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Abstract

Recent work on the problem of latent tree
learning has made it possible to train neu-
ral networks that learn to both parse a sen-
tence and use the resulting parse to interpret
the sentence, all without exposure to ground-
truth parse trees at training time. Surprisingly,
these models often perform better at sentence
understanding tasks than models that use parse
trees from conventional parsers. This paper
aims to investigate what these latent tree learn-
ing models learn. We replicate two such mod-
els in a shared codebase and find that (i) only
one of these models outperforms conventional
tree-structured models on sentence classifica-
tion, (ii) its parsing strategies are not espe-
cially consistent across random restarts, (iii)
the parses it produces tend to be shallower
than standard Penn Treebank (PTB) parses,
and (iv) they do not resemble those of PTB
or any other semantic or syntactic formalism
that the authors are aware of.

1 Introduction

Tree-structured recursive neural networks
(TreeRNNs; Socher et al., 2011)—which build
a vector representation for a sentence by incremen-
tally computing representations for each node in
its parse tree—have been proven to be effective at
sentence understanding tasks like sentiment analysis
(Socher et al., 2013), textual entailment (Bowman
et al., 2016), and translation (Eriguchi et al., 2016).
Some variants of these models (Socher et al., 2011;
Bowman et al., 2016) can also be trained to produce
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I saw the man with the telescope I saw the man with the telescope

(a) Two parse trees correspond to two distinct interpretations
for the sentence in example (1).

He swung at the brute with his sword . He swung at the brute with his sword .

(b) Parses generated by at ST-Gumbel model (left) and the Stan-
ford Parser (right).

Figure 1: Examples of unlabeled binary parse trees.

parse trees that they then consume. Recent work
on latent tree learning (Yogatama et al., 2017;
Maillard et al., 2017; Choi et al., 2018) has led
to the development of new training methods for
TreeRNNs that allow them to learn to parse without
ever being given an example of a correct parse tree,
thereby replacing direct syntactic supervision with
indirect supervision from a downstream task like
sentence classification. These models are designed
to learn grammars—strategies for assigning trees to
sentences—that are suited to help solve the sentence
understanding task at hand, rather than ones that
approximate expert-designed grammars like that of
the Penn Treebank (PTB; Marcus et al., 1999).

Latent tree learning models have shown striking
success at sentence understanding, reliably perform-
ing better on sentiment analysis and textual entail-
ment than do comparable TreeRNN models which
use parses assigned by conventional parsers, and set-
ting the state of the art among sentence-encoding
models for textual entailment. However, none of the
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work in latent tree learning to date has included any
substantial evaluation of the quality of the trees in-
duced by these models, leaving open an important
question which this paper aims to answer: Do these
models owe their success to consistent, principled
latent grammars? If they do, these grammars may
be worthy objects of study for researchers in syntax
and semantics. If they do not, understanding why
the models succeed without such syntax could lead
to new insights into the use of TreeRNNs and into
sentence understanding more broadly.

While there is still lively debate within linguistic
syntax and semantics over the precise grammars that
should be used for language understanding and gen-
eration, it has long been clear that understanding any
natural language sentence requires implicitly or ex-
plicitly recognizing which substrings of the sentence
form meaningful units, or constituents (Chomsky,
1965; Frege, 1892; Heim and Kratzer, 1998). This is
well illustrated by structurally ambiguous sentences
like the one below, repeated from Sag (1991) a.o.:

1. (a) I saw the [ man [ with the telescope ] ]
↪→I saw the man who had a telescope.

(b) I [ saw the man ] [ with the telescope ]
↪→ I used the telescope to view the man.

Under the partial constituency parse shown in
1a, with a telescope forms a constituent with man,
thereby providing additional information about the
individual man described. On the other hand, in
1b, with a telescope does not form a constituent
with man, but instead provides additional informa-
tion about the action described by saw a man. In
this way, the same string of words can be assigned
two different, yet equally valid constituency struc-
tures reflecting the different interpretations for the
string. Constituency can be straightforwardly ex-
pressed using unlabeled parse trees like the ones
used in TreeRNNs, and expressing constituency in-
formation is generally thought to be the primary mo-
tivation for using trees in TreeRNNs.

In this paper, we reimplement the latent tree learn-
ing models of Yogatama et al. (2017) and Choi et al.
(2018) in a shared codebase, train both models (and
several baselines) to perform textual entailment on
the SNLI and MultiNLI corpora (Bowman et al.,
2015; Williams et al., 2018), and evaluate the results
quantitatively and qualitatively with a focus on four

issues: the degree to which latent tree learning im-
proves task performance, the degree to which latent
tree learning models learn similar grammars across
random restarts, the degree to which their grammars
match PTB grammar, and the degree to which their
grammars appear to follow any recognizable gram-
matical principles.

