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Abstract

Most Reading Comprehension methods limit
themselves to queries which can be answered
using a single sentence, paragraph, or docu-
ment. Enabling models to combine disjoint
pieces of textual evidence would extend the
scope of machine comprehension methods,
but currently no resources exist to train and
test this capability. We propose a novel task to
encourage the development of models for text
understanding across multiple documents and
to investigate the limits of existing methods.
In our task, a model learns to seek and com-
bine evidence – effectively performing multi-
hop, alias multi-step, inference. We devise a
methodology to produce datasets for this task,
given a collection of query-answer pairs and
thematically linked documents. Two datasets
from different domains are induced,1 and we
identify potential pitfalls and devise circum-
vention strategies. We evaluate two previ-
ously proposed competitive models and find
that one can integrate information across doc-
uments. However, both models struggle to se-
lect relevant information; and providing doc-
uments guaranteed to be relevant greatly im-
proves their performance. While the mod-
els outperform several strong baselines, their
best accuracy reaches 54.5% on an annotated
test set, compared to human performance at
85.0%, leaving ample room for improvement.

1 Introduction

Devising computer systems capable of answering
questions about knowledge described using text has

1Available at http://qangaroo.cs.ucl.ac.uk

The Hanging Gardens, in [Mumbai], also known as Pherozeshah 
Mehta Gardens, are terraced gardens … They provide sunset views 
over the [Arabian Sea] …

Mumbai (also known as Bombay, the official name until 1995) is the 
capital city of the Indian state of Maharashtra. It is the most 
populous city in India …

Q: (Hanging gardens of Mumbai, country, ?)  
Options:  {Iran, India, Pakistan, Somalia, …}

The Arabian Sea is a region of the northern Indian Ocean bounded 
on the north by Pakistan and Iran, on the west by northeastern 
Somalia and the Arabian Peninsula, and on the east by India …

Figure 1: A sample from the WIKIHOP dataset where it
is necessary to combine information spread across multi-
ple documents to infer the correct answer.

been a longstanding challenge in Natural Language
Processing (NLP). Contemporary end-to-end Read-
ing Comprehension (RC) methods can learn to ex-
tract the correct answer span within a given text
and approach human-level performance (Kadlec et
al., 2016; Seo et al., 2017a). However, for exist-
ing datasets, relevant information is often concen-
trated locally within a single sentence, emphasizing
the role of locating, matching, and aligning informa-
tion between query and support text. For example,
Weissenborn et al. (2017) observed that a simple bi-
nary word-in-query indicator feature boosted the rel-
ative accuracy of a baseline model by 27.9%.

We argue that, in order to further the ability of ma-
chine comprehension methods to extract knowledge
from text, we must move beyond a scenario where
relevant information is coherently and explicitly
stated within a single document. Methods with this
capability would aid Information Extraction (IE) ap-
plications, such as discovering drug-drug interac-

287

Transactions of the Association for Computational Linguistics, vol. 6, pp. 287–302, 2018. Action Editor: Katrin Erk.
Submission batch: 10/2017; Revision batch: 2/2018; Published 5/2018.

c©2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.



tions (Gurulingappa et al., 2012) by connecting pro-
tein interactions reported across different publica-
tions. They would also benefit search (Carpineto and
Romano, 2012) and Question Answering (QA) ap-
plications (Lin and Pantel, 2001) where the required
information cannot be found in a single location.

Figure 1 shows an example from WIKIPEDIA,
where the goal is to identify the country property
of the Hanging Gardens of Mumbai. This cannot be
inferred solely from the article about them without
additional background knowledge, as the answer is
not stated explicitly. However, several of the linked
articles mention the correct answer India (and other
countries), but cover different topics (e.g. Mumbai,
Arabian Sea, etc.). Finding the answer requires
multi-hop reasoning: figuring out that the Hanging
Gardens are located in Mumbai, and then, from a
second document, that Mumbai is a city in India.

We define a novel RC task in which a model
should learn to answer queries by combining ev-
idence stated across documents. We introduce a
methodology to induce datasets for this task and de-
rive two datasets. The first, WIKIHOP, uses sets of
WIKIPEDIA articles where answers to queries about
specific properties of an entity cannot be located in
the entity’s article. In the second dataset, MEDHOP,
the goal is to establish drug-drug interactions based
on scientific findings about drugs and proteins and
their interactions, found across multiple MEDLINE

abstracts. For both datasets we draw upon existing
Knowledge Bases (KBs), WIKIDATA and DRUG-
BANK, as ground truth, utilizing distant supervi-
sion (Mintz et al., 2009) to induce the data – similar
to Hewlett et al. (2016) and Joshi et al. (2017).

We establish that for 74.1% and 68.0% of the
samples, the answer can be inferred from the given
documents by a human annotator. Still, construct-
ing multi-document datasets is challenging; we en-
counter and prescribe remedies for several pitfalls
associated with their assembly – for example, spuri-
ous co-locations of answers and specific documents.

For both datasets we then establish several strong
baselines and evaluate the performance of two pre-
viously proposed competitive RC models (Seo et al.,
2017a; Weissenborn et al., 2017). We find that one
can integrate information across documents, but nei-
ther excels at selecting relevant information from a
larger documents set, as their accuracy increases sig-

nificantly when given only documents guaranteed to
be relevant. The best model reaches 54.5% on an
annotated test set, compared to human performance
at 85.0%, indicating ample room for improvement.

In summary, our key contributions are as follows:
Firstly, proposing a cross-document multi-step RC
task, as well as a general dataset induction strat-
egy. Secondly, assembling two datasets from dif-
ferent domains and identifying dataset construction
pitfalls and remedies. Thirdly, establishing multiple
baselines, including two recently proposed RC mod-
els, as well as analysing model behaviour in detail
through ablation studies.

