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Abstract

Reading comprehension (RC)—in contrast to
information retrieval—requires integrating in-
formation and reasoning about events, enti-
ties, and their relations across a full document.
Question answering is conventionally used to
assess RC ability, in both artificial agents and
children learning to read. However, existing
RC datasets and tasks are dominated by ques-
tions that can be solved by selecting answers
using superficial information (e.g., local con-
text similarity or global term frequency); they
thus fail to test for the essential integrative as-
pect of RC. To encourage progress on deeper
comprehension of language, we present a new
dataset and set of tasks in which the reader
must answer questions about stories by reading
entire books or movie scripts. These tasks are
designed so that successfully answering their
questions requires understanding the underly-
ing narrative rather than relying on shallow
pattern matching or salience. We show that al-
though humans solve the tasks easily, standard
RC models struggle on the tasks presented here.
We provide an analysis of the dataset and the
challenges it presents.

1 Introduction

Natural language understanding seeks to create mod-
els that read and comprehend text. A common strat-
egy for assessing the language understanding capa-
bilities of comprehension models is to demonstrate
that they can answer questions about documents they
read, akin to how reading comprehension is tested in
children when they are learning to read. After read-
ing a document, a reader usually can not reproduce

Title: Ghostbusters II
Question: How is Oscar related to Dana?
Answer: her son
Summary snippet: . . . Peter’s former girlfriend
Dana Barrett has had a son, Oscar. . .
Story snippet:

DANA (setting the wheel brakes on the buggy)
Thank you, Frank. I’ll get the hang of this eventually.

She continues digging in her purse while Frank leans
over the buggy and makes funny faces at the baby,
OSCAR, a very cute nine-month old boy.

FRANK (to the baby)
Hiya, Oscar. What do you say, slugger?

FRANK (to Dana)
That’s a good-looking kid you got there, Ms. Barrett.

Figure 1: Example question–answer pair. The snippets
here were extracted by humans from summaries and the
full text of movie scripts or books, respectively, and are
not provided to the model as supervision or at test time.
Instead, the model will need to read the full text and lo-
cate salient snippets based solely on the question and its
reading of the document in order to generate the answer.

the entire text from memory, but often can answer
questions about underlying narrative elements of the
document: the salient entities, events, places, and the
relations between them. Thus, testing understanding
requires the creation of questions that examine high-
level abstractions instead of just facts occurring in
one sentence at a time.

Unfortunately, superficial questions about a docu-
ment may often be answered successfully (by both
humans and machines) using a shallow pattern match-
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ing strategies or guessing based on global salience.
In the following section, we survey existing QA
datasets, showing that they are either too small or
answerable by shallow heuristics (Section 2). On the
other hand, questions which are not about the surface
form of the text, but rather about the underlying narra-
tive, require the formation of more abstract represen-
tations about the events and relations expressed in the
course of the document. Answering such questions
requires that readers integrate information which may
be distributed across several statements throughout
the document, and generate a cogent answer on the
basis of this integrated information. That is, they
test that the reader comprehends language, not just
that it can pattern match. We present a new task and
dataset, which we call NarrativeQA, which will test
and reward artificial agents approaching this level of
competence (Section 3), and make available online.1

The dataset consists of stories, which are books
and movie scripts, with human written questions and
answers based solely on human-generated abstractive
summaries. For the RC tasks, questions may be an-
swered using just the summaries or the full story text.
We give a short example of a sample movie script
from this dataset in Figure 1. Fictional stories have
a number of advantages as a domain (Schank and
Abelson, 1977). First, they are largely self-contained:
beyond the basic fundamental vocabulary of English,
all of the information about salient entities and con-
cepts required to understand the narrative is present in
the document, with the expectation that a reasonably
competent language user would be able to understand
it.2 Second, story summaries are abstractive and gen-
erally written by independent authors who know the
work only as a reader.

2 Review of Reading Comprehension
Datasets and Models

There are a large number of datasets and associated
tasks available for the training and evaluation of read-

1http://deepmind.com/publications
2For example, new names and words may be coined by the

author (e.g. “muggle” in Harry Potter novels) but the reader need
only appeal to the book itself to understand the meaning of these
concepts, and their place in the narrative. This ability to form
new concepts based on the contexts of a text is a crucial aspect
of reading comprehension, and is in part tested as part of the
question answering tasks we present.

ing comprehension models. We summarize the key
features of a collection of popular recent datasets in
Table 1. In this section, we briefly discuss the nature
and limitations of these datasets and their associated
tasks.

