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Abstract

This paper presents the first model for time
normalization trained on the SCATE corpus.
In the SCATE schema, time expressions are
annotated as a semantic composition of time
entities. This novel schema favors machine
learning approaches, as it can be viewed as a
semantic parsing task. In this work, we propose
a character level multi-output neural network
that outperforms previous state-of-the-art built
on the TimeML schema. To compare predic-
tions of systems that follow both SCATE and
TimeML, we present a new scoring metric for
time intervals. We also apply this new metric
to carry out a comparative analysis of the anno-
tations of both schemes in the same corpus.

1 Introduction

Time normalization is the task of translating natural
language expressions of time to computer-readable
forms. For example, the expression three days ago
could be normalized to the formal representation
2017-08-28 in the ISO-8601 standard. As time nor-
malization allows entities and events to be placed
along a timeline, it is a crucial step for many informa-
tion extraction tasks. Since the first shared tasks on
time normalization (Verhagen et al., 2007), interest in
the problem and the variety of applications have been
growing. For example, Lin et al. (2015) use normal-
ized timestamps from electronic medical records to
contribute to patient monitoring and detect potential
causes of disease. Vossen et al. (2016) identify multi-
lingual occurrences of the same events in the news

∗These two authors contributed equally.

by, among other steps, normalizing time-expressions
in different languages with the same ISO standard.
Fischer and Strötgen (2015) extract and normalize
time-expressions from a large corpus of German fic-
tion as the starting point of a deep study on trends
and patterns of the use of dates in literature.

A key consideration for time normalization sys-
tems is what formal representation the time expres-
sions should be normalized to. The most popular
scheme for annotating normalized time expressions
is ISO-TimeML (Pustejovsky et al., 2003a; Puste-
jovsky et al., 2010), but it is unable to represent
several important types of time expressions (e.g., a
bounded set of intervals, like Saturdays since March
6) and it is not easily amenable to machine learning
(the rule-based HeidelTime (Strötgen et al., 2013)
still yields state-of-the-art performance). Bethard
and Parker (2016) proposed an alternate scheme, Se-
mantically Compositional Annotation of Time Ex-
pressions (SCATE), in which times are annotated as
compositional time entities (Figure 1), and suggested
that this should be more amenable to machine learn-
ing. However, while they constructed an annotated
corpus, they did not train any automatic models on it.

We present the first machine-learning models
trained on the SCATE corpus of time normalizations.
We make several contributions in the process:
• We introduce a new evaluation metric for time

normalization that can compare normalized
times from different annotation schemes by mea-
suring overlap of intervals on the timeline.
• We use the new metric to compare SCATE and

TimeML annotations on the same corpus, and
confirm that SCATE covers a wider variety of
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Figure 1: Annotation of the expression Saturdays since March 6 following the SCATE schema.

time expressions.
• We develop a recurrent neural network for learn-

ing SCATE-style time normalization, and show
that our model outperforms the state-of-the-art
HeidelTime (Strötgen et al., 2013).
• We show that our character-based multi-output

neural network architecture outperforms both
word-based and single-output models.

2 Background

ISO-TimeML (Pustejovsky et al., 2003a; Pustejovsky
et al., 2010) is the most popular scheme for annotat-
ing time expressions. It annotates time expressions
as phrases, and assigns an ISO 8601 normalization
(e.g., 1990-08-15T13:37 or PT24H) as the VALUE at-
tribute of the normalized form. ISO-TimeML is used
in several corpora, including the TimeBank (Puste-
jovsky et al., 2003b), WikiWars (Mazur and Dale,
2010), TimeN (Llorens et al., 2012), and the Temp-
Eval shared tasks (Verhagen et al., 2007; Verhagen et
al., 2010; UzZaman et al., 2013).

However, the ISO-TimeML schema has a few
drawbacks. First, times that align to more than a
single calendar unit (day, week, month, etc.), such
as Saturdays since March 6 (where multiple Satur-
days are involved), cannot be described in the ISO
8601 format since they do not correspond to any pre-
fix of YYYY-MM-DDTHH:MM:SS. Second, each
time expression receives a single VALUE, regardless
of the word span, the compositional semantics of
the expression are not represented. For example, in
the expressions since last week and since March 6,
the semantics of since are identical – find the inter-
val between the anchor time (last week or March 6)
and now. But ISO-TimeML would have to annotate
these two phrases independently, with no way to in-

dicate the shared portion of their semantics. These
drawbacks of ISO-TimeML, especially the lack of
compositionality, make the development of machine
learning models difficult. Thus, most prior work has
taken a rule-based approach, looking up each token
of a time expression in a normalization lexicon and
then mapping this sequence of lexical entries to the
normalized form (Strötgen and Gertz, 2013; Bethard,
2013; Lee et al., 2014; Strötgen and Gertz, 2015).

As an alternative to TimeML, and inspired by pre-
vious works, Schilder (2004) and Han and Lavie
(2004), Bethard and Parker (2016) proposed Seman-
tically Compositional Annotation of Time Expres-
sions (SCATE). In the SCATE schema, each time
expression is annotated in terms of compositional
time entity over intervals on the timeline. An ex-
ample is shown in Figure 1, with every annotation
corresponding to a formally defined time entity. For
instance, the annotation on top of since corresponds
to a BETWEEN operator that identifies an interval
starting at the most recent March 6 and ending at
the document creation time (DCT). The BETWEEN

operator is formally defined as:

BETWEEN([t1, t2) : INTERVAL,

[t3, t4) : INTERVAL) : INTERVAL

= [t2, t3).