2 Task and Dataset Construction Method

We will now formally define the multi-hop RC task,
and a generic methodology to construct multi-hop
RC datasets. Later, in Sections 3 and 4 we will
demonstrate how this method is applied in practice
by creating datasets for two different domains.

Task Formalization A model is given a query q, a
set of supporting documents Sq, and a set of candi-
date answers Cq – all of which are mentioned in Sq.
The goal is to identify the correct answer a∗ ∈ Cq

by drawing on the support documents Sq. Queries
could potentially have several true answers when not
constrained to rely on a specific set of support doc-
uments – e.g., queries about the parent of a certain
individual. However, in our setup each sample has
only one true answer among Cq and Sq. Note that
even though we will utilize background information
during dataset assembly, such information will not
be available to a model: the document set will be
provided in random order and without any metadata.
While certainly beneficial, this would distract from
our goal of fostering end-to-end RC methods that in-
fer facts by combining separate facts stated in text.

Dataset Assembly We assume that there exists a
document corpus D, together with a KB containing
fact triples (s, r, o) – with subject entity s, relation r,
and object entity o. For example, one such fact
could be (Hanging Gardens of Mumbai, country,

India). We start with individual KB facts and trans-
form them into query-answer pairs by leaving the
object slot empty, i.e. q = (s, r, ?) and a∗ = o.

Next, we define a directed bipartite graph, where
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vertices on one side correspond to documents in
D, and vertices on the other side are entities from
the KB – see Figure 2 for an example. A docu-
ment node d is connected to an entity e if e is men-
tioned in d, though there may be further constraints
when defining the graph connectivity. For a given
(q, a∗) pair, the candidates Cq and support docu-
ments Sq ⊆ D are identified by traversing the bipar-
tite graph using breadth-first search; the documents
visited will become the support documents Sq.

As the traversal starting point, we use the node
belonging to the subject entity s of the query q. As
traversal end points, we use the set of all entity nodes
that are type-consistent answers to q.2 Note that
whenever there is another fact (s, r, o′) in the KB,
i.e. a fact producing the same q but with a different
a∗, we will not include o′ into the set of end points
for this sample. This ensures that precisely one of
the end points corresponds to a correct answer to q.

When traversing the graph starting at s, several
of the end points will be visited, though generally
not all; those visited define the candidate set Cq. If
however the correct answer a∗ is not among them we
discard the entire (q, a∗) pair. The documents visited
to reach the end points will define the support docu-
ment set Sq. That is, Sq comprises chains of docu-
ments leading not only from the query subject to the
correct answer candidate, but also to type-consistent
false answer candidates.

With this methodology, relevant textual evidence
for (q, a∗) will be spread across documents along
the chain connecting s and a∗ – ensuring that multi-
hop reasoning goes beyond resolving co-reference
within a single document. Note that including
other type-consistent candidates alongside a∗ as end
points in the graph traversal – and thus into the sup-
port documents – renders the task considerably more
challenging (Jia and Liang, 2017). Models could
otherwise identify a∗ in the documents by simply
relying on type-consistency heuristics. It is worth
pointing out that by introducing alternative candi-
dates we counterbalance a type-consistency bias, in
contrast to Hermann et al. (2015) and Hill et al.
(2016) who instead rely on entity masking.

2 To determine entities which are type-consistent for a
query q, we consider all entities which are observed as object
in a fact with r as relation type – including the correct answer.

DocumentsEntities KB
(s, r, o)

(s, r, o0)

(s0, r, o00)

s

o

o0

o00

Figure 2: A bipartite graph connecting entities and doc-
uments mentioning them. Bold edges are those traversed
for the first fact in the small KB on the right; yellow high-
lighting indicates documents in Sq and candidates in Cq .
Check and cross indicate correct and false candidates.

3 WIKIHOP

WIKIPEDIA contains an abundance of human-
curated, multi-domain information and has sev-
eral structured resources such as infoboxes and
WIKIDATA (Vrandečić, 2012) associated with it.
WIKIPEDIA has thus been used for a wealth of re-
search to build datasets posing queries about a single
sentence (Morales et al., 2016; Levy et al., 2017) or
article (Yang et al., 2015; Hewlett et al., 2016; Ra-
jpurkar et al., 2016). However, no attempt has been
made to construct a cross-document multi-step RC
dataset based on WIKIPEDIA.

A recently proposed RC dataset is WIKIREAD-
ING (Hewlett et al., 2016), where WIKIDATA tu-
ples (item, property, answer) are aligned with
the WIKIPEDIA articles regarding their item. The
tuples define a slot filling task with the goal of pre-
dicting the answer, given an article and property.
One problem with using WIKIREADING as an ex-
tractive RC dataset is that 54.4% of the samples
do not state the answer explicitly in the given arti-
cle (Hewlett et al., 2016). However, we observed
that some of the articles accessible by following hy-
perlinks from the given article often state the answer,
alongside other plausible candidates.

3.1 Assembly
We now apply the methodology from Section 2
to create a multi-hop dataset with WIKIPEDIA as
the document corpus and WIKIDATA as structured
knowledge triples. In this setup, (item, property,

answer) WIKIDATA tuples correspond to (s, r, o)
triples, and the item and property of each sample
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together form our query q – e.g., (Hanging Gardens
of Mumbai, country, ?). Similar to Yang et al. (2015)
we only use the first paragraph of an article, as rel-
evant information is more often stated in the begin-
ning. Starting with all samples in WIKIREADING,
we first remove samples where the answer is stated
explicitly in the WIKIPEDIA article about the item.3

The bipartite graph is structured as follows:
(1) for edges from articles to entities: all articles
mentioning an entity e are connected to e; (2) for
edges from entities to articles: each entity e is only
connected to the WIKIPEDIA article about the entity.
Traversing the graph is then equivalent to iteratively
following hyperlinks to new articles about the an-
chor text entities.

