length 50 or less, ensuring that large mini-
batches could fit in GPU memory. Our subsampled
English corpus contained 29,869,166 sentences, of
which 29,276,669 were used for training, 5,000 for
validation, and 587,497 for testing. To validate that
our methods scale up to larger language modeling
scenarios, we also report a smaller set of large-scale
experiments on the full billion word benchmark in
Appendix A.

In Chinese, we ran experiments on a subset of
the Chinese GigaWord corpus. Chinese is also par-
ticularly interesting because unlike English, it does
not use spaces to delimit words, so segmentation is
non-trivial. Therefore, we used a character-level lan-
guage model for the baseline, and our lattice was
composed of multi-character chunks. We used sen-
tences from Guangming Daily, again <UNK>ing
all but the 10,000 most common tokens and restrict-
ing the selected sentences to only include sentences
of length 150 or less. Our subsampled Chinese cor-
pus included 934,101 sentences for training, 5,000
for validation, and 30,547 for testing.

5.2 Main Experiments

We compare a baseline LSTM model, dense lattices
of size 1, 2, and 3, and a multilattice with 2 and 3
embeddings per word.

The implementation of our networks was done in
DyNet (Neubig et al., 2017). All LSTMs had 2 lay-
ers, each with a hidden dimension of 200. Vari-
ational dropout (Gal and Ghahramani, 2016) of .2
was used on the Chinese experiments, but hurt per-
formance on the English data, so it was not used.
The 10,000 word embeddings each had dimension
256. For lattice models, chunk vocabularies were se-
lected by taking the 10,000 words in the vocabulary
and adding the most common 10,000 n-grams with
1 < n ≤ L. The weights on the final layer of the net-
work were tied with the input embeddings, as done
by Press and Wolf (2017) and Inan et al. (2017).
In all lattice models, hidden states were computed
using a weighted expectation (§3.3.3) unless men-
tioned otherwise. In multi-embedding models, em-

535

Table 1: Results on English language modeling task
Model Valid. Perp. Test Perp.

Baseline 47.64 48.62
Multi-Token (L = 1) 45.69 47.21
Multi-Token (L = 2) 44.15 46.12
Multi-Token (L = 3) 45.19 46.84
Multi-Emb (E = 2) 44.80 46.32
Multi-Emb (E = 3) 42.76 43.78

Table 2: Results on Chinese language modeling task
Model Valid. Perp. Test Perp.

Baseline 41.46 40.72
Multi-Token (L = 1) 49.86 50.99
Multi-Token (L = 2) 38.61 37.22
Multi-Token (L = 3) 33.01 32.19
Multi-Emb (E = 2) 40.30 39.28
Multi-Emb (E = 3) 45.72 44.40

bedding sizes were decreased so as to maintain the
same total number of parameters. All models were
trained using the Adam optimizer with a learning
rate of .01 on a NVIDIA K80 GPU. The results can
be seen in Table 1 and Table 2.

In the multi-token phrase experiments, many ad-
ditional parameters are accrued by the BiLSTM
encoder and sub-LSTM predictive model, making
them not strictly comparable to the baseline. To ac-
count for this, we include results for L = 1, which,
like the baseline LSTM approach, fails to leverage
multi-token phrases, but includes the same number
of parameters as L = 2 and L = 3.

In both the English and Chinese experiments, we
see the same trend: increasing the maximum lat-
tice size decreases the perplexity, and for L = 2
and above, the neural lattice language model outper-
forms the baseline. Similarly, increasing the number
of embeddings per word decreases the perplexity,
and for E = 2 and above, the multiple-embedding
model outperforms the baseline.

5.3 Hidden State Calculation Experiments

We compare the various hidden-state calculation ap-
proaches discussed in Section 3.3 on the English
data using a lattice of size L = 2 and dropout of
.2. These results can be seen in Table 3.

Table 3: Hidden state calculation comparison results
Model Valid. Perp. Test Perp.