The SCATE schema can represent a wide variety of
time expressions, and provides a formal definition of
the semantics of each annotation. Unlike TimeML,
SCATE uses a graph structure to capture composi-
tional semantics and can represent time expressions
that are not expressed with contiguous phrases. The
schema also has the advantage that it can be viewed
as a semantic parsing task and, consequently, is more
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suitable for machine-learning approaches. However,
Bethard and Parker (2016) present only a corpus;
they do not present any models for semantic parsing.

3 An interval-based evaluation metric for
normalized times

Before attempting to construct machine-learned mod-
els from the SCATE corpus, we were interested in
evaluating Bethard and Parker (2016)’s claim that
the SCATE schema is able to represent a wider vari-
ety of time expressions than TimeML. To do so, we
propose a new evaluation metric to compare time nor-
malizations annotated in both the ISO 8601 format of
TimeML and the time entity format of SCATE. This
new evaluation interprets normalized annotations as
intervals along the timeline and measures the overlap
of the intervals.

TimeML TIMEX3 (time expression) annotations
are converted to intervals following ISO 8601 se-
mantics of their VALUE attribute. So, for example,
1989-03-05 is converted to the interval [1989-03-
05T00:00:00, 1989-03-06T00:00:00), that is, the 24-
hour period starting at the first second of the day on
1989-03-05 and ending just before the first second of
the day on 1989-03-06. SCATE annotations are con-
verted to intervals following the formal semantics of
each entity, using the library provided by Bethard and
Parker (2016). So, for example, Next(Year(1985),
SimplePeriod(YEARS, 3)), the 3 years following
1985, is converted to [1986-01-01T00:00, 1989-01-
01T00:00). Note that there may be more than one
interval associated with a single annotation, as in the
Saturdays since March 6 example. Once all anno-
tations have been converted into intervals along the
timeline, we can measure how much the intervals of
different annotations overlap.

Given two sets of intervals, we define the interval
precision, Pint, as the total length of the intervals in
common between the two sets, divided by the total
length of the intervals in the first set. Interval recall,
Rint is defined as the total length of the intervals in
common between the two sets, divided by the total
length of the intervals in the second set. Formally:

IS
⋂

IH = {i ∩ j : i ∈ IS ∧ j ∈ IH}

Pint(IS , IH) =

∑
i∈COMPACT(IS

⋂
IH)

|i|
∑
i∈IS
|i|

Rint(IS , IH) =

∑
i∈COMPACT(IS

⋂
IH)

|i|
∑

i∈∪IH
|i|

where IS and IH are sets of intervals, i∩j is possibly
the empty interval in common between the intervals i
and j, |i| is the length of the interval i, and COMPACT

takes a set of intervals and merges any overlapping
intervals.

Given two sets of annotations (e.g., one each from
two time normalization systems), we define the over-
all precision, P , as the average of interval precisions
where each annotation from the first set is paired with
all annotations that textually overlap it in the second
set. Overall recall is defined as the average of interval
recalls where each annotation from the second set is
paired with all annotations that textually overlap it in
the first set. Formally:

OIa(B) =
⋃

b∈B:OVERLAPS(a,b)

INTERVALS(b)

P (S,H) =
1

|S|
∑

s∈S
Pint(INTERVALS(s), OIs(H))

R(S,H) =
1

|H|
∑

h∈H
Rint(INTERVALS(h), OIh(S))

where S and H are sets of annotations,
INTERVALS(x) gives the time intervals associ-
ated with the annotation x, and OVERLAPS(a, b)
decide whether the annotations a and b share at least
one character of text in common.

It is important to note that these metrics can be
applied only to time expressions that yield bounded
intervals. Time expressions that refer to intervals
with undefined boundaries are out of the scope, like
in “it takes just a minute” or “I work every Saturday”.

4 Data analysis

4.1 TimeML vs. SCATE

Both TimeML and SCATE annotations are available
on a subset of the TempEval 2013 corpus (UzZaman
et al., 2013) that contains a collection of news articles
from different sources, such as Wall Street Journal,
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AQUAINT TimeBank Test
Documents 10 68 20
Sentences 251 1429 339
TimeML timex3 61 499 158
SCATE entities 333 1810 461
SCATE time exp. 114 715 209
SCATE bounded 67 403 93

Table 1: Number of documents, TimeML TIMEX3 an-
notations and SCATE annotations for the subset of the
TempEval 2013 corpus annotated with both schemas.

AQUAINT TimeBank
P R F1 P R F1

Body text 92.2 92.2 92.2 82.4 83.0 82.7
All text 92.2 67.1 77.7 82.4 71.2 76.4

Table 2: Comparison of TimeML and SCATE annotations.

New York Times, Cable News Network, and Voices
of America. Table 1 shows the statistics of the data.
Documents from the AQUAINT and TimeBank form
the training and development dataset. The SCATE
corpus contains 2604 time entities (individual com-
ponents of a time expression, such as every, month,
last, Monday, etc.) annotated in the train+dev set
(i.e. AQUAINT+TimeBank). These entities compose
a total of 1038 time expressions (every month, last
Monday, etc.) of which 580 yield bounded intervals,
i.e. intervals with a specified start and ending (last
Monday is bounded, while every month is not).