For a given query-answer pair, the item entity
is chosen as the starting point for the graph traver-
sal. A traversal will always pass through the article
about the item, since this is the only document con-
nected from there. The end point set includes the
correct answer alongside other type-consistent can-
didate expressions, which are determined by consid-
ering all facts belonging to WIKIREADING train-
ing samples, selecting those triples with the same
property as in q and keeping their answer expres-
sions. As an example, for the WIKIDATA property
country, this would be the set {France,Russia, ...}.
We executed graph traversal up to a maximum chain
length of 3 documents. To not pose unreasonable
computational constraints, samples with more than
64 different support documents or 100 candidates
are removed, discarding ≈1% of the samples.

3.2 Mitigating Dataset Biases

Dataset creation is always fraught with the risk of
inducing unintended errors and biases (Chen et al.,
2016; Schwartz et al., 2017). As Hewlett et al.
(2016) only carried out limited analysis of their
WIKIREADING dataset, we present an analysis of
the downstream effects we observe on WIKIHOP.

Candidate Frequency Imbalance A first obser-
vation is that there is a significant bias in the answer
distribution of WIKIREADING. For example, in the
majority of the samples the property country has
the United States of America as the answer. A simple

3 We thus use a disjoint subset of WIKIREADING compared
to Levy et al. (2017) to construct WIKIHOP.

majority class baseline would thus prove successful,
but would tell us little about multi-hop reasoning. To
combat this issue, we subsampled the dataset to en-
sure that samples of any one particular answer can-
didate make up no more than 0.1% of the dataset,
and omitted articles about the United States.

Document-Answer Correlations A problem
unique to our multi-document setting is the possibil-
ity of spurious correlations between candidates and
documents induced by the graph traversal method.
In fact, if we were not to address this issue, a model
designed to exploit these regularities could achieve
74.6% accuracy (detailed in Section 6).

Concretely, we observed that certain documents
frequently co-occur with the correct answer, inde-
pendently of the query. For example, if the article
about London is present in Sq, the answer is likely
to be the United Kingdom, independent of the query
type or entity in question.

We designed a statistic to measure this effect
and then used it to sub-sample the dataset. The
statistic counts how often a candidate c is observed
as the correct answer when a certain document is
present in Sq across training set samples. More for-
mally, for a given document d and answer candi-
date c, let cooccurrence(d, c) denote the total count
of how often d co-occurs with c in a sample where
c is also the correct answer. We use this statistic
to filter the dataset, by discarding samples with at
least one document-candidate pair (d, c) for which
cooccurrence(d, c) > 20.

4 MEDHOP

Following the same general methodology, we next
construct a second dataset for the domain of molec-
ular biology – a field that has been undergoing ex-
ponential growth in the number of publications (Co-
hen and Hunter, 2004). The promise of applying
NLP methods to cope with this increase has led to
research efforts in IE (Hirschman et al., 2005; Kim
et al., 2011) and QA for biomedical text (Hersh et
al., 2007; Nentidis et al., 2017). There are a plethora
of manually curated structured resources (Ashburner
et al., 2000; The UniProt Consortium, 2017) which
can either serve as ground truth or to induce training
data using distant supervision (Craven and Kumlien,
1999; Bobic et al., 2012). Existing RC datasets are
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either severely limited in size (Hersh et al., 2007)
or cover a very diverse set of query types (Nentidis
et al., 2017), complicating the application of neu-
ral models that have seen successes for other do-
mains (Wiese et al., 2017).

A task that has received significant attention is
detecting Drug-Drug Interactions (DDIs). Exist-
ing DDI efforts have focused on explicit mentions
of interactions in single sentences (Gurulingappa
et al., 2012; Percha et al., 2012; Segura-Bedmar
et al., 2013). However, as shown by Peng et al.
(2017), cross-sentence relation extraction increases
the number of available relations. It is thus likely
that cross-document interactions would further im-
prove recall, which is of particular importance con-
sidering interactions that are never stated explicitly
– but rather need to be inferred from separate pieces
of evidence. The promise of multi-hop methods is
finding and combining individual observations that
can suggest previously unobserved DDIs, aiding the
process of making scientific discoveries, yet not di-
rectly from experiments, but by inferring them from
established public knowledge (Swanson, 1986).

DDIs are caused by Protein-Protein Interac-
tion (PPI) chains, forming biomedical pathways.
If we consider PPI chains across documents,
we find examples like in Figure 3. Here the
first document states that the drug Leuprolide

causes GnRH receptor-induced synaptic potenti-
ations, which can be blocked by the protein
Progonadoliberin-1. The last document states that
another drug, Triptorelin, is a superagonist of the
same protein. It is therefore likely to affect the po-
tency of Leuprolide, describing a way in which the
two drugs interact. Besides the true interaction there
is also a false candidate Urofollitropin for which,
although mentioned together with GnRH receptor

within one document, there is no textual evidence
indicating interactions with Leuprolide.

4.1 Assembly

We construct MEDHOP using DRUGBANK (Law
et al., 2014) as structured knowledge resource and
research paper abstracts from MEDLINE as docu-
ments. There is only one relation type for DRUG-
BANK facts, interacts with, that connects pairs of
drugs – an example of a MEDHOP query would thus
be (Leuprolide, interacts with, ?). We start

Q:  (Leuprolide, interacts_with, ?)  
Options:  {Triptorelin, Urofollitropin}

Leuprolide ... elicited a long-lasting potentiation of excitatory postsynaptic 
currents… [GnRH receptor]-induced synaptic potentiation was blocked … 
by [Progonadoliberin-1], a specific [GnRH receptor] antagonist…

Analyses of gene expression demonstrated a dynamic response to the 
Progonadoliberin-1 superagonist Triptorelin.