Baseline 64.18 60.67
Direct (§3.3.1) 59.74 55.98

Monte Carlo (§3.3.2) 62.97 59.08
Marginalization (§3.3.3) 58.62 55.06
GS Interpolation (§3.3.4) 59.19 55.73

For all hidden state calculation techniques, the
neural lattice language models outperform the
LSTM baseline. The ancestral sampling technique
used by Chan et al. (2017) is worse than the others,
which we found to be due to it getting stuck in a lo-
cal minimum which represents almost everything as
unigrams. There is only a small difference between
the perplexities of the other techniques.

5.4 Discussion and Analysis

Neural lattice language models convincingly out-
perform an LSTM baseline on the task of lan-
guage modeling. One interesting note is that in En-
glish, which is already tokenized into words and
highly polysemous, utilizing multiple embeddings
per word is more effective than including multi-
word tokens. In contrast, in the experiments on the
Chinese data, increasing the lattice size of the multi-
character tokens is more important than increasing
the number of embeddings per character. This cor-
responds to our intuition; since Chinese is not tok-
enized to begin with, utilizing models that incorpo-
rate segmentation and compositionality of elemen-
tary units is very important for effective language
modeling.

To calculate the probability of a sentence, the
neural lattice language model implicitly marginal-
izes across latent segmentations. By inspecting the
probabilities assigned to various edges of the lattice,
we can visualize these segmentations, as is done
in Fig. 3. The model successfully identifies bi-
grams which correspond to non-compositional com-
pounds, like “prime minister”, and bigrams which
correspond to compositional compounds, such as “a
quarter”. Interestingly, this does not occur for all
high-frequency bigrams; it ignores those that are not
inherently meaningful, such as “<UNK> in”, yield-
ing qualitatively good phrases.

In the multiple-embedding experiments, it is pos-

536

Figure 3: Segmentation of three sentences randomly sampled from the test corpus, using L = 2. Green numbers show
probability assigned to token sizes. For example, the first three words in the first sentence have a 59% and 41% chance
of being “please let me” or “please let me” respectively. Boxes around words show greedy segmentation.

Table 4: Comparison of randomly-selected contexts of several words selected from the vocabulary of the Billion Word
Corpus, in which the model preferred one embedding over the other.

rock1 rock2

...at the <unk> pop , rock and jazz... ...including hsbc , northern rock and...

...a little bit <unk> rock ,... ...pakistan has a <unk> rock music scene...

...on light rock and <unk> stations... ...spokesman for round rock , <unk>...
bank1 bank2

...being a bank holiday in... ...the bank of england has...

...all the us bank runs and... ...with the royal bank of scotland...

...by getting the bank ’s interests... ...development bank of japan and the...
page1 page2
...on page <unk> of the... ...was it front page news...
...a source told page sixhimself , tony page , the former ...
...on page <unk> of the... ...sections of the page that discuss...
profile1 profile2
...(<unk> : quote , profile , research)... ...so <unk> the profile of the city...
...(<unk> : quote , profile , research)... ...the highest profile <unk> held by...
...(<unk> : quote , profile , research)... ...from high i , elite schools ,...
edition1 edition2

... of the second edition of windows... ...of the new york edition

... this month ’s edition of<unk> , theof the new york edition

...forthcoming d.c. edition of the hit... ...of the new york edition
rodham1 rodham2

...senators hillary rodham clinton and...

...making hillary rodham clinton his...

...hillary rodham clinton ’s campaign has...

sible to see which of the two embeddings of a word
was assigned the higher probability for any specific
test-set sentence. In order to visualize what types of
meanings are assigned to each embedding, we select
sentences in which one embedding is preferred, and
look at the context in which the word is used. Sev-

eral examples of this can be seen in Table 4; it is
clear from looking at these examples that the system
does learn distinct embeddings for different senses
of the word. What is interesting, however, is that it
does not necessarily learn intuitive semantic mean-
ings; instead it tends to group the words by the con-

537

text in which they appear. In some cases, like profile
and edition, one of the two embeddings simply cap-
tures an idiosyncrasy of the training data.