We apply the interval-based evaluation metric in-
troduced in Section 3 to the AQUAINT and Time-
Bank datasets, treating the TimeML annotations as
the system (S) annotator and the SCATE annotations
as the human (H) annotator. Table 2 shows that
the SCATE annotations cover different time intervals
than the TimeML annotations. In the first row, we see
that TimeML has a recall of only 92% of the time in-
tervals identified by SCATE in the AQUAINT corpus
and of only 83% in the TimeBank corpus. We manu-
ally analyzed all places where TimeML and SCATE
annotations differed and found that the SCATE inter-
pretation was always the correct one.

For example, a common case where TimeML and
SCATE annotations overlap, but are not identical,
is time expressions preceded by a preposition like

“since”. The TimeML annotation for “Since 1985”
(with a DCT of 1998-03-01T14:11) only covers the
year, “1985”, resulting in the time interval [1985-
01-01T00:00,1986-01-01T00:00). The SCATE an-
notation represents the full expression and, conse-
quently, produces the correct time interval [1986-01-
01T00:00,1998-03-01T14:11).

Another common case of disagreement is where
TimeML failed to compose all pieces of a complex
expression. The TimeML annotation for “10:35 a.m.
(0735 GMT) Friday” annotates two separate inter-
vals, the time and the day (and ignores “0735 GMT”
entirely). The SCATE annotation recognizes this
as a description of a single time interval, [1998-08-
07T10:35, 1998-08-07T10:36).

TimeML and SCATE annotations also differ in
how references to particular past periods are inter-
preted. For example, TimeML assumes that “last
year” and “a year ago” have identical semantics, re-
ferring to the most recent calendar year, e.g., if the
DCT is 1998-03-04, then they both refer to the inter-
val [1997-01-01T00:00,1998-01-01T00:00). SCATE
has the same semantics for “last year”, but recog-
nizes that “a year ago” has different semantics: a
period centered at one year prior to the DCT. Under
SCATE, “a year ago” refers to the interval [1996-09-
03T00:00,1997-09-03T00:00).

Beyond these differences in interpretation, we also
observed that, while the SCATE corpus annotates
time expressions anywhere in the document (includ-
ing in metadata), the TimeBank TIMEX3 annotations
are restricted to the main text of the documents. The
second row of Table 2 shows the evaluation when
comparing overall text in the document, not just the
body text. Unsurprisingly, TimeML has a lower re-
call of the time intervals from the SCATE annotations
under this evaluation.

4.2 Types of SCATE annotations
Studying the training and development portion of
the dataset, we noticed that the SCATE annotations
can be usefully divided into three categories: non-
operators, explicit operators, and implicit operators.
We define non-operators as NUMBERs, PERIODs
(e.g., three months), explicit intervals (e.g., YEARs
like 1989), and repeating intervals (DAY-OF-WEEKs
like Friday, MONTH-OF-YEARs like January, etc.).
Non-operators are basically atomic; they can be in-
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Non-Op Exp-Op Imp-Op Total
1497 305 219 2021
74% 15% 11% 100%

Table 3: Distribution of time entity annotations in
AQUAINT+TimeBank.

terpreted without having to refer to other annotations.
Operators are not atomic; they can only be interpreted
with respect to other annotations they link to. For
example, the THIS operator in Figure 1 can only be
interpreted by first interpreting the DAY-OF-WEEK

non-operator and the BETWEEN operator that it links
to. We split operators into two types: explicit and
implicit. We define an operator as explicit if it does
not overlap with any other annotation. This occurs,
for example, when the time connective since evokes
the BETWEEN operator in Figure 1. An operator
is considered to be implicit if it overlaps with an-
other annotation. This occurs, for example, with the
LAST operator in Figure 1, where March implies last
March, but there is no explicit signal in the text, and
it must be inferred from context.

We study how these annotation groups distribute
in the AQUAINT and TimeBank documents. Table 3
shows that non-operators are much more frequent
than operators (both explicit and implicit).

5 Models

We decompose the normalization of time expressions
into two subtasks: a) time entity identification which
detects the spans of characters that belong to each
time expression and labels them with their corre-
sponding time entity; and b) time entity composition
that links relevant entities together while respecting
the entity type constraints imposed by the SCATE
schema. These two tasks are run sequentially using
the output of the former as input to the latter. Once
identification and composition steps are completed
we can use the final product, i.e. semantic composi-
tional of time entities, to feed the SCATE interpreter1

and encode time intervals.

5.1 Time entity identification

Time entity identification is a type of sequence tag-
ging task where each piece of a time expression is

1https://github.com/clulab/timenorm

assigned a label that identifies the time entity that
it evokes. We express such labels using the BIO
tagging system, where B stands for the beginning
of an annotation, I for the inside, and O for outside
any annotation. Differing somewhat from standard
sequence tagging tasks, the SCATE schema allows
multiple annotations over the same span of text (e.g.,
“Saturdays” in Figure 1 is both a DAY-OF-WEEK and
a THIS), so entity identification models must be able
to handle such multi-label classification.