… our research to study the distribution, co-localization of Urofollitropin and 
its receptor[,] and co-localization of Urofollitropin and GnRH receptor…

Figure 3: A sample from the MEDHOP dataset.

by processing the 2016 MEDLINE release using the
preprocessing pipeline employed for the BioNLP
2011 Shared Task (Stenetorp et al., 2011). We re-
strict the set of entities in the bipartite graph to
drugs in DRUGBANK and human proteins in SWISS-
PROT (Bairoch et al., 2004). That is, the graph has
drugs and proteins on one side, and MEDLINE ab-
stracts on the other.

The edge structure is as follows: (1) There is an
edge from a document to all proteins mentioned in it.
(2) There is an edge between a document and a drug,
if this document also mentions a protein known to be
a target for the drug according to DRUGBANK. This
edge is bidirectional, i.e. it can be traversed both
ways, since there is no canonical document describ-
ing each drug – thus one can “hop” to any document
mentioning the drug and its target. (3) There is an
edge from a protein p to a document mentioning p,
but only if the document also mentions another pro-
tein p′ which is known to interact with p according to
REACTOME (Fabregat et al., 2016). Given our dis-
tant supervision assumption, these additionally con-
straining requirements err on the side of precision.

As a mention, similar to Percha et al. (2012), we
consider any exact match of a name variant of a
drug or human protein in DRUGBANK or SWISS-
PROT. For a given DDI (drug1, interacts with,

drug2), we then select drug1 as the starting point
for the graph traversal. As possible end points, we
consider any other drug, apart from drug1 and those
interacting with drug1 other than drug2. Similar to
WIKIHOP, we exclude samples with more than 64
support documents and impose a maximum docu-
ment length of 300 tokens plus title.

Document Sub-sampling The bipartite graph for
MEDHOP is orders of magnitude more densely con-
nected than for WIKIHOP. This can lead to poten-
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tially large support document sets Sq, to a degree
where it becomes computationally infeasible for a
majority of existing RC models. After the traver-
sal has finished, we subsample documents by first
adding a set of documents that connects the drug in
the query with its answer. We then iteratively add
documents to connect alternative candidates until we
reach the limit of 64 documents – while ensuring
that all candidates have the same number of paths
through the bipartite graph.

Mitigating Candidate Frequency Imbalance
Some drugs interact with more drugs than others
– Aspirin for example interacts with 743 other
drugs, but Isotretinoin with only 34. This leads
to similar candidate frequency imbalance issues
as with WIKIHOP – but due to its smaller size
MEDHOP is difficult to sub-sample. Nevertheless
we can successfully combat this issue by masking
entity names, detailed in Section 6.2.

5 Dataset Analysis

Table 1 shows the dataset sizes. Note that WIK-
IHOP inherits the train, development, and test set
splits from WIKIREADING – i.e., the full dataset
creation, filtering, and sub-sampling pipeline is ex-
ecuted on each set individually. Also note that sub-
sampling according to document-answer correlation
significantly reduces the size of WIKIHOP from
≈528K training samples to≈44K. While in terms of
samples, both WIKIHOP and MEDHOP are smaller
than other large-scale RC datasets, such as SQuAD
and WIKIREADING, the supervised learning signal
available per sample is arguably greater. One could,
for example, re-frame the task as binary path clas-
sification: given two entities and a document path
connecting them, determine whether a given rela-
tion holds. For such a case, WIKIHOP and MED-
HOP would have more than 1M and 150K paths to
be classified, respectively. Instead, in our formula-
tion, this corresponds to each single sample contain-
ing the supervised learning signal from an average
of 19.5 and 59.8 unique document paths.

Table 2 shows statistics on the number of candi-
dates and documents per sample on the respective
training sets. For MEDHOP, the majority of sam-
ples have 9 candidates, due to the way documents
are selected up until a maximum of 64 documents is

Train Dev Test Total

WIKIHOP 43,738 5,129 2,451 51,318
MEDHOP 1,620 342 546 2,508

Table 1: Dataset sizes for our respective datasets.

min max avg median

# cand. – WH 2 79 19.8 14
# docs. – WH 3 63 13.7 11
# tok/doc – WH 4 2,046 100.4 91

# cand. – MH 2 9 8.9 9
# docs. – MH 5 64 36.4 29
# tok/doc – MH 5 458 253.9 264

Table 2: Candidates and documents per sample and doc-
ument length statistics. WH: WIKIHOP; MH: MEDHOP.

reached. Few samples have less than 9 candidates,
and samples would have far more false candidates if
more than 64 support documents were included. The
number of query types in WIKIHOP is 277, whereas
in MEDHOP there is only one: interacts with.

5.1 Qualitative Analysis

To establish the quality of the data and analyze po-
tential distant supervision errors, we sampled and
annotated 100 samples from each development set.

WIKIHOP Table 3 lists characteristics along with
the proportion of samples that exhibit them. For
45%, the true answer either uniquely follows from
multiple texts directly or is suggested as likely. For
26%, more than one candidate is plausibly sup-
ported by the documents, including the correct an-
swer. This is often due to hypernymy, where
the appropriate level of granularity for the an-
swer is difficult to predict – e.g. (west suffolk,

administrative entity, ?) with candidates
suffolk and england. This is a direct conse-
quence of including type-consistent false answer
candidates from WIKIDATA, which can lead to ques-
tions with several true answers. For 9% of the
cases a single document suffices; these samples
contain a document that states enough information
about item and answer together. For example,
the query (Louis Auguste, father, ?) has the
correct answer Louis XIV of France, and French

king Louis XIV is mentioned within the same doc-
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Unique multi-step answer. 36%
Likely multi-step unique answer. 9%
Multiple plausible answers. 15%
Ambiguity due to hypernymy. 11%
Only single document required. 9%