MCTest (Richardson et al., 2013) is a collection
of short stories, each with multiple questions. Each
such question has set of possible answers, one of
which is labelled as correct. While this could be
used as a QA task, the MCTest corpus is in fact
intended as an answer selection corpus. The data is
human generated, and the answers can be phrases or
sentences. The main limitation of this dataset is that
it serves more as a an evaluation challenge than as
the basis for end-to-end training of models, due to its
relatively small size.

In contrast, CNN/Daily Mail (Hermann et al.,
2015), Children’s Book Test (CBT) (Hill et al., 2016),
and BookTest (Bajgar et al., 2016) each provide
large amounts of question–answer pairs. Questions
are Cloze-form (predict the missing word) and are
produced from either short abstractive summaries
(CNN/Daily Mail) or from the next sentence in the
document the context was taken from (CBT and
BookTest). The tasks associated with these datasets
are all selecting an answer from a set of options,
which is explicitly provided for CBT and BookTest,
and is implicit for CNN/Daily Mail, as the answers
are always entities from the document. This signif-
icantly favors models that operate by pointing to a
particular token (or type). Indeed, the most success-
ful models on these datasets, such as the Attention
Sum Reader (AS Reader) (Kadlec et al., 2016), ex-
ploit precisely this bias in the data. However, these
models are inappropriate for answers requiring syn-
thesis of a new answer. This bias towards answers
that are shallowly salient is a more serious limita-
tion of the CNN/Daily Mail dataset, since its context
documents are news stories which usually contain a
small number of salient entities and focus on a single
event.

Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016) and NewsQA (Trischler et
al., 2016) offer a different challenge. A large number
of questions and answers are provided for a set of
documents, where the answers are spans of the con-
text document, i.e. contiguous sequences of words
from the document. Although the answers are not
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Dataset Documents Questions Answers

MCTest (Richardson et al., 2013) 660 short stories,
grade school level

2640 human generated,
based on the document

multiple choice

CNN/Daily Mail (Hermann et al., 2015) 93K+220K news articles 387K+997K Cloze-form,
based on highlights

entities

Children’s Book Test (CBT) (Hill et al., 2016) 687K of 20 sentence passages from
108 children’s books

Cloze-form,
from the 21st sentence

multiple choice

BookTest (Bajgar et al., 2016) 14.2M, similar to CBT Cloze-form, similar to CBT multiple choice
SQuAD (Rajpurkar et al., 2016) 23K paragraphs from 536

Wikipedia articles
108K human generated,
based on the paragraphs

spans

NewsQA (Trischler et al., 2016) 13K news articles from the CNN
dataset

120K human generated,
based on headline, highlights

spans

MS MARCO (Nguyen et al., 2016) 1M passages from 200K+ docu-
ments retrieved using the queries

100K search queries human generated,
based on the passages

SearchQA (Dunn et al., 2017) 6.9m passages retrieved from a
search engine using the queries

140k human generated
Jeopardy! questions

human generated
Jeopardy! answers

NarrativeQA (this paper) 1,572 stories (books, movie scripts)
& human generated summaries

46,765 human generated,
based on summaries

human generated,
based on summaries

Table 1: Comparison of datasets.

just single word/entity answers, many plausible ques-
tions for assessing RC cannot be asked because no
document span would contain its answer. While they
provide a large number of questions, these are from
a relatively small number of documents, which are
themselves fairly short, thereby limiting the lexical
and topical diversity of models trained on this data.
While the answers are multi-word phrases, the spans
are generally short and rarely cross sentence bound-
aries. Simple models scoring and/or extracting candi-
date spans conditioned on the question and superficial
signal from the rest of the document do well, e.g.,
Seo et al. (2016). These models will not trivially gen-
eralize to problems where the answers are not spans
in the document, supervision for spans is not pro-
vided, or several discontinuous spans are needed to
generate a correct answer. This restricts the scalabil-
ity and applicability of models doing well on SQuAD
or NewsQA to more complex problems.

MS MARCO dataset (Nguyen et al., 2016)
presents a bolder challenge: questions are paired with
sets of snippets (“context passages”) that contain the
information necessary to answer the question and an-
swers are free-form human generated text. However,
as no restriction was placed on annotators to prevent
them from copying answers from source documents,
many answers are in fact verbatim copies of short
spans from the context passages. Models that do
well on SQuAD (e.g., Wang and Jiang (2016), Weis-
senborn et al. (2017)), extracting spans or pointing,
do well here too, and the same concerns about the

general applicability of solutions to this particular
dataset to larger reading comprehension problems
apply here also, as above.