5.1.1 Neural architectures
Recurrent neural networks (RNN) are the state-

of-the-art on sequence tagging tasks (Lample et al.,
2016a; Graves et al., 2013; Plank et al., 2016) thanks
to their ability to maintain a memory of the sequence
as they read it and make predictions conditioned on
long distance features, so we also adopt them here.
We introduce three RNN architectures that share a
similar internal structure, but differ in how they repre-
sent the output. They convert the input into features
that feed an embedding layer. The embedded feature
vectors are then fed into two stacked bidirectional
Gated Recurrent Units (GRUs), and the second GRU
followed by an activation function, outputs one BIO
tag for each input. We select GRU for our models as
they can outperform another popular recurrent unit
LSTM (Long Short Term Memory), in terms of pa-
rameter updates and convergence in CPU time with
the same number of parameters (Chung et al., 2014).

Our 1-Sigmoid model (Figure 2) approaches the
task as a multi-label classification problem, with a set
of sigmoids for each output that allow zero or more
BIO labels to be predicted simultaneously. This is the
standard way of encoding multi-label classification
problems for neural networks, but in our experiments,
we found that these models perform poorly since they
can overproduce labels for each input, e.g., 03 could
be labeled with both DAY-OF-MONTH and MONTH-
OF-YEAR at the same time.

Our 2-Softmax model (Figure 3) splits the out-
put space of labels into two sets: non-operators and
operators (as defined in Section 4.2). It is very un-
likely that any piece of text will be annotated with
more than one non-operator or with more than one
operator,2 though it is common for text to be anno-

2In the training data, only 4 of 1217 non-operators overlap
with another non-operator, and only 6 of 406 operators overlap
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Figure 2: Architecture of the 1-Sigmoid model. The input is May 25. In SCATE-style annotation, May is a MONTH-
OF-YEAR (a non-operator), with an implicit LAST (an operator) over the same span, and 25 is a DAY-OF-MONTH. At
the feature layer, M is an uppercase letter (Lu), a and y are lowercase letters (Ll), space is a separator (Zs), and May is a
proper noun (NNP).
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Figure 3: Architecture of the 2-Softmax model. The input is May. The SCATE annotations and features are the same as
in Figure 2.

tated with one non-operator and one operator (see
Figure 1). As a result, we can use two softmaxes, one
for non-operators and one for operators, and the 2-
Softmax model thus can produce 0, 1, or 2 labels per
input. We share input and embedding layers, but as-
sociate a separate set of stacked Bi-GRUs with each
output category, as shown in Figure 3.3

Our 3-Softmax further splits operators into explicit
operators and implicit operators (again, as defined

with another operator. For example, a NYT said in an editorial
on Saturday, April 25, Saturday is labeled as [DAY-OF-WEEK,
LAST, INTERSECTION] where the last two labels are operators.

3In preliminary experiments, we tried sharing GRU layers as
well, but this generally resulted in worse performance.

in Section 4.2). We expect this to help the model
since the learning task is very different for these two
cases: with explicit operators, the model just has
to memorize which phrases evoke which operators,
while with implicit operators, the model has to learn
to infer an operator from context (verb tense, etc.).
We use three softmaxes, one each for non-operators,
explicit operators, and implicit operators, and, as with
2-Softmax, we share input and embedding layers, but
associate a separate set of stacked Bi-GRUs with each
output category. The model looks similar to Figure 3,
but with three output groups instead of two.

We feed three features as input to the RNNs:

Text: The input word itself for the word-by-word
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model, or a the single input character for the
character-by-character model.

Unicode character categories: The category of
each character as defined by the Unicode standard.4

This encodes information like the presence of upper-
case (Lu) or lowercase (Ll) letters, punctuation (Po),
digits (Nd), etc. For the word-by-word model, we
concatenate the character categories of all characters
in the word (e.g., May becomes LULLLL).

Part-of-speech: The part-of-speech as determined
by the Stanford POS tagger (Toutanova et al., 2003).
We expect this to be useful for, e.g., finding verb tense
to help distinguish between implicit LAST and NEXT

operators. For the character-by-character model, we
repeat the word-level part-of-speech tag for each char-
acter in the word, and characters with no part-of-
speech (e.g., spaces) get no tag.

5.1.2 Input: words vs. characters
Identifying SCATE-style time entity is a sequence

tagging task, similar to named entity recognition
(NER), so we take inspiration from recent work in
neural architectures for NER. The first neural NER
models followed the prior (non-neural) work in ap-
proaching NER as a word classification problem, ap-
plying architectures such as sliding-window feedfor-
ward neural networks (Qi et al., 2009), convolutional
neural networks (CNNs) with conditional random
field (CRF) layers (Collobert et al., 2011), and LSTM
with CRF layers and hand-crafted features (Huang et
al., 2015). More recently, character-level neural net-
works have also been proposed for NER, including
several which combine a CNN or LSTM for learn-
ing character-based representations of words with
an LSTM or LSTM-CRF for word-by-word labeling
(Chiu and Nichols, 2016; Lample et al., 2016b; Ma
and Hovy, 2016), as well as character-by-character
sequence-to-sequence networks (Gillick et al., 2016;
Kuru et al., 2016).