Answer does not follow. 12%
WIKIDATA/WIKIPEDIA discrepancy. 8%

Table 3: Qualitiative analysis of WIKIHOP samples.

ument as Louis Auguste. Finally, although our
task is significantly more complex than most pre-
vious tasks where distant supervision has been ap-
plied, the distant supervision assumption is only vi-
olated for 20% of the samples – a proportion sim-
ilar to previous work (Riedel et al., 2010). These
cases can either be due to conflicting information be-
tween WIKIDATA and WIKIPEDIA (8%), e.g. when
the date of birth for a person differs between WIKI-
DATA and what is stated in the WIKIPEDIA article,
or because the answer is consistent but cannot be
inferred from the support documents (12%). When
answering 100 questions, the annotator knew the an-
swer prior to reading the documents for 9%, and pro-
duced the correct answer after reading the document
sets for 74% of the cases. On 100 questions of a val-
idated portion of the Dev set (see Section 5.3), 85%
accuracy was reached.

MEDHOP Since both document complexity and
number of documents per sample were significantly
larger compared to WIKIHOP, it was not feasible to
ask an annotator to read all support documents for
100 samples. We thus opted to verify the dataset
quality by providing only the subset of documents
relevant to support the correct answer, i.e., those tra-
versed along the path reaching the answer. The an-
notator was asked if the answer to the query “fol-
lows”, “is likely”, or “does not follow”, given the
relevant documents. 68% of the cases were consid-
ered as “follows” or as “is likely”. The majority
of cases violating the distant supervision assumption
were errors due to the lack of a necessary PPI in one
of the connecting documents.

5.2 Crowdsourced Human Annotation

We asked human annotators on Amazon Mechanical
Turk to evaluate samples of the WIKIHOP develop-

ment set. Similar to our qualitative analysis of MED-
HOP, annotators were shown the query-answer pair
as a fact and the chain of relevant documents leading
to the answer. They were then instructed to answer
(1) whether they knew the fact before; (2) whether
the fact follows from the texts (with options “fact
follows”, “fact is likely”, and “fact does not fol-
low”); and (3); whether a single or several of the
documents are required. Each sample was shown to
three annotators and a majority vote was used to ag-
gregate the annotations. Annotators were familiar
with the fact 4.6% of the time; prior knowledge of
the fact is thus not likely to be a confounding effect
on the other judgments. Inter-annotator agreement
as measured by Fleiss’ kappa is 0.253 in (2), and
0.281 in (3) – indicating a fair overall agreement, ac-
cording to Landis and Koch (1977). Overall, 9.5%
of samples have no clear majority in (2).

Among samples with a majority judgment, 59.8%
are cases where the fact “follows”, for 14.2% the
fact is judged as “likely”, and as “not follow” for
25.9%. This again provides good justification for
the distant supervision strategy.

Among the samples with a majority vote for (2)
of either “follows” or “likely”, 55.9% were marked
with a majority vote as requiring multiple docu-
ments to infer the fact, and 44.1% as requiring only
a single document. The latter number is larger than
initially expected, given the construction of samples
through graph traversal. However, when inspecting
cases judged as “single” more closely, we observed
that many indeed provide a clear hint about the cor-
rect answer within one document, but without stat-
ing it explicitly. For example, for the fact (witold
cichy, country of citizenship, poland) with
documents d1: Witold Cichy (born March 15, 1986
in Wodzisaw lski) is a Polish footballer[...] and d2:
Wodzisaw lski[...] is a town in Silesian Voivodeship,
southern Poland[...], the information provided in d1
suffices for a human given the background knowl-
edge that Polish is an attribute related to Poland, re-
moving the need for d2 to infer the answer.

5.3 Validated Test Sets

While training models on distantly supervised data
is useful, one should ideally evaluate methods on a
manually validated test set. We thus identified sub-
sets of the respective test sets for which the correct
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answer can be inferred from the text. This is in con-
trast to prior work such as Hermann et al. (2015),
Hill et al. (2016), and Hewlett et al. (2016), who
evaluate only on distantly supervised samples. For
WIKIHOP, we applied the same annotation strategy
as described in Section 5.2. The validated test set
consists of those samples labeled by a majority of
annotators (at least 2 of 3) as “follows”, and requir-
ing “multiple” documents. While desirable, crowd-
sourcing is not feasible for MEDHOP since it re-
quires specialist knowledge. In addition, the number
of document paths is ≈3x larger, which along with
the complexity of the documents greatly increases
the annotation time. We thus manually annotated
20% of the MEDHOP test set and identified the sam-
ples for which the text implies the correct answer
and where multiple documents are required.

6 Experiments

This section describes experiments on WIKIHOP

and MEDHOP with the goal of establishing the per-
formance of several baseline models, including re-
cent neural RC models. We empirically demonstrate
the importance of mitigating dataset biases, probe
whether multi-step behavior is beneficial for solv-
ing the task, and investigate if RC models can learn
to perform lexical abstraction. Training will be con-
ducted on the respective training sets, and evaluation
on both the full test set and validated portion (Sec-
tion 5.3) allowing for a comparison between the two.

6.1 Models
Random Selects a random candidate; note that the
number of candidates differs between samples.

Max-mention Predicts the most frequently men-
tioned candidate in the support documents Sq of a
sample – randomly breaking ties.

Majority-candidate-per-query-type Predicts the
candidate c ∈ Cq that was most frequently observed
as the true answer in the training set, given the query
type of q. For WIKIHOP, the query type is the prop-
erty p of the query; for MEDHOP there is only the
single query type – interacts with.