SearchQA (Dunn et al., 2017) is a recent dataset
in which the context for each question is a set of
documents retrieved by a search engine using the
question as the query. However, in contrast with
previous datasets neither questions nor answers were
produced by annotating the context documents, but
rather the context documents were retrieved after
collecting pre-existing question–answer pairs. As
such, it is not open to same annotation bias as the
datasets discussed above. However, upon examining
answers in the Jeopardy data used to construct this
dataset, one finds that 80% of answers are bigrams
or unigrams, and 99% are 5 tokens or fewer. Of a
sample of 100 answers, 72% are named entities, all
are short noun-phrases.

Summary of Limitations. We see several limita-
tions of the scope and depth of the RC problems in
existing datasets. First, several datasets are small
(MCTest) or not overly naturalistic (bAbI (Weston et
al., 2015)). Second, in more naturalistic documents,
a majority of questions require only a single sen-
tence to locate supporting information for answering
(Chen et al., 2016; Rajpurkar et al., 2016). This, we
suspect, is largely an artifact of the question genera-
tion methodology, in which annotators have created
questions from a context document, or where context
documents that explicitly answer a question are iden-
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tified using a search engine. Although the factoid-like
Jeopardy questions of SearchQA also appear to favor
questions answerable with local context. Finally, we
see further evidence of the superficiality of the ques-
tions in the architectures that have evolved to solve
them, which tend to exploit span selection based on
representations derived from local context and the
query (Seo et al., 2016; Wang et al., 2017).

3 NarrativeQA: A New Dataset

In this section, we introduce our new dataset, Nar-
rativeQA, which addresses many of the limitations
identified in existing datasets.

3.1 Desiderata
From the above discussed features and limitations,
we define our desiderata as follows. We wish to
construct a dataset with a large number of question–
answer pairs based on either a large number of sup-
porting documents or from a smaller collection of
large documents. This permits the training of neu-
ral network-based models over word embeddings
and provides decent lexical coverage and diversity.
The questions and answers should be natural, un-
constrained, and human generated; and answering
questions should frequently require reference to sev-
eral parts or a larger span of the context document
rather than superficial representations of local con-
text. Furthermore, we want annotators to express,
in their own words, higher-level relations between
entities, places, and events, rather than copy short
spans of the document.

Furthermore, we want to evaluate models both on
the fluency and correctness of generated free-form
answers, and as an answer selection problem, which
requires the provision of sensible distractors to the
correct answer. Finally, the scope and complexity of
the QA problem should be such that current models
struggle, while humans are capable of solving the
task correctly, so as to motivate further research into
the development of models seeking human reading
comprehension ability.

3.2 Data Collection Method
We will consider complex, self-contained narratives
as our documents/stories. To make the annotation
tractable and lead annotators towards asking non-
localized questions, we will only provide them hu-

man written summaries of the stories for generating
the question–answer pairs.

We present both books and movie scripts as stories
in our dataset. Books were collected from Project
Gutenberg3 and movie scripts are scraped from the
web.4 We matched our stories with plot summaries
from Wikipedia using titles and verified the matching
with help from human annotators. The annotators
were asked to determine if both the story and the
summary refer to a movie or a book (as some books
are made into movies), or if they are the same part in
a series produced in the same year. In this way we
obtained 1,567 stories. This provides with a smaller
set of documents, compared to the other datasets,
but the documents are long which provides us with
good lexical coverage and diversity. The bottleneck
for obtaining a larger number of publicly available
stories was finding corresponding summaries.

Annotators on Amazon Mechanical Turk were in-
structed to write 10 question–answer pairs each based
solely on a given summary. Reading and annotating
summaries is tractable unlike writing questions and
answers based on the full stories, and moreover, as
the annotators never see the full stories we are much
less likely to get questions and answers which are
extracted from a localized context.

Annotators were instructed to imagine that they
are writing questions to test students who have read
the full stories but not the summaries. We required
questions that are specific enough, given the length
and complexity of the narratives, and to provide a
diverse set of questions about characters, events, why
this happened, and so on. Annotators were encour-
aged to use their own words and we prevented them
from copying.5 We asked for answers that are gram-
matical, complete sentences, and explicitly allowed
short answers (one word, or a few-word phrase, or a
short sentence) as we think that answering with a full
sentence is frequently perceived as artificial when
asking about factual information. Annotators were
asked to avoid extra, unnecessary information in the
question or the answer, and to avoid yes/no questions

3http://www.gutenberg.org/
4Mainly from http://www.imsdb.com/, but

also http://www.dailyscript.com/, http:
//www.awesomefilm.com/.