Additionally, for some words, such as rodham in
Table 4, the system always prefers one embedding.
This is promising, because it means that in future
work it may be possible to further improve accu-
racy and training efficiency by assigning more em-
beddings to polysemous words, instead of assigning
the same number of embeddings to all words.

6 Related Work

Past work that utilized lattices in neural models
for natural language processing centers around us-
ing these lattices in the encoder portion of machine
translation. Su et al. (2016) utilized a variation
of the Gated Recurrent Unit (GRU) that operated
over lattices, and preprocessed lattices over Chi-
nese characters that allowed it to effectively encode
multiple segmentations. Additionally, Sperber et al.
(2017) proposed a variation of the TreeLSTM with
the goal of creating an encoder over speech lattices
in speech-to-text. Our work tackles language mod-
eling rather than encoding, and thus addresses the
issue of marginalization over the lattice.

Another recent work which marginalized over
multiple paths through a sentence is Ling et al.
(2016). The authors tackle the problem of code gen-
eration, where some components of the code can be
copied from the input, via a neural network. Our
work expands on this by handling multi-word tokens
as input to the neural network, rather than passing in
one token at a time.

Neural lattice language models improve accuracy
by helping the gradient flow over smaller paths, pre-
venting vanishing gradients. Many hierarchical neu-
ral language models have been proposed with a sim-
ilar objective (Koutnik et al., 2014; Zhou et al.,
2017). Our work is distinguished from these by
the use of latent token-level segmentations that cap-
ture meaning directly, rather than simply being high-
level mechanisms to encourage gradient flow.

Chan et al. (2017) propose a model for predict-
ing characters at multiple granularities in the de-
coder segment of a machine translation system. Our
work expands on theirs by considering the entire lat-
tice at once, rather than considering a only a sin-

gle path through the lattice via ancestral sampling.
This allows us to train end-to-end without the model
collapsing to a local minimum, with no exploration
bonus needed. Additionally, we propose a more
broad class of models, including those incorporat-
ing polysemous words, and apply our model to the
task of word-level language modeling, rather than
character-level transcription.

Concurrently to this work, van Merriënboer et al.
(2017) have proposed a neural language model that
can similarly handle multiple scales. Our work is
differentiated in that it is more general: utilizing
an open multi-token vocabulary, proposing multiple
techniques for hidden state calculation, and handling
polysemy using multi-embedding lattices.

7 Future Work

In the future, we would like to experiment with uti-
lizing neural lattice language models in extrinsic
evaluation, such as machine translation and speech
recognition. Additionally, in the current model, the
non-compositional embeddings must be selected a
priori, and may be suboptimal. We are exploring
techniques to store fixed embeddings dynamically,
so that the non-compositional phrases can be se-
lected as part of the end-to-end training.

8 Conclusion

In this work, we have introduced the idea of a neural
lattice language model, which allows us to marginal-
ize over all segmentations of a sentence in an end-
to-end fashion. In our experiments on the Billion
Word Corpus and Chinese GigaWord corpus, we
demonstrated that the neural lattice language model
beats an LSTM-based baseline at the task of lan-
guage modeling, both when it is used to incorpo-
rate multiple-word phrases and multiple-embedding
words. Qualitatively, we observed that the latent
segmentations generated by the model correspond
well to human intuition about multi-word phrases,
and that the varying usage of words with multiple
embeddings seems to also be sensible.

Acknowledgements

The authors would like to thank Holger Schwenk,
Kristina Toutanova, Cindy Robinson, and all the re-
viewers of this work for their invaluable feedback.

538

References
Oliver Adams, Adam Makarucha, Graham Neubig,

Steven Bird, and Trevor Cohn. 2017. Cross-lingual
word embeddings for low-resource language model-
ing. In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, volume 1, pages
937–947.

Ben Athiwaratkun and Andrew Wilson. 2017. Multi-
modal word distributions. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages
1645–1656.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk,
Philemon Brakel, and Yoshua Bengio. 2016. End-
to-end attention-based large-vocabulary speech recog-
nition. In IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 4945–4949.
IEEE.