TF-IDF Retrieval-based models are known to be
strong QA baselines if candidate answers are pro-
vided (Clark et al., 2016; Welbl et al., 2017). They

search for individual documents based on keywords
in the question, but typically do not combine infor-
mation across documents. The purpose of this base-
line is to see if it is possible to identify the correct an-
swer from a single document alone through lexical
correlations. The model forms its prediction as fol-
lows: For each candidate c, the concatenation of the
query q with c is fed as an OR query into the whoosh
text retrieval engine. It then predicts the candidate
with the highest TF-IDF similarity score:

argmax
c∈Cq

[max
s∈Sq

(TF-IDF(q + c, s))] (1)

Document-cue During dataset construction we
observed that certain document-answer pairs appear
more frequently than others, to the effect that the
correct candidate is often indicated solely by the
presence of certain documents in Sq. This baseline
captures how easy it is for a model to exploit these
informative document-answer co-occurrences. It
predicts the candidate with highest score across Cq:

argmax
c∈Cq

[max
d∈Sq

(cooccurrence(d, c))] (2)

Extractive RC models: FastQA and BiDAF In
our experiments we evaluate two recently proposed
LSTM-based extractive QA models: the Bidirec-
tional Attention Flow model (BiDAF, Seo et al.
(2017a)), and FastQA (Weissenborn et al., 2017),
which have shown a robust performance across sev-
eral datasets. These models predict an answer span
within a single document. We adapt them to a multi-
document setting by sequentially concatenating all
d ∈ Sq in random order into a superdocument,
adding document separator tokens. During training,
the first answer mention in the concatenated docu-
ment serves as the gold span.4 At test time, we mea-
sured accuracy based on the exact match between
the prediction and answer, both lowercased, after re-
moving articles, trailing white spaces and punctu-
ation, in the same way as Rajpurkar et al. (2016).
To rule out any signal stemming from the order of
documents in the superdocument, this order is ran-
domized both at training and test time. In a prelimi-
nary experiment we also trained models using differ-
ent random document order permutations, but found
that performance did not change significantly.

4 We also tested assigning the gold span randomly to any
one of the mention of the answer, with insignificant changes.
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For BiDAF, the default hyperparameters from the
implementation of Seo et al. (2017a) are used, with
pretrained GloVe (Pennington et al., 2014) embed-
dings. However, we restrict the maximum docu-
ment length to 8,192 tokens and hidden size to 20,
and train for 5,000 iterations with batchsize 16 in or-
der to fit the model into memory.5 For FastQA we
use the implementation provided by the authors, also
with pre-trained GloVe embeddings, no character-
embeddings, no maximum support length, hidden
size 50, and batch size 64 for 50 epochs.

While BiDAF and FastQA were initially devel-
oped and tested on single-hop RC datasets, their us-
age of bidirectional LSTMs and attention over the
full sequence theoretically gives them the capacity
to integrate information from different locations in
the (super-)document. In addition, BiDAF employs
iterative conditioning across multiple layers, poten-
tially making it even better suited to integrate infor-
mation found across the sequence.

6.2 Lexical Abstraction: Candidate Masking
The presence of lexical regularities among an-
swers is a problem in RC dataset assembly – a
phenomenon already observed by Hermann et al.
(2015). When comprehending a text, the correct an-
swer should become clear from its context – rather
than from an intrinsic property of the answer ex-
pression. To evaluate the ability of models to rely
on context alone, we created masked versions of
the datasets: we replace any candidate expression
randomly using 100 unique placeholder tokens, e.g.
“Mumbai is the most populous city in MASK7.”
Masking is consistent within one sample, but gen-
erally different for the same expression across sam-
ples. This not only removes answer frequency cues,
it also removes statistical correlations between fre-
quent answer strings and support documents. Mod-
els consequently cannot base their prediction on in-
trinsic properties of the answer expression, but have
to rely on the context surrounding the mentions.

6.3 Results and Discussion
Table 5 shows the experimental outcomes for WIK-
IHOP and MEDHOP, together with results for the
masked setting; we will first discuss the former. A

5 The superdocument has a larger number of tokens com-
pared to e.g. SQuAD, thus the additional memory requirements.

Model Unfiltered Filtered

Document-cue 74.6 36.7
Maj. candidate 41.2 38.8
TF-IDF 43.8 25.6

Train set size 527,773 43,738

Table 4: Accuracy comparison for simple baseline mod-
els on WIKIHOP before and after filtering.

first observation is that candidate mention frequency
does not produce better predictions than a random
guess. Predicting the answer most frequently ob-
served at training time achieves strong results: as
much as 38.8% / 44.2% and 58.4% / 67.3% on the
two datasets, for the full and validated test sets re-
spectively. That is, a simple frequency statistic to-
gether with answer type constraints alone is a rela-
tively strong predictor, and the strongest overall for
the “unmasked” version of MEDHOP.

The TF-IDF retrieval baseline clearly performs
better than random for WIKIHOP, but is not very
strong overall. That is, the question tokens are help-
ful to detect relevant documents, but exploiting only
this information compares poorly to the other base-
lines. On the other hand, as no co-mention of an
interacting drug pair occurs within any single doc-
ument in MEDHOP, the TF-IDF baseline performs
worse than random. We conclude that lexical match-
ing with a single support document is not enough to
build a strong predictive model for both datasets.