Based on these works, we consider two forms of
input processing for our RNNs: word-by-word vs.
character-by-character. Several aspects of the time
normalization problem make the character-based ap-
proach especially appealing. First, many time phrases
involve numbers that must be interpreted semanti-
cally (e.g., a good model should learn that months

4See http://unicode.org/notes/tn36/

cannot be a number higher than 12), and digit-by-
digit processing of numbers allows such interpreta-
tions, while treating each number as a word would
result in a sparse, intractable learning problem. Sec-
ond, word-based models assume that we know how
to tokenize the text into words, but at times present
challenging formats such as overnight, where over
evokes a LAST operator and night is a PART-OF-DAY.
Finally, character-based models can ameliorate out-
of-vocabulary (OOV) words, which are a common
problem when training sparse datasets. (Hybrid word-
character models, such as the LSTM-CNNs-CRF
(Ma and Hovy, 2016) can address this last problem,
but not the previous two.)

For our word-based model, we apply the NLTK
Tokenizer (Bird et al., 2009) to each sentence.
We further tokenize with the regular expres-
sion "\d+|[ˆ\d\W]+|\S" to break apart alpha-
numeric expressions like 1620EDT. However, the
tokenizer is unable to break-apart expressions such
as 19980206 and overnight. For our character-based
model, no tokenization is applied and every character
(including whitespace characters) is fed as input.

5.2 Time entity composition

Once the entities of the time-expressions are identi-
fied, they must be composed in order to obtain their
semantic interpretation. This step of the analysis con-
sists of two parts: linking the entities that make up a
time-expression together and completing the entities’
properties with the proper values. For both cases, we
set a simple set of rules that follow the constraints
imposed by the SCATE schema5.

5.2.1 Time entity linking
Algorithm 1 shows the process followed to obtain

the links between the time entities. First, we define
an empty stack that will store the entities belong-
ing to the same time expression. Then, we iterate
over the list of entities of a document sorted by their
starting character offsets (SORTBYSTART). For each
of these entities (entity1) and for each entity in the
stack (entity2), we check if the guidelines specify a
possible link (LINKISVALID) between the types of
entity1 and entity2. If such a link is possible, and

5https://github.com/bethard/
anafora-annotations/blob/master/.schema/
timenorm-schema.xml
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Algorithm 1 Linking time entities
stack = ∅
for entity1 in SORTBYSTART(entities) do

if START(entity1) - END(stack) > 10 then
stack = ∅

end if
for entity2 in stack do

if LINKISVALID(entity1, entity2) then
CREATELINK(entity1, entity2)

end if
end for
PUSH(stack, entity1)

end for

it has not already been filled by another annotation,
we greedily make the link (CREATELINK). When
the distance in the number of characters between the
entity and the end of the stack is bigger than 10, we
assume that the entities do not belong to the time
expression. Thus, we empty the stack.6

For example, our time entity identification model
gets the YEAR, MONTH-OF-YEAR and DAY-OF-
MONTH for the time-expression 1992-12-23. Our
time entity composition algorithm then iterates over
these entities. At the beginning the stack is empty,
it just pushes the entity 1992 (YEAR) into the stack.
For the entity 12 (MONTH-OF-YEAR) it checks if
the guidelines define a possible link between this en-
tity type and the one currently in the stack (YEAR).
In this case, the guidelines establish that a YEAR

can have a SUB-INTERVAL link to a SEASON-OF-
YEAR, a MONTH-OF-YEAR or WEEK-OF-YEAR.
Thus, the algorithm creates a SUB-INTERVAL link
between 1992 and 12. The entity 12 is then pushed
into the stack. This process is repeated for the en-
tity 23 (DAY-OF-MONTH) checking if there was a
possible link to the entities in the stack (1992, 12).
The guidelines define a possible SUB-INTERVAL link
between MONTH-OF-YEAR and DAY-OF-MONTH,
so a link is created here as well. Now, suppose that
the following time entity in the list is several words
ahead of 23 so the character distance between both
entities is larger than 10. If that is the case the stack
is empty and the process starts again to compose a
new time expression.

6The distance threshold was selected based on the perfor-
mance on the development dataset.

5.2.2 Property completion
The last step is to associate each time entity of a

time-expression with a set of properties that include
information needed for its interpretation. Our system
decides the value of these properties as follows:

TYPE: The SCATE schema defines that some enti-
ties can only have specific values. For example, a
SEASON-OF-YEAR can only be SPRING, SUMMER,
FALL or WINTER, a MONTH-OF-YEAR can only be
JANUARY, FEBRUARY, MARCH, etc. To complete
this property we take the text span of the time en-
tity and normalize it to the values accepted in the
schema. For example, if the span of a MONTH-OF-
YEAR entity was the numeric value 01 we would
normalize it to JANUARY, if its span was Sep. we
would normalize it to SEPTEMBER, and so on.

VALUE: This property contains the value of a nu-
merical entity, like DAY-OF-MONTH or HOUR-OF-
DAY.To complete it, we just take the text span of the
entity and convert it to an integer. If it is written in
words instead of digits (e.g., nineteen instead of 19),
we apply a simple grammar7 to convert to an integer.