5This was done both through instructions and Javascript hard
limitations on the annotation site.
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or questions about the author or the actors.
About 30 question–answer pairs per summary

were obtained. The result is a collection of human
written natural questions and answers. As we have
multiple questions per summary/story, this allows us
to consider answer selection (from among the 30)
as a simpler version of the QA rather than answer
generation from scratch. Answer selection (Hewlett
et al., 2016) and multiple-choice question answer-
ing (Richardson et al., 2013; Hill et al., 2016) are
frequently used.

We additionally collected a second reference an-
swer for each question by asking annotators to judge
whether a question is answerable, given the summary,
and provide an answer if it was. All but 2.3% of the
questions were judged as answerable.

3.3 Core Statistics

We collected 1,567 stories, evenly split between
books and movie scripts. We partitioned the dataset
into non-overlapping training, validation, and test
portions, along stories/summaries. See Table 2 for
detailed statistics.

The dataset contains 46,765 question–answer pairs.
The questions are grammatical questions written by
human annotators, that average 9.8 tokens in length,
and are mostly formed as ‘WH’-questions (see Ta-
ble 3). We categorized a sample of 300 questions
in Table 4. We observed a good variety of question
types. An interesting category are questions which
ask for something related to, or occurring together,
before, or after with an event, of which there are
about 15%.

Answers in the dataset are human written natural
answers that are short, averaging 4.73 tokens, but are
not restricted to spans from the documents. There
are answers that appear as spans of the summaries
and the stories, 44.05% and 29.57%, respectively. As
expected, lower proportion of answers are spans on
stories compared to summaries on which they were
constructed.

3.4 Tasks

We present tasks varying in their scope and complex-
ity: we consider either the summary or the story as
context, and for each we evaluate answer generation
and answer selection.

The task of answering questions based on sum-
maries is similar in scope to previous datasets. How-
ever, summaries contain more complex relationships
and timelines than news articles or short paragraphs
from the web and thus provide a task different in
nature. We hope that NarrativeQA will motivate the
design of architectures capable of modeling such rela-
tionships. This setting is similar to the previous tasks
in that the questions and answers were constructed
based on these supporting documents.

The full version of NarrativeQA requires read-
ing and understanding entire stories (i.e., books and
movie scripts). At present, this task is intractable for
existing neural models out of the box. We further
discuss the challenges and possible approaches in the
following sections.

We require the use of metrics for generated text.
We evaluate using BLEU-1, BLEU-4 (Papineni et
al., 2002), Meteor (Denkowski and Lavie, 2011),
and ROUGE-L (Lin, 2004), using two references
for each question,6 except for the human baseline
where we evaluate one reference against the other.
We also evaluate our models using a ranking metric.
This allows us to evaluate how good our model is
at reading comprehension regardless of how good
it is at generating answers. We rank answers for
questions associated with the same summary/story
and compute the mean reciprocal rank (MRR).7

4 Baselines and Oracles

In this section, we show that NarrativeQA presents a
challenging problem for current approaches to read-
ing comprehension by evaluating several baselines
based on information retrieval (IR) techniques and
neural models. Since neural models use quite differ-
ent processes for generating answers (e.g., predict-
ing a single word or entity, selecting a span of the
document context, or open generation of the answer
sequence), we present results on each. We also re-
port the human performance by scoring the second
reference answer against the first.

6We lowercase both the candidates and the references and
remove the end of sentence marker and the final full stop.

7MRR is the mean over examples of 1/r, where r ∈
{1, 2, . . .} is the rank of the correct answer among candidates.
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train valid test

# documents 1,102 115 355
. . . books 548 58 177
. . . movie scripts 554 57 178
# question–answer pairs 32,747 3,461 10,557
Avg. #tok. in summaries 659 638 654
Max #tok. in summaries 1,161 1,189 1,148
Avg. #tok. in stories 62,528 62,743 57,780
Max #tok. in stories 430,061 418,265 404,641
Avg. #tok. in questions 9.83 9.69 9.85
Avg. #tok. in answers 4.73 4.60 4.72

Table 2: NarrativeQA dataset statistics.

First token Frequency

What 38.04%
Who 23.37%
Why 9.78%
How 8.85%
Where 7.53%
Which 2.21%
How many/much 1.80%
When 1.67%
In 1.19%
OTHER 5.57%

Table 3: Frequency of first
token of the question in the
training set.

Category Frequency

Person 30.54%
Description 24.50%
Location 9.73%
Why/reason 9.40%
How/method 8.05%
Event 4.36%
Entity 4.03%
Object 3.36%
Numeric 3.02%
Duration 1.68%
Relation 1.34%

Table 4: Question categories
on a sample of 300 questions
from the validation set.