The Document-cue baseline can predict more than
a third of the samples correctly, for both datasets,
even after sub-sampling frequent document-answer
pairs for WIKIHOP. The relative strength of this
and other baselines proves to be an important is-
sue when designing multi-hop datasets, which we
addressed through the measures described in Sec-
tion 3.2. In Table 4 we compare the two relevant
baselines on WIKIHOP before and after applying
filtering measures. The absolute strength of these
baselines before filtering shows how vital address-
ing this issue is: 74.6% accuracy could be reached
through exploiting the cooccurrence(d, c) statistic
alone. This underlines the paramount importance of
investigating and addressing dataset biases that oth-
erwise would confound seemingly strong RC model
performance. The relative drop demonstrates that
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WIKIHOP MEDHOP
standard masked standard masked

Model test test* test test* test test* test test*

Random 11.5 12.2 12.2 13.0 13.9 20.4 14.1 22.4
Max-mention 10.6 15.9 13.9 20.1 9.5 16.3 9.2 16.3
Majority-candidate-per-query-type 38.8 44.2 12.0 13.7 58.4 67.3 10.4 6.1
TF-IDF 25.6 36.7 14.4 24.2 9.0 14.3 8.8 14.3
Document-cue 36.7 41.7 7.4 20.3 44.9 53.1 15.2 16.3

FastQA 25.7 27.2 35.8 38.0 23.1 24.5 31.3 30.6
BiDAF 42.9 49.7 54.5 59.8 47.8 61.2 33.7 42.9

Table 5: Test accuracies for the WIKIHOP and MEDHOP datasets, both in standard (unmasked) and masked setup.
Columns marked with asterisk are for the validated portion of the dataset.

WIKIHOP MEDHOP
standard gold chain standard gold chain

Model test test* test test* test test* test test*

BiDAF 42.9 49.7 57.9 63.4 47.8 61.2 86.4 89.8
BiDAF mask 54.5 59.8 81.2 85.7 33.7 42.9 99.3 100.0

FastQA 25.7 27.2 44.5 53.5 23.1 24.5 54.6 59.2
FastQA mask 35.8 38.0 65.3 70.0 31.3 30.6 51.8 55.1

Table 6: Test accuracy comparison when only using documents leading to the correct answer (gold chain). Columns
with asterisk hold results for the validated samples.

the measures undertaken successfully mitigate the
issue. A downside to aggressive filtering is a signif-
icantly reduced dataset size, rendering it infeasible
for smaller datasets like MEDHOP.

Among the two neural models, BiDAF is overall
strongest across both datasets – this is in contrast to
the reported results for SQuAD where their perfor-
mance is nearly indistinguishable. This is possibly
due to the iterative latent interactions in the BiDAF
architecture: we hypothesize that these are of in-
creased importance for our task, where information
is distributed across documents. It is worth empha-
sizing that unlike the other baselines, both FastQA
and BiDAF predict the answer by extracting a span
from the support documents without relying on the
candidate options Cq.

In the masked setup all baseline models reliant on
lexical cues fail in the face of the randomized answer
expressions, since the same answer option has dif-
ferent placeholders in different samples. Especially
on MEDHOP, where dataset sub-sampling is not a

viable option, masking proves to be a valuable alter-
native, effectively circumventing spurious statistical
correlations that RC models can learn to exploit.

Both neural RC models are able to largely retain
or even improve their strong performance when an-
swers are masked: they are able to leverage the tex-
tual context of the candidate expressions. To under-
stand differences in model behavior between WIK-
IHOP and MEDHOP, it is worth noting that drug
mentions in MEDHOP are normalized to a unique
single-word identifier, and performance drops under
masking. In contrast, for the open-domain setting of
WIKIHOP, a reduction of the answer vocabulary to
100 random single-token mask expressions clearly
helps the model in selecting a candidate span, com-
pared to the multi-token candidate expressions in the
unmasked setting. Overall, although both neural RC
models clearly outperform the other baselines, they
still have large room for improvement compared to
human performance at 74% / 85% for WIKIHOP.

Comparing results on the full and validated test
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WIKIHOP MEDHOP
test test* test test*

BiDAF 54.5 59.8 33.7 42.9
BiDAF rem 44.6 57.7 30.4 36.7

FastQA 35.8 38.0 31.3 30.6
FastQA rem 38.0 41.2 28.6 24.5

Table 7: Test accuracy (masked) when only documents
containing answer candidates are given (rem).

sets, we observe that the results consistently improve
on the validated sets. This suggests that the training
set contains the signal necessary to make inference
on valid samples at test time, and that noisy samples
are harder to predict.

6.4 Using only relevant documents

We conducted further experiments to examine the
RC models when presented with only the relevant
documents in Sq, i.e., the chain of documents lead-
ing to the correct answer. This allows us to investi-
gate the hypothetical performance of the models if
they were able to select and read only relevant docu-
ments: Table 6 summarizes these results. Models
improve greatly in this gold chain setup, with up
to 81.2% / 85.7% on WIKIHOP in the masked set-
ting for BiDAF. This demonstrates that RC models
are capable of identifying the answer when few or
no plausible false candidates are mentioned, which
is particularly evident for MEDHOP, where docu-
ments tend to discuss only single drug candidates.
In the masked gold chain setup, models can then
pick up on what the masking template looks like
and achieve almost perfect scores. Conversely, these
results also show that the models’ answer selec-
tion process is not robust to the introduction of un-
related documents with type-consistent candidates.
This indicates that learning to intelligently select rel-
evant documents before RC may be among the most
promising directions for future model development.

6.5 Removing relevant documents

To investigate if the neural RC models can draw
upon information requiring multi-step inference we
designed an experiment where we discard all doc-
uments that do not contain candidate mentions, in-
cluding the first documents traversed. Table 7 shows

the results: we can observe that performance drops
across the board for BiDAF. There is a significant
drop of 3.3%/6.2% on MEDHOP, and 10.0%/2.1%
on WIKIHOP, demonstrating that BiDAF, is able
to leverage cross-document information. FastQA
shows a slight increase of 2.2%/3.2% for WIKIHOP

and a decrease of 2.7%/4.1% on MEDHOP. While
inconclusive, it is clear that FastQA with fewer la-
tent interactions than BiDAF has problems integrat-
ing cross-document information.