We confirm that both types of models succeed at
producing usable sentence representations, but find
that only the stronger of the two models—that of
Choi et al. (2018)—outperforms either a compara-
ble TreeRNN baseline or a simple LSTM RNN. We
find that the grammar of the Choi et al. (2018) model
varies dramatically across random restarts, and tends
to agree with PTB grammar with roughly chance ac-
curacy. We do find, though, that the resulting gram-
mar has some regularities, including a preference for
shallow trees, a somewhat systematic treatment of
negation, and a preference to treat pairs of adjacent
words at the edges of a sentence as constituents.

2 Background

The work discussed in this paper is closely related
to work on grammar induction, in which statistical
learners attempt to solve the difficult problem of re-
constructing the grammar that generated a corpus
of text using only that corpus and, optionally, some
heuristics about the nature of the expected grammar.
Grammar induction in NLP has been widely stud-
ied since at least the mid-1990s (Chen, 1995; Co-
hen et al., 2011; Hsu et al., 2012), and builds on an
earlier line of more general work in machine learn-
ing surveyed in Duda et al. (1973) and Fu (1977).
Naseem and Barzilay (2011) additionally provides
some semantic information to the learner, though
only as a source of additional guidance, rather than
as a primary objective as here. In related work,
Gormley et al. (2014) present a method for jointly
training a grammar induction model and a semantic
role labeling (SRL) model. They find that the result-
ing SRL model is more effective than one built on
a purely unsupervised grammar induction system,
but that using a conventionally trained parser instead
yields better SRL performance.

There is also a long history of work on artificial
neural network models that build latent hierarchical
structures without direct supervision when solving
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algorithmic problems, including Das et al. (1992),
Sun et al. (1993), and more recently, Joulin and
Mikolov (2015) and Grefenstette et al. (2015).

We are only aware of four prior works on la-
tent tree learning for sentence understanding with
neural networks. All four jointly train two model
components—a parser based on distributed repre-
sentations of words and phrases, and a TreeRNN of
some kind that uses those parses—but differ in the
parsing strategies, TreeRNN parameterizations, and
training objective used.

Socher et al. (2011) present the first neural net-
work model that we are aware of that use the same
learned representations to both parse a sentence
and—using the resulting parse in a TreeRNN—
perform sentence-level classification. They use a
plain TreeRNN and a simple parser that scores
pairs of adjacent words and phrases and merges the
highest-scoring pair. They train their model on a
sentiment objective, but rather than training the pars-
ing component on that objective as well, they use
a combination of an auxiliary autoencoding objec-
tive and a nonparametric scoring function to parse.
While this work shows good results on sentiment,
it does not feature any evaluation of the induced
trees, either through direct analysis nor through
comparison with any sentiment baseline that uses
trees from a conventionally-trained parser. Bow-
man et al. (2016) introduce an efficient, batchable
architecture for doing this—the Shift-reduce Parser-
Interpreter Neural Network (SPINN; Figure 2)—
which is adapted by Yogatama et al. (2017) for latent
tree learning and used in this work.

The remaining three models all use TreeLSTMs
(Tai et al., 2015), and all train and evaluate both
components on a shared semantic objective. All
three use the task of recognizing textual entailment
on the SNLI corpus (Bowman et al., 2015) as one
such objective. The models differ from one another
primarily in the ways in which they use this task ob-
jective to train their parsing components, and in the
structures of those components.

Yogatama et al. (2017) present a model (which
we call RL-SPINN) that is identical to SPINN
at test time, but uses the REINFORCE algorithm
(Williams, 1992) at training time to compute gradi-
ents for the transition classification function, which
produces discrete decisions and does not otherwise

receive gradients through backpropagation. Sur-
prisingly, and in contrast to Gormley et al. (2014),
they find that a small 100D instance of this RL-
SPINN model performs somewhat better on several
text classification tasks than an otherwise-identical
model which is explicitly trained to parse.

In unpublished work, Maillard et al. (2017)
present a model which explicitly computes O(N2)
possible tree nodes for N words, and uses a soft gat-
ing strategy to approximately select valid combina-
tions of these nodes that form a tree. This model
is trainable entirely using backpropagation, and a
100D instance of the model performs slightly better
than RL-SPINN on SNLI.

Choi et al. (2018) present a model (which we call
ST-Gumbel) that uses a similar data structure and
gating strategy to Maillard et al. (2017), but which
uses the Straight-Through Gumbel-Softmax estima-
tor (Jang et al., 2016). This allows them to use a
hard categorical gating function, so that their output
sentence vector is computed according to a single
tree, rather than a gated combination of partial trees
as in Maillard et al. (2017). They report substantial
gains in both speed and accuracy over Maillard et al.
(2017) and Yogatama et al. (2017) on SNLI.