SEMANTICS: In news-style texts, it is common that
expressions like last Friday, when the DCT is a Fri-
day, refer to the day as the DCT instead of the previ-
ous occurrence (as it would in more standard usage
of last). SCATE indicates this with the SEMANTICS

property, where the value INTERVAL-INCLUDED in-
dicates that the current interval is included when
calculating the last or next occurrence. For the rest
of the cases the value INTERVAL-NOT-INCLUDED is
used. In our system, when a LAST operator is found,
if it is linked to a DAY-OF-WEEK (e.g. Friday) that
matches the DCT, we set the value of this property to
INTERVAL-INCLUDED.

INTERVAL-TYPE: Operators like NEXT or LAST

need an interval as reference in order to be interpreted.
Normally, this reference is the DCT. For example,
next week refers to the week following the DCT, and
in such a case the value of the property INTERVAL-
TYPE for the operator NEXT would be DOCTIME.
However, sometimes the operator is linked to an in-
terval that serves as reference by itself, for example,
“by the year 2000”. In this cases the value of the
INTERVAL-TYPE is LINK. Our system sets the value

7https://github.com/ghewgill/text2num
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of this property to LINK if the operator is linked to
a YEAR and DOCTIME otherwise. This is a very
coarse heuristic; finding the proper anchor for a time
expression is a challenging open problem for which
future research is needed.

5.3 Automatically generated training data
Every document in the dataset starts with a document
creation time. These time expressions are quite partic-
ular; they occur in isolation and not within the context
of a sentence and they always yield a bounded inter-
val. Thus their identification is a critical factor in an
interval based evaluation metric. However, document
times appear in many different formats: ”Monday,
July-24, 2017”, ”07/24/17 09:52 AM”, ”08-15-17
1337 PM”, etc. Many of these formats are not cov-
ered in the training data, which is drawn from a small
number of news sources, each of which uses only
a single format. We therefore designed a time gen-
erator to randomly generate an extra 800 isolated
training examples for a wide variety of such expres-
sion formats. The generator covers 33 different for-
mats8 which include variants covering abbreviation,
with/without delimiters, mixture of digits and strings,
and different sequences of time units.

6 Experiments

We train and evaluate our models on the SCATE cor-
pus described in Section 4. As a development dataset,
14 documents are taken as a random stratified sample
from the TempEval 2013 (TimeBank + AQUAINT)
portion shown in Table 1, including broadcast news
documents (1 ABC, 1 CNN, 1 PRI, 1 VOA), and
newswire documents (5 AP, 1 NYT, 4 WSJ). We use
the interval-based evaluation metric described in Sec-
tion 3, but also report more traditional information
extraction metrics (precision, recall, and F1) for the
time entity identification and composition steps. Let
S be the set of items predicted by the system and H
is the set of items produced by the humans, precision
(P ), recall (R), and F1 are defined as:

P (S,H) =
|S ∩H|
|S|

R(S,H) =
|S ∩H|
|H|

8We use the common formats available in office suites, specif-
ically, LibreOffice.

F1(S,H) =
2 · P (S,H) ·R(S,H)

P (S,H) +R(S,H)
.

For these calculations, each item is an annotation,
and one annotation is considered equal to another
if it has the same character span (offsets), type, and
properties (with the definition applying recursively
for properties that point to other annotations).

To make the experiments with different neural ar-
chitectures comparable, we tuned the parameters of
all models to achieve the best performance on the
development data. Due to space constraints, we only
list here the hyper-parameters for our best Char 3-
Softmax: the embedding size of the character-level
text, word-level text, POS tag, and unicode character
category features are 128, 300, 32 and 64, respec-
tively. To avoid overfitting, we used dropout with
probabilities 0.25, 0.15 and 0.15 for the 3 features,
respectively; the sizes of the first and second layer
GRU units are set as 256 and 150. We trained the
model with RMSProp optimization on mini-batches
of size 120, and followed standard recommendations
to leave the optimizer hyperparameter settings at their
default values. Each model is trained for at most 800
epochs, the longest training time for Char 3-Softmax
model is around 22 hours using 2x NVIDIA Kepler
K20X GPU.

6.1 Model selection
We compare the different time entity identification
models described in Section 5.1, training them on
the training data, and evaluating them on the develop-
ment data. Among the epochs of each model, we se-
lect the epoch based on the output(s) which the model
is good at predicting because based on its weakness,
the model would yield unstable results in our pre-
liminary experiments. For example, for 3-Softmax
models, our selections rely on the performances of
non-operators and implicit-operators. Table 4 shows
the results of the development phase.

First, we find that the character-based models out-
perform the word-based models.9 For example, the
best character-based model achieves the F1 of 81.7
(Char 3-Softmax),which is significantly better than
the best word-based model achieving the F1 of only

9We briefly explored using pre-trained word embeddings
to try to improve the performance of the Word 1-Sigmoid
model, but it yielded a performance that was still worse than the
character-based model, so we didn’t explore it further.
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Model P R F1
Word 1-Sigmoid 60.2 52.0 55.8
Char 1-Sigmoid 54.0 59.0 56.4
Word 2-Softmax 58.7 63.9 61.2
Char 2-Softmax 74.8 72.4 73.6
Word 3-Softmax 68.3 64.9 66.6
Char 3-Softmax 88.2 76.1 81.7
Char 3-Softmax extra 80.6 73.4 76.8

Table 4: Precision (P ), recall (R), and F1 for the different
neural network architectures on Time entity identification
on the development data.