7 Related Work

Related Datasets End-to-end text-based QA has
witnessed a surge in interest with the advent of large-
scale datasets, which have been assembled based
on FREEBASE (Berant et al., 2013; Bordes et al.,
2015), WIKIPEDIA (Yang et al., 2015; Rajpurkar
et al., 2016; Hewlett et al., 2016), web search
queries (Nguyen et al., 2016), news articles (Her-
mann et al., 2015; Onishi et al., 2016), books (Hill
et al., 2016; Paperno et al., 2016), science ex-
ams (Welbl et al., 2017), and trivia (Boyd-Graber
et al., 2012; Dunn et al., 2017). Besides Trivi-
aQA (Joshi et al., 2017), all these datasets are con-
fined to single documents, and RC typically does not
require a combination of multiple independent facts.
In contrast, WIKIHOP and MEDHOP are specifi-
cally designed for cross-document RC and multi-
step inference. There exist other multi-hop RC re-
sources, but they are either very limited in size,
such as the FraCaS test suite, or based on synthetic
language (Weston et al., 2016). TriviaQA partly
involves multi-step reasoning, but the complexity
largely stems from parsing compositional questions.
Our datasets center around compositional inference
from comparatively simple queries and the cross-
document setup ensures that multi-step inference
goes beyond resolving co-reference.

Compositional Knowledge Base Inference
Combining multiple facts is common for structured
knowledge resources which formulate facts using
first-order logic. KB inference methods include
Inductive Logic Programming (Quinlan, 1990;
Pazzani et al., 1991; Richards and Mooney, 1991)
and probabilistic relaxations to logic like Markov
Logic (Richardson and Domingos, 2006; Schoen-
mackers et al., 2008). These approaches suffer from
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limited coverage and inefficient inference, though
efforts to circumvent sparsity have been under-
taken (Schoenmackers et al., 2008; Schoenmackers
et al., 2010). A more scalable approach to compos-
ite rule learning is the Path Ranking Algorithm (Lao
and Cohen, 2010; Lao et al., 2011), which performs
random walks to identify salient paths between
entities. Gardner et al. (2013) circumvent these
sparsity problems by introducing synthetic links via
dense latent embeddings. Several other methods
have been proposed, using composition functions
such as vector addition (Bordes et al., 2014),
RNNs (Neelakantan et al., 2015; Das et al., 2017),
and memory networks (Jain, 2016).

All of these previous approaches center around
learning how to combine facts from a KB, i.e., in
a structured form with pre-defined schema. That
is, they work as part of a pipeline, and either rely
on the output of a previous IE step (Banko et al.,
2007), or on direct human annotation (Bollacker et
al., 2008) which tends to be costly and biased in cov-
erage. However, recent neural RC methods (Seo et
al., 2017a; Shen et al., 2017) have demonstrated that
end-to-end language understanding approaches can
infer answers directly from text – sidestepping in-
termediate query parsing and IE steps. Our work
aims to evaluate whether end-to-end multi-step RC
models can indeed operate on raw text documents
only – while performing the kind of inference most
commonly associated with logical inference meth-
ods operating on structured knowledge.

Text-Based Multi-Step Reading Comprehension
Fried et al. (2015) have demonstrated that exploit-
ing information from other related documents based
on lexical semantic similarity is beneficial for re-
ranking answers in open-domain non-factoid QA.
Jansen et al. (2017) chain textual background re-
sources for science exam QA and provide multi-
sentence answer explanations. Beyond, a rich col-
lection of neural models tailored towards multi-step
RC has been developed. Memory networks (We-
ston et al., 2015; Sukhbaatar et al., 2015; Kumar
et al., 2016) define a model class that iteratively
attends over textual memory items, and they show
promising performance on synthetic tasks requiring
multi-step reasoning (Weston et al., 2016). One
common characteristic of neural multi-hop models

is their rich structure that enables matching and in-
teraction between question, context, answer candi-
dates and combinations thereof (Peng et al., 2015;
Weissenborn, 2016; Xiong et al., 2017; Liu and
Perez, 2017), which is often iterated over several
times (Sordoni et al., 2016; Neumann et al., 2016;
Seo et al., 2017b; Hu et al., 2017) and may contain
trainable stopping mechanisms (Graves, 2016; Shen
et al., 2017). All these methods show promise for
single-document RC, and by design should be capa-
ble of integrating multiple facts across documents.
However, thus far they have not been evaluated for a
cross-document multi-step RC task – as in this work.

Learning Search Expansion Other research ad-
dresses expanding the document set available to
a QA system, either in the form of web navi-
gation (Nogueira and Cho, 2016), or via query
reformulation techniques, which often use neural
reinforcement learning (Narasimhan et al., 2016;
Nogueira and Cho, 2017; Buck et al., 2018). While
related, this work ultimately aims at reformulating
queries to better acquire evidence documents, and
not at answering queries through combining facts.

8 Conclusions and Future Work

We have introduced a new cross-document multi-
hop RC task, devised a generic dataset derivation
strategy and applied it to two separate domains. The
resulting datasets test RC methods in their ability to
perform composite reasoning – something thus far
limited to models operating on structured knowledge
resources. In our experiments we found that contem-
porary RC models can leverage cross-document in-
formation, but a sizeable gap to human performance
remains. Finally, we identified the selection of rele-
vant document sets as the most promising direction
for future research.

Thus far, our datasets center around factoid ques-
tions about entities, and as extractive RC datasets,
it is assumed that the answer is mentioned verba-
tim. While this limits the types of questions one can
ask, these assumptions can facilitate both training
and evaluation, and future work – once free-form ab-
stractive answer composition has advanced – should
move beyond. We hope that our work will foster
research on cross-document information integration,
working towards these long term goals.
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