Colin Bannard and Danielle Matthews. 2008. Stored
word sequences in language learning: The effect of
familiarity on children’s repetition of four-word com-
binations. Psychological Science, 19(3):241–248.

William Chan, Yu Zhang, Quoc Le, and Navdeep Jaitly.
2017. Latent sequence decompositions. 5th Interna-
tional Conference on Learning Representations.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
2014. One billion word benchmark for measuring
progress in statistical language modeling. Interspeech.

Xinchi Chen, Xipeng Qiu, Jingxiang Jiang, and Xuanjing
Huang. 2015. Gaussian mixture embeddings for mul-
tiple word prototypes. CoRR, abs/1511.06246.

Sumit Chopra, Michael Auli, Alexander M Rush, and
SEAS Harvard. 2016. Abstractive sentence sum-
marization with attentive recurrent neural networks.
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 93–98.

Pierre Dupont and Ronald Rosenfeld. 1997. Lattice
based language models. Technical report, DTIC Doc-
ument.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and
Noah A Smith. 2016. Recurrent neural network gram-
mars. North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 199–209.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Yarin Gal and Zoubin Ghahramani. 2016. A theoreti-
cally grounded application of dropout in recurrent neu-
ral networks. In Advances in Neural Information Pro-
cessing Systems, pages 1019–1027.

Sharon Goldwater, Thomas L. Griffiths, Mark Johnson,
et al. 2007. Distributional cues to word boundaries:
Context is important. In H. Caunt-Nulton, S. Kilati-
late, and I. Woo, editors, BUCLD 31: Proceedings of
the 31st Annual Boston University Conference on Lan-
guage Development, pages 239–250. Somerville, Mas-
sachusetts: Cascadilla Press.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recurrent
neural networks. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 6645–
6649. IEEE.

Klaus Greff, Rupesh K. Srivastava, Jan Koutnı́k, Bas R.
Steunebrink, and Jürgen Schmidhuber. 2016. LSTM:
A search space odyssey. IEEE Transactions on Neural
Networks and Learning Systems.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Kyuyeon Hwang and Wonyong Sung. 2017. Character-
level language modeling with hierarchical recurrent
neural networks. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 5720–
5724. IEEE.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A loss
framework for language modeling. 5th International
Conference on Learning Representations.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categori-
cal reparameterization with Gumbel-Softmax. 5th In-
ternational Conference on Learning Representations.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the limits
of language modeling. arXiv:1602.02410.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation,
pages 28–39.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen
Schmidhuber. 2014. A clockwork RNN. Proceedings
of Machine Learning Research.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.
Black. 2015. Character-based neural machine transla-
tion. CoRR, abs/1511.04586.

Wang Ling, Edward Grefenstette, Karl Moritz Hermann,
Tomáš Kočiskỳ, Andrew Senior, Fumin Wang, and
Phil Blunsom. 2016. Latent predictor networks for
code generation. Association for Computational Lin-
guistics.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous relax-
ation of discrete random variables. 5th International
Conference on Learning Representations.

539

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. 4th International Conference on Learning Repre-
sentations.

Arvind Neelakantan, Jeevan Shankar, Re Passos, and An-
drew Mccallum. 2014. Efficient nonparametric es-
timation of multiple embeddings per word in vector
space. In Proceedings of EMNLP. Citeseer.

Graham Neubig, Masato Mimura, Shinsuke Mori, and
Tatsuya Kawahara. 2010. Learning a language model
from continuous speech. In INTERSPEECH, pages
1053–1056.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopoulos,
Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, et al. 2017. DyNet: The dynamic neural
network toolkit. arXiv preprint arXiv:1701.03980.

Ofir Press and Lior Wolf. 2017. Using the output embed-
ding to improve language models. 5th International
Conference on Learning Representations.

Yael Ravin and Claudia Leacock. 2000. Polysemy: The-
oretical and Computational Approaches. OUP Ox-
ford.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. Association for Computational Lin-
guistics.

Anna Siyanova-Chanturia, Kathy Conklin, and Norbert
Schmitt. 2011. Adding more fuel to the fire: An
eye-tracking study of idiom processing by native and
non-native speakers. Second Language Research,
27(2):251–272.