66.6 (p=0).10 Second, we find that Softmax mod-
els outperform Sigmoid models. For example, the
Char 3-Softmax model achives the F1 of 81.7, sig-
nificantly better than 56.4 F1 of the Char 1-Sigmoid
model (p=0). Third, for both character- and word-
based models, we find that 3-Softmax significantly
outperforms 2-Softmax: the Char 3-Softmax F1 of
81.7 is better than the Char 2-Softmax F1 of 73.6
(p=0) and the Word 3-Softmax F1 of 66.6 is bet-
ter than the Word 2-Softmax F1 of 61.2 (p=0.0254).
Additionally, we find that all models are better at
identifying non-operators than operators and that the
explicit operators are the hardest to solve. For ex-
ample, the Char 3-Softmax model gets 92.4 F1 for
non-operators, 36.1 F1 for explicit operators and 79.1
F1 for implicit operators. Finally, we also train the
best model, Char 3-Softmax, using the generated an-
notations described in Section 5.3 and achieve 76.8
F1 (Char 3-Softmax extra), i.e., the model performs
better without the extra data (p=0). This is probably
a result of overfitting due to the small variety of time
formats in the training and development data.

From this analysis on the development set, we se-
lect two variants of the Char 3-softmax architecture
for evaluation on the test set: Char 3-Softmax and
Char 3-Softmax extra. These models were then cou-
pled with the rule-based linking system described
in Section 5.2 to produce a complete SCATE-style
parsing system.

6.2 Model evaluation

We evaluate both Char 3-Softmax and Char 3-
Softmax extra on the test set for identification and

10We used a paired bootstrap resampling significance test.

Char 3-Softmax Char 3-Soft. extra
P R F1 P R F1

Non-Op 79.2 63.2 70.3 87.4 63.2 73.4
Exp-Op 52.6 36.6 43.2 39.8 38.7 39.3
Imp-Op 53.3 47.1 50.0 65.4 50.0 56.7
Ident 70.0 54.5 61.3 69.4 55.3 61.5
Comp 59.7 46.5 52.3 57.7 46.0 51.2

Table 5: Results on the test set for Time entity identifi-
cation (Ident) and Time entity composition (Comp) steps.
For the former we report the performances for each entity
set: non-operators (Non-Op), explicit operators (Exp-Op)
and implicit operators (Imp-Op).

Model P R F1

HeidelTime 70.9 76.8 73.7
Char 3-Softmax 73.8 62.4 67.6
Char 3-Softmax extra 82.7 71.0 76.4

Table 6: Precision (P ), recall (R), and F1 of our models
on the test data producing bounded time intervals. For
comparison, we include the results obtained by Heidel-
Time.

composition tasks. Table 5 shows the results. On
the identification task, Char 3-Softmax extra is no
worse than using the original dataset with the over-
all F1 61.5 vs. 61.3 (p=0.5899), and using extra
generated data the model is better at predicting non-
operators and implicit operators with higher preci-
sions (p=0.0096), which is the key to produce correct
bounded time intervals.

To compare our approach with the state-of-the-art,
we run HeidelTime on the test documents and make
use of the metric described in Section 3. This way,
we can compare the intervals produced by both sys-
tems no matter the annotation schema. Table 6 shows
that our model with additional randomly generated
training data outperforms HeidelTime in terms of
Precision, with a significant difference of 12.6 per-
centage points (p=0.011), while HeidelTime obtains
a non-significant better performance in terms of Re-
call (p=0.1826). Overall, our model gets 3.3 more
percentage points than HeidelTime in terms of F1

(p=0.2485). Notice that, although the model trained
without extra annotations is better in time entity com-
position (see Table 5), it performs much worse at
producing final intervals. This is caused by the fact
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Model P R F1

HeidelTime 70.7 80.2 75.1
Char 3-Softmax 74.3 64.2 68.9
Char 3-Softmax extra 83.3 74.1 78.4

Table 7: Precision (P ), recall (R), and F1 on bounded
intervals on the TimeML/SCATE perfect overlapping test
data.

that this model fails to identify the non-operators that
compound dates in unseen formats (see Section 5.3).

However, evaluating HeidelTime in the SCATE
annotations may not be totally fair. HeidelTime was
developed following the TimeML schema and, as
we show in Section 4, SCATE covers a wider set of
time expressions. For this reason, we perform an
additional evaluation. First, we compare the annota-
tions in the test set using our interval-based metric,
similar to the comparison reported in Table 2, and
select those cases where TimeML and SCATE match
perfectly. Then, we remove the rest of the cases from
the test set. Consequently, we also remove the pre-
dictions given by the systems, both ours and Heidel-
Time, for those instances. Finally, we run the interval
scorer using the new configuration. As can be seen
in Table 7 all the models improve their performances.
However, our model still performs better when it is
trained with the extra annotations.