4.1 Simple IR Baselines

We consider basic IR baselines which retrieve an an-
swer by selecting a span of tokens from the context
document based on a similarity measure between the
candidate span and a query. We compare two queries:
the question and (as an oracle) the gold standard an-
swer. The answer oracle provides an upper bound
on the performance of span retrieval models, includ-
ing the neural models discussed below. When using
the question as the query, we obtain generalization
results of IR methods. Test set results are computed
by extracting either 4-gram, 8-gram, or full-sentence
spans according to the best performance on the vali-
dation set.8

We consider three similarity metrics for extracting
spans: BLEU-1, ROUGE-L, and the cosine similarity
between bag-of-words embedding of the query and
the candidate span using pre-trained GloVe word
embeddings (Pennington et al., 2014).

4.2 Neural Benchmarks

As a first benchmark we consider a simple bi-
directional LSTM sequence to sequence (Seq2Seq)
model (Sutskever et al., 2014) predicting the answer
directly from the query. Importantly, we provide no
context information from either summary or story.
Such a model might classify the question and predict
an answer of a similar topic or category.

8Note that we do not consider the span’s context when com-
puting the MRR for IR baselines, as the candidate spans (i.e. all
answers to questions on the story) are given and simply ranked
by their similarity to the query.

Previous reading comprehension tasks such as
CNN/Daily Mail motivated models constrained to
predicting a single token from the input sequence.
The AS Reader (Attention Sum Reader (Kadlec et
al., 2016)) considers the entire context and predicts
a distribution over unique word types. We adapt the
model for sequence prediction by using an LSTM se-
quence decoder and choosing a token from the input
at each step of the output sequence.

As a span-prediction model we consider a sim-
plified version of the Bi-Directional Attention Flow
network (Seo et al., 2016). We omit the character
embedding layer and learn a mapping from words to
a vector space rather than making use of pre-trained
embeddings; and we use a single layer bi-directional
LSTM to model interactions among context words
conditioned on the query (modelling layer). As pro-
posed, we adopt the output-layer tailored for span-
prediction and leave the rest unchanged. It was not
our aim to use the state-of-the-art model for other
datasets but rather to provide a strong benchmark.

Span prediction models can be trained by obtaining
supervision on the training set from the oracle IR
model. We use start and end indices of the span
achieving the highest ROUGE-L score with respect
to the reference answers as labels on the training set.
The model is then trained to predict these spans by
maximizing the probability of the indices.

4.3 Neural Benchmarks on Stories

The design of the NarrativeQA dataset makes the
straight-forward application of the existing neural ar-
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Model Validation / Test
BLEU-1 BLEU-4 Meteor ROUGE-L MRR

IR Baselines
BLEU-1 given question (1 sentence) 10.48/10.75 3.02/ 3.34 11.93/12.33 14.34/14.90 0.176/0.171
ROUGE-L given question (8-gram) 11.74/11.01 2.18/ 1.99 7.05/ 6.50 12.58/11.74 0.168/0.161
Cosine given question (1 sentence) 7.49/ 7.51 1.88/ 1.97 10.18/10.35 12.01/12.28 0.170/0.171
Random rank 0.133/0.133

Neural Benchmarks
Seq2Seq (no context) 16.10/15.89 1.40/ 1.26 4.22/ 4.08 13.29/13.15 0.211/0.202
Attention Sum Reader 23.54/23.20 5.90/ 6.39 8.02/ 7.77 23.28/22.26 0.269/0.259
Span Prediction 33.45/33.72 15.69/15.53 15.68/15.38 36.74/36.30 —

Oracle IR Models
BLEU-1 given answer (ans. length) 54.60/55.55 26.71/27.78 31.32/32.08 58.90/59.77 1.000/1.000
ROUGE-L given answer (ans. length) 52.94/54.14 27.18/28.18 30.81/31.50 59.09/59.92 1.000/1.000
Cosine given answer (ans. length) 46.69/47.95 24.25/25.25 27.02/27.81 44.64/45.66 0.836/0.838

Human (given summaries) 44.24/44.43 18.17/19.65 23.87/24.14 57.17/57.02 —

Table 5: Experiments on summaries. Higher is better for all metrics. Sections 4.1 and 4.2 explain the IR and neural
models, respectively.

chitectures computationally infeasible, as this would
require running an recurrent neural network on se-
quences of hundreds of thousands of time steps or
computing a distribution over the entire input for
attention, as is common.

We split the task into two steps: first, we retrieve
a small number of relevant passages from the story
using an IR system; second, we apply one of the neu-
ral models on the resulting document. The question
becomes the query for retrieval. This IR problem is
much harder than traditional document retrieval, as
the documents, the passages here, are very similar,
and the question is short and entities mentioned likely
occur many times in the story.