Several models (Naradowsky et al., 2012; Kim
et al., 2017; Liu and Lapata, 2018; Munkhdalai and
Yu, 2017a) have also been proposed that can induce
latent dependency trees over text using mechanisms
like attention, but do not propagate information up
the trees as in typical compositional models. Other
models like that of Chung et al. (2017) induce and
use latent trees or tree-like structures, but constrain
these structures to be of a low fixed depth.

Other past work has also investigated the degree
to which neural network models for non-syntactic
tasks implicitly learn syntactic information. Recent
highlights include Linzen et al. (2016) on language
modeling and Belinkov et al. (2017) on translation;
additionally, Neubig et al. (2012) and DeNero and
Uszkoreit (2011) present methods that use aligned
sentences from bilingual parallel text to learn a bi-
nary constituency parser for use in word reorder-
ing. These two papers do not evaluate these parsers
on typical parsing metrics, but find that the parsers
support word reorderings that in turn yield improve-
ments in translation quality, suggesting that they do
capture some notion of syntactic constituency.
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Figure 2: The SPINN model unrolled for two transitions during the processing of the sentence the cat sat
down, reproduced from Bowman et al. (2016). The model parses a sentence by selecting a sequence of
SHIFT and REDUCE transitions using the transition classifier (shown in blue) and simultaneously uses the
resulting parse to build a vector representation of the sentence by using a TreeLSTM composition function
(shown in green) during REDUCE transitions. The tracking LSTM (shown in red) maintains a summary of
the state of the model which is used in both parsing and composition. The process continues until the buffer
is empty and only one representation is left on the stack.

3 Models and Methods

This paper investigates the behavior of two models:
RL-SPINN and ST-Gumbel. Both have been shown
to outperform similar models based on supervised
parsing, and the two represent substantially different
approaches to latent tree learning.

SPINN Variants Three of our baselines and one
of the two latent tree learning models are based on
the SPINN architecture of Bowman et al. (2016).
Figure 2 shows and describes the architecture.

In the base SPINN model, all model compo-
nents are used, and the transition classifier is
trained on binarized Penn Treebank-style parses
from the Stanford PCFG Parser (Klein and Manning,
2003), which are included with SNLI and MultiNLI.
These binary-branching parse trees are converted
to SHIFT/REDUCE sequences for use in the model
through a simple reversible transformation.

RL-SPINN, based on the unsupervised syntax
model of Yogatama et al. (2017), is architecturally
equivalent to SPINN, but its transition classifier
is optimized for MultiNLI classification accuracy,
rather than any parsing-related loss. Because this
component produces discrete decisions, the RE-
INFORCE algorithm (with the standard exponen-
tial moving average baseline) is used to supply
gradients for it. We explored several alternative
baseline strategies—including parametric value net-

works and strategies based on greedy decoding—
as well as additional strategies for increasing explo-
ration. We also thoroughly tuned the relevant hyper-
parameter values for each alternative. In all of these
experiments, we found that a standard implementa-
tion with the exponential moving average baseline
produces accuracy no worse than any readily avail-
able alternative.

We also evaluate two other variants of SPINN as
baselines. In SPINN-NC (for no connection from
tracking to composition), the connection from the
tracking LSTM to the composition function is sev-
ered. This weakens the model, but makes it exactly
equivalent to a plain TreeLSTM—it will produce
the exact same vector that a TreeLSTM with the
same composition function would have produced for
the tree that the transition classifier implicitly pro-
duces. This model serves as a maximally compara-
ble baseline for the ST-Gumbel model, which also
performs composition using a standard TreeLSTM
in forward-propagation.

SPINN-PI-NT (for Parsed Input, No Tracking) re-
moves the tracking LSTM, as well as the two com-
ponents that depend on it: the tracking-composition
connection and the transition decision function. As
such, it cannot produce its own parse trees and must
rely on trees from the input data. We include this in
our comparison to understand the degree to which
training a parser, rather than using a higher-quality
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the cat sat downlayer 1

the cat cat sat sat down

the cat sat downlayer 0

q

v1 = 0.5 v2 = 0.1 v3 = 0.4

Figure 3: The ST-Gumbel model in its first step of
processing the sentence the cat sat down, based on
a figure by Choi et al. (2018), used with permission.
The model first computes a composed representation
for every pair of adjacent words or phrases (shown
with dotted lines), assigns each of these a score vi,
and then uses these to parameterize a distribution
from which the discrete random variable q is sam-
pled. The sampled value then determines which rep-
resentation is preserved for the next layer.

off-the-shelf parser, impacts performance on our se-
mantic task.