The SCATE interpreter that encodes the time in-
tervals needs the compositional graph of a time-
expression to have all its elements correct. Thus,
failing in the identification of any entity of a time-
expression results in totally uninterpretable graphs.
For example, in the expression next year, if our model
identifies year as a PERIOD instead of an INTER-
VAL it cannot be linked to next because it violates
the SCATE schema. The model can also fail in the
recognition of some time-entities, like summer in the
expression last summer. This identification errors are
caused mainly by the sparse training data. As graphs
containing these errors produce unsolvable logical
formulae, the interpreter cannot produce intervals
and hence the recall decreases. Within those inter-
vals that are ultimately generated, the most common
mistake is to confuse the LAST and NEXT operators,
and as a result an incorrectly placed interval even
with correctly identified non-operators. For example,
if an October with an implicit NEXT operator is in-

stead given a LAST operator, instead of referring to
[2013-10-01T00:00, 2013-11-01T00:00), it will refer
to [2012-10-01T00:00, 2012-11-01T00:00). Missing
implicit operators is also the main source of errors for
HeidelTime, which fails with complex compositional
graphs. For example, that January day in 2011 is
annotated by HeidelTime as two different intervals,
corresponding respectively to January and 2011. As
a consequence, HeidelTime predicts not one but two
incorrect intervals, affecting its precision.

7 Discussion

As for the time entity identification task, the per-
formance differences between development and test
dataset could be attributed to the annotation distri-
butions of the datasets. For example, there are 10
Season-Of-Year annotations in the test set while there
are no such annotations in the development dataset;
the relative frequencies of the annotations Minute-
Of-Hour, Hour-Of-Day, Two-Digit-Year and Time-
Zone in the test set are much lower, and our models
are good at predicting such annotations. Explicit
operators are very lexically-dependent, e.g. LAST

corresponds to one word from the set {last, latest,
previously, recently, past, over, recent, earlier, the
past, before}, and the majority of them appear once
or twice in the training and development sets.

Our experiments verify the advantages of
character-based-models in predicting SCATE anno-
tations, which are in agreement with our explana-
tions in Section 5.1.2: word-based-models tend to
fail to distinguish numbers from digit-based time ex-
pressions. It’s difficult for word-based-models to
catch some patterns of time expressions, such as
24th and 25th, August and Aug., etc., while character-
based models are robust to such variance. We ran
an experiment to see whether these benefits were
unique to compositional annotations like those of
SCATE, or more generally to simply recognizing
time expressions. We used the TimeML annotations
from AQUAINT and TimeBank (see Table 1) to train
two multi-class classifiers to identify TIMEX3 an-
notations. The models were similar to our Char 3-
Softmax and Word 3-Softmax models, using the same
parameter settings, but with a single softmax output
layer to predict the four types of TIMEX3: DATE,
TIME, DURATION, and SET. As shown in Table 8,
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TIMEX3 TIMEX3-Digits
P R F1 P R F1

Char 70.2 62.7 66.2 73.8 71.4 72.6
Word 81.3 69.0 74.7 86.2 79.4 82.6

Table 8: Precision (P ), recall (R), and F1 for character-
based and word-based models in predicting TimeML
TIMEX3 annotations on the TempEval 2013 test set.
TIMEX3-Digits is the subset of annotations that contain
digits.

on the test set the word-based model significantly out-
performs the character-based model in terms of both
time expressions (p=0.0428) and the subset of time
expressions that contain digits (p=0.0007). These
results suggest that the reason character-based mod-
els are more successful on the SCATE annotations
is that SCATE breaks time expressions down into
meaningful sub-components. For example, TimeML
would simply call Monday, 1992-05-04 a DATE, and
call 15:00:00 GMT Saturday a TIME. SCATE would
identify four and five, respectively, different types
of semantic entities in these expression; and each
SCATE entity would be either all letters or all digits.
In TimeML, the model is faced with difficult learning
tasks, e.g., that sometimes a weekday name is part
of a DATE and sometimes it is part of a TIME, while
in SCATE, a weekday name is always a DAY-OF-
WEEK.

On the other hand, running the entity composition
step with gold entity identification achieves 72.6 in
terms of F1. One of the main causes of errors in this
step is the heuristic to complete the INTERVAL-TYPE

property. As we explain in Section 5.2, we implement
a too coarse set of rules for this case. Another source
of errors is the distance of the 10 characters we use
to decide if the time entities belong to the same time
expression. This condition prevents the creation of
some links, for example, the expression “Later” at
the beginning of a sentence typically refers to another
time interval in a previous sentence, so the distance
between them is much longer.

8 Conclusion

We have presented the first model for time normaliza-
tion trained on SCATE-style annotations. The model
outperforms the rule-based state-of-the-art, proving
that describing time expressions in terms of compo-

sitional time entities is suitable for machine learn-
ing approaches. This broadens the research in time
normalization beyond the more restricted TimeML
schema. We have shown that a character-based neural
network architecture has advantages for the task over
a word-based system, and that a multi-output net-
work performs better than producing a single output.
Furthermore, we have defined a new interval-based
evaluation metric that allows us to perform a com-
parison between annotations based on both SCATE
and TimeML schema, and found that SCATE pro-
vides a wider variety of time expressions. Finally,
we have seen that the sparse training set available
induces model overfitting and that the largest number
of errors are committed in those cases that appear less
frequently in the annotations. This is more significant
in the case of explicit operators because they are very
dependent on the lexicon. Improving performance on
these cases is our main goal for future work. Accord-
ing to the results presented in this work, it seems that
a solution would be to obtain a wider training set, so
a promising research line is to extend our approach
to automatically generate new annotations.

9 Software

The code for the SCATE-style time normalization
models introduced in this paper is available at
https://github.com/clulab/timenorm.
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