Our retrieval system considers chunks of 200
words from the story and computes representations
for all chunks and the query. We then select a varying
number of such chunks based on their similarity to
the query. We experiment with different representa-
tions and similarity measures in Section 5. Finally,
we concatenate the selected chunks in the correct
temporal order and insert delimiters between them
to obtain a much shorter document. For span predic-
tion models, we then further select a span from the
retrieved chunks as described in Section 4.2.

5 Experiments

In this section, we describe the data preparation
methodology we used, and the experimental results
on the summary-reading task as well as the full story
task.

5.1 Data Preparation

The provided narratives contain a large number
of named entities (such as names of characters
or places). Inspired by Hermann et al. (2015),
we replace such entities with markers, such as
@entity42. These markers are permuted during
training and testing so that none of their embeddings
learn a specific entity’s representation. This allows
us to build representations for entities from stories
that were never seen in training, since they are given
a specific identifier (to differentiate them from other
entities in the document) from a set of generic identi-
fiers re-used across documents. Entities are replaced
according to a simple heuristic based on a capital first
character and the respective word not appearing in
lowercase.

5.2 Reading Summaries Only

Reading comprehension of summaries is similar to
a number of previous reading comprehension tasks
where questions were constructed based on the con-
text document. However, plot summaries tend to

323



Model Validation / Test
BLEU-1 BLEU-4 Meteor ROUGE-L MRR

IR Baselines
BLEU-1 given question (8-gram) 6.73/ 6.52 0.30/ 0.34 3.58/ 3.35 6.73/ 6.45 0.176/0.171
ROUGE-L given question (1 sentence) 5.78/ 5.69 0.25/ 0.32 3.71/ 3.64 6.36/ 6.26 0.168/0.161
Cosine given question (8-gram) 6.40/ 6.33 0.28/ 0.29 3.54/ 3.28 6.50/ 6.43 0.171/0.171
Random rank 0.133/0.133

Neural Benchmarks
Attention Sum Reader given 1 chunk 16.95/16.08 1.26/1.08 3.84/3.56 12.12/11.94 0.164/0.161
Attention Sum Reader given 2 chunks 18.54/17.76 0.0/1.1 4.2/4.01 13.5/12.83 0.169/0.169
Attention Sum Reader given 5 chunks 18.91/18.36 1.37/1.64 4.48/4.24 14.47/13.4 0.171/0.173
Attention Sum Reader given 10 chunks 20.0/19.09 2.23/1.81 4.45/4.29 14.47/14.03 0.182/0.177
Attention Sum Reader given 20 chunks 19.79/19.06 1.79/2.11 4.6/4.37 14.86/14.02 0.182/0.179
Span Prediction 5.82/5.68 0.22/0.25 3.84/3.72 6.33/6.22 —

Oracle IR Models
BLEU-1 given answer (ans. length) 41.81/42.37 7.03/ 7.70 19.10/19.52 46.40/47.15 1.000/1.000
ROUGE-L given answer (ans. length) 39.17/39.50 7.81/ 8.46 18.13/18.55 48.91/49.94 1.000/1.000
Cosine given answer (4-gram) 38.21/38.92 7.78/ 8.43 12.58/12.60 31.24/31.70 0.842/0.845

Human (given summaries) 44.24/44.43 18.17/19.65 23.87/24.14 57.17/57.02 —

Table 6: Experiments on full stories. Each chunk contains 200 tokens. Higher is better for all metrics. Sections 4.1
and 4.2 explain the IR and neural models, respectively. Note that the human scores are based on answering questions
given summaries, same as in Table 5.

contain more intricate event time lines and a larger
number of characters, and in this sense, are more
complex to follow than news articles or paragraphs
from Wikipedia. See Table 5 for the results.

Given that questions were constructed based on
the summaries, we expected that both neural models
and span-selection models would perform well. This
is indeed the case, with the neural span prediction
model significantly outperforming all other proposed
methods. However, significant room remains for
improvement when compared with the oracle and
human scores.

Both the plain sequence-to-sequence model
and the AS Reader, successfully applied to the
CNN/DailyMail reading comprehension task, also
performed well on this task. We observe that the
AS Reader tends to copy subsequent tokens from the
context, thus behaving like a span prediction model.
An additional inductive bias results in higher perfor-
mance for the span prediction model. Similar obser-
vations between AS Reader and span models have
also been made by Wang and Jiang (2016).

Note that we have tuned each model separately
on the development set twice: once selecting the
best model based on ROUGE-L, reporting the first

four metrics, and a second time selecting based on
the MRR.