Matthias Sperber, Graham Neubig, Jan Niehues, and
Alex Waibel. 2017. Neural lattice-to-sequence mod-
els for uncertain inputs. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1380–1389.

Jinsong Su, Zhixing Tan, Deyi Xiong, and Yang
Liu. 2016. Lattice-based recurrent neural net-
work encoders for neural machine translation. CoRR,
abs/1609.07730, ver. 2.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. As-
sociation for Computational Linguistics.

Lukáš Burget Jan Honza Cernock Sanjeev Khudanpur
Tomáš Mikolov, Martin Karafiát. 2010. Recur-
rent neural network based language model. Pro-
ceedings of the 11th Annual Conference of the Inter-
national Speech Communication Association, pages
1045–1048.

Bart van Merriënboer, Amartya Sanyal, Hugo Larochelle,
and Yoshua Bengio. 2017. Multiscale sequence

modeling with a learned dictionary. arXiv preprint
arXiv:1707.00762.

Ladislav Zgusta. 1967. Multiword lexical units. Word,
23(1-3):578–587.

Hao Zhou, Zhaopeng Tu, Shujian Huang, Xiaohua Liu,
Hang Li, and Jiajun Chen. 2017. Chunk-based bi-
scale decoder for neural machine translation. Associa-
tion for Computational Linguistics.

A Large-Scale Experiments

To verify that our findings scale to state-of-the-
art language models, we also compared a baseline
model, dense lattices of size 1 and 2, and a multi-
lattice with 2 embeddings per word on the full byte-
pair encoded Billion Word Corpus.

In this set of experiments, we take the full Bil-
lion Word Corpus, and apply byte-pair encoding as
described by Sennrich et al. (2015) to construct a
vocabulary of 10,000 sub-word tokens. Our model
consists of three LSTM layers, each with 1500 hid-
den units. We train the model for a single epoch over
the corpus, using the Adam optimizer with learning
rate .0001 on a P100 GPU. We use a batch size of 40,
and variational dropout of 0.1. The 10,000 sub-word
embeddings each had dimension 600. For lattice
models, chunk vocabularies were selected by taking
the 10,000 sub-words in the vocabulary and adding
the most common 10,000 n-grams with 1 < n ≤ L.
The weights on the final layer of the network were
tied with the input embeddings, as done by Press
and Wolf (2017) and Inan et al. (2017). In all
lattice models, hidden states were computed using
weighted expectation (§3.3.3). In multi-embedding
models, embedding sizes were decreased so as to
maintain the same total number of parameters.

Results of these experiments are in Table 5. The
performance of the baseline model is roughly on par
with that of state-of-the-art models on this database;
differences can be explained by model size and hy-
perparameter tuning. The results show the same
trend as the results of our main experiments, in-
dicating that the performance gains shown by our
smaller neural lattice language models generalize to
the much larger datasets used in state-of-the-art sys-
tems.

540

Table 5: Results on large-scale Billion Word Corpus
Model Valid. Test Sec./

Perp. Perp. Batch
Baseline 54.1 37.7 .45

Multi-Token (L = 1) 54.2 37.4 .82
Multi-Token (L = 2) 53.9 36.4 4.85
Multi-Emb (E = 2) 53.8 35.2 2.53

Table 6: Vocabulary size comparison
Model Valid. Perp. Test Perp.

Baseline 64.18 60.67
10000-chunk vocab 58.62 55.06
20000-chunk vocab 57.40 54.15

B Chunk Vocabulary Size

We compare a 2-lattice with a non-compositional
chunk vocabulary of 10,000 phrases with a 2-
lattice with a non-compositional chunk vocabulary
of 20,000 phrases. The results can be seen in Table
6. Doubling the number of non-compositional em-
beddings present decreases the perplexity, but only
by a small amount. This is perhaps to be expected,
given that doubling the number of embeddings cor-
responds to a large increase in the number of model
parameters for phrases that may have less data with
which to train them.

541

542