5.3 Reading Full Stories Only

Table 6 summarizes the results on the full Narra-
tiveQA task, where the context documents are full
stories. As expected (and desired), we observe a de-
cline in performance of the span-selection oracle IR
model, compared to the results on summaries. This
is unsurprising as the questions were constructed on
summaries and confirms the initial motivation for
designing this task. As previously, we considered
all spans of a given length across the entire story for
this model. For short answers of one or two words—
typically main characters in a story—the candidate
(i.e., the closest span to the reference answer) is eas-
ily found due to being mentioned throughout the text.
For longer answers it becomes much less likely, com-
pared to the summaries, that a high-scoring span can
be found in the story. Note that this distinguishes
NarrativeQA from many of the reviewed datasets.

In our IR plus neural two-step approach to the task,
we first retrieve relevant chunks of the stories and
then apply existing reading comprehension models.
We use the questions to guide the IR system for chunk
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extraction, with the results of the standalone IR base-
lines giving an indication of the difficulty of this
aspect of the task. The retrieval quality has a direct
effect on the performance of all neural models—a
challenge which models on summaries are not pre-
sented with. We considered several approaches to
chunk selection: we retrieve chunks based on the
highest ROUGE-L or BLEU-1 scoring span with re-
spect to the question in the story; comparing topic
distributions from an LDA model (Blei et al., 2003)
between questions and chunks according to their sym-
metric Kullback–Leibler divergence. Finally, we also
consider the cosine similarity of TF-IDF representa-
tions. We found that this approach led to the best per-
formance of the subsequently applied model on the
validation set, irrespective of the number of chunks.
Note that we used the answer as the query on the
training, and the question for the validation and test.

Given the retrieved chunks, we experimented with
several neural models using them as context. The
AS Reader, which was the better-performing model
on the summaries task, underperforms the simple
no-context Seq2Seq baseline (shown in Table 5) in
terms of MRR. While it does slightly better on the
other metrics, it clearly fails to make use of the re-
trieved context to gain a distinctive margin over the
no-context Seq2Seq model. Increasing the number
of retrieved chunks, and thereby recall of possibly
relevant parts of the story, had only a minor positive
effect. The span prediction model—which here also
uses selected chunks for context—does especially
poorly in this setup. While this model provided the
best neural results on the summaries task, we suspect
that its performance was particularly badly hurt by
the fact that there is so little lexical and grammatical
overlap between the source of the questions (sum-
maries) and the context provided (stories). As with
the AS Reader, we observed no significant differ-
ences for varying numbers of chunks.

These results leave a large gap in human perfor-
mance, highlighting the success of our design ob-
jective to build a task that is realistic and straight-
forward for humans while very difficult for current
reading comprehension models.

Title: Armageddon 2419 A.D.
Question: In what year did Rogers awaken from his
deep slumber?
Answer: 2419
Summary snippet: . . . Rogers remained in sleep
for 492 years. He awakes in 2419 and,. . .
Story snippet: I should state therefore, that I, An-
thony Rogers, am, so far as I know, the only man
alive whose normal span of eighty-one years of life
has been spread over a period of 573 years. To be
precise, I lived the first twenty-nine years of my life
between 1898 and 1927; the other fifty-two since
2419. The gap between these two, a period of nearly
five hundred years, I spent in a state of suspended an-
imation, free from the ravages of katabolic processes,
and without any apparent effect on my physical or
mental faculties. When I began my long sleep, man
had just begun his real conquest of the air. . .

Figure 2: Example question–answer pair with snippets
from the summary and the story.

6 Qualitative Analysis and Challenges

We find that the proposed dataset meets the desider-
ata we set out in Section 3.1. In particular, we con-
structed a dataset with a number of long documents,
characterized by good lexical coverage and diversity.
The questions and answers are human generated and
natural sounding; and, based on a small manual ex-
amination of ‘Ghostbusters II’, ‘Airplane’, ‘Jacob’s
Ladder’, only a small number of questions and an-
swers are shallow paraphrases of sentences in the full
document. Most questions require reading segments
at least several paragraphs long, and in some cases
even multiple segments spread throughout the story.

Computational challenges identified in Section 5.3
naturally suggest a retrieval procedure as the first step.
We found that the retrieval is challenging, even for
humans not familiar with the presented narrative. In
particular, the task often requires referring to larger
parts of the story, in addition to knowing at least
some background about entities. This makes the
search procedure, based on only a short question, a
challenging and interesting task in itself.

We show example question–answer pairs in Fig-
ures 1, 2, 3. These examples were chosen from a
small set of manually annotated question–answer
pairs to be representative of this collection. In partic-
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ular, the examples show that larger parts of the story
are required to answer questions. Figure 3 shows
that while the relevant paragraph depicting the in-
jury appears early on, it is not until the next snippet
(which appears at the end of the narrative) that the
lethal consequences of the injury are revealed. This
illustrates an iterative reasoning process as well as
extremely long temporal dependencies that we en-
countered during manual annotation. As shown in
Figure 1, reading comprehension on movie scripts re-
quires an understanding of the written dialogue. This
is a challenge as dialogue is typically non-descriptive,
whereas the questions were asked based on descrip-
tive summaries, requiring models to “read between
the lines”.

We expect that understanding narratives as com-
plex as those presented in NarrativeQA will require
transferring text understanding capability from other
supervised learning tasks.

7 Related Work

This paper is the first large-scale question answer-
ing dataset on full-length books and movie scripts.
However, although we are the first to look at the
QA task, learning to understand books through other
modeling objectives has become an important sub-
problem in NLP. These include high level plot under-
standing through clustering of novels (Frermann and
Szarvas, 2017) or summarization of movie scripts
(Gorinski and Lapata, 2015), to more fine grained
processing by inducing character types (Bamman et
al., 2014b; Bamman et al., 2014a), understanding re-
lationships between characters (Iyyer et al., 2016;
Chaturvedi et al., 2017), or understanding plans,
goals, and narrative structure in terms of abstract nar-
ratives (Schank and Abelson, 1977; Wilensky, 1978;
Black and Wilensky, 1979; Chambers and Jurafsky,
2009). In computer vision, the MovieQA dataset
(Tapaswi et al., 2016) fulfills a similar role as Nar-
rativeQA. It seeks to test the ability of models to
comprehend movies via question answering, and part
of the dataset includes full length scripts.

8 Conclusion

We have introduced a new dataset and a set of tasks
for training and evaluating reading comprehension
systems, borne from an analysis of the limitations

Title: Jacob’s Ladder
Question: What is the fatal injury that Jacob sus-
tains which ultimately leads to his death ?
Answer: A bayonete stabbing to his gut.
Summary snippet: A terrified Jacob flees into the
jungle, only to be bayoneted in the gut by an unseen
assailant.

[. . . ]
In a wartime triage tent in 1971, military doctors
fruitlessly treating Jacob reluctantly declare him dead
Story snippet: As he spins around one of the at-
tackers jams all eight inches of his bayonet blade into
Jacob’s stomach. Jacob screams. It is a loud and
piercing wail.

[. . . ]
Int. Vietnam Field Hospital - Day

A doctor leans his head in front of the lamp and re-
moves his mask. His expression is somber. He shakes
his head. His words are simple and final.

DOCTOR
He’s gone.

Cut to Jacob Singer . . .
The doctor steps away. A nurse rudely pulls a green
sheet up over his head. The doctor turns to one of the
aides and throws up his hands in defeat.

Figure 3: Example question–answer pair with snippets
from the summary and the story.

of existing datasets and tasks. While our QA task
resembles tasks provided by existing datasets, it ex-
poses new challenges because of its domain: fiction.
Fictional stories—in contrast to news stories—are
self-contained and describe a richer set of entities,
events, and the relations between them. We have a
range of tasks, from simple (which require models
to read summaries of books and movie scripts, and
generate or rank fluent English answers to human-
generated questions) to more complex (which require
models to read the full stories to answer the questions,
with no access to the summaries).

In addition to the issue of scaling neural models
to large documents, the larger tasks are significantly
more difficult as questions formulated based on one
or two sentences of a summary might require appeal-
ing to possibly discontiguous sentences or paragraphs
from the source text. This requires potential solutions
to these tasks to jointly model the process of search-
ing for information (possibly in several steps) to serve
as support for generating an answer, alongside the
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process of generating the answer entailed by said
support. End-to-end mechanisms for both searching
for information, such as attention, do not scale be-
yond selecting words or n-grams in short contexts
such as sentences and small documents. Likewise,
neural models for mapping documents to answers, or
determining entailment between supporting evidence
and a hypothesis, typically operate on the scale of
sentences rather than sets of paragraphs.

We have provided baseline and benchmark results
for both sets of tasks, demonstrating that while ex-
isting models give sensible results out of the box
on summaries, they do not get any traction on the
book-scale tasks. Having given a quantitative and
qualitative analysis of the difficulty of the more com-
plex tasks, we suggest research directions that may
help bridge the gap between existing models and hu-
man performance. Our hope is that this dataset will
serve not only as a challenge for the machine reading
community, but as a driver for the development of
a new class of neural models which will take a sig-
nificant step beyond the level of complexity which
existing datasets and tasks permit.
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