ST-Gumbel The ST-Gumbel model was devel-
oped by Choi et al. (2018) and is shown in Figure 3.
The model takes a sequence of N − 1 steps to build
a tree over N words. At every step, every possible
pair of adjacent words or phrase vectors in the par-
tial tree is given to a TreeLSTM composition func-
tion to produce a new candidate phrase vector. A
simple learned scoring function then selects the best
of these candidates, which forms a constituent node
in the tree and replaces its two children in the list
of nodes that are available to compose. This repeats
until only two nodes remain, at which point they are
composed and the tree is complete. This exhaus-
tive search increases the computational complexity
of the model over (RL-)SPINN, but also allows the
model to perform a form of easy-first parsing, mak-
ing it easier for the model to explore the space of
possible parsing strategies.

Though the scoring function yields discrete de-
cisions, the Jang et al. (2016) Straight-Through
Gumbel-Softmax estimator makes it possible to
nonetheless efficiently compute an approximate gra-
dient for the full model without the need for rela-
tively brittle policy gradient techniques like REIN-
FORCE.

Other Baselines We also train three baselines
that do not depend on a parser. The first is a
unidirectional LSTM RNN over the embedded to-

kens. The second is a version of SPINN-PI-NT
that is supplied sequences of randomly sampled
legal transitions (corresponding to random parse
trees), rather than the output of a parser. The third
is also a version of SPINN-PI-NT, and receives
transition sequences corresponding to maximally-
shallow, approximately-balanced parse trees based
on the “full binary” trees used in Munkhdalai and
Yu (2017b).

Data To ensure that we are able to roughly repro-
duce the results reported by Yogatama et al. (2017)
and Choi et al. (2018), we conduct an initial set of
experiments on the Stanford NLI corpus of Bow-
man et al. (2015). Our primary experiments use
the newer Multi-Genre Natural Language Inference
Corpus (MultiNLI; Williams et al., 2018). MultiNLI
is a 433k-example textual entailment dataset cre-
ated in the style of SNLI, but with a more diverse
range of source texts and longer, more complex sen-
tences, which we expect will encourage the models
to produce more consistent and interpretable trees
than they otherwise might. Following Williams et al.
(2018), we train on the combination of MultiNLI
and SNLI in these experiments (yielding just under
1M training examples) and evaluate on MultiNLI
(using the matched development and test sets).

We also evaluate trained models on the full
Wall Street Journal section of the Penn Tree-
bank, a seminal corpus of manually-constructed
constituency parses, which introduced the pars-
ing standard used in this work. Because
the models under study produce and consume
binary-branching constituency trees without la-
bels (and because such trees are already included
with SNLI and MultiNLI), we use the Stan-
ford Parser’s CollapseUnaryTransformer
and TreeBinarizer tools to convert these Penn
Treebank Trees to this form.

Sentence Pair Classification Because our textual
entailment task requires a model to classify pairs
of sentences, but the models under study produce
vectors for single sentences, we concatenate the two
sentence vectors, their difference, and their elemen-
twise product (following Mou et al., 2016), and feed
the result into a 1024D ReLU layer to produce a rep-
resentation for the sentence pair. This representation
is fed into a three-way softmax classifier that selects
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one of the labels entailment, neutral, and contradic-
tion for the pair.

Additional Details We implement all models in
PyTorch 0.2. We closely follow the original Theano
code for SPINN in our implementation, and we in-
corporate source code provided by Choi et al. (2018)
for the core parsing data structures and sampling
mechanism of the ST-Gumbel model. Our code,
saved models, and model output are available on
GitHub.1

We use GloVe vectors to represent words (stan-
dard 300D, 840B word package, without fine tuning;
Pennington et al., 2014), and feed them into a single-
layer 2 × 300D bi-directional GRU RNN (based on
the leaf LSTM of Choi et al. (2018)) to give the mod-
els access to local context information when mak-
ing parsing decisions. To understand the impact of
this component, we follow Choi et al. (2018) in also
training each model with the leaf GRU replaced with
a simpler context-insensitive input encoder that sim-
ply multiplies each GloVe vector by a matrix. We
find that these models perform best when the tem-
perature of the ST-Gumbel distribution is a trained
parameter, rather than fixed at 1.0 as in Choi et al.
(2018).

We use L2 regularization and apply dropout (Sri-
vastava et al., 2014) to the input of the 1024D sen-
tence pair combination layer. We train all models us-
ing the Adam optimizer (Kingma and Ba, 2015). For
hyperparameters for which no obvious default value
exists—the L2 and dropout parameters, the relative
weighting of the gradients from REINFORCE in
RL-SPINN, the starting learning rate, and the size
of the tracking LSTM state in SPINN—we heuris-
tically select ranges in which usable values can be
found (focusing on MultiNLI development set per-
formance), and then randomly sample values from
those ranges. We train each model five times us-
ing different samples from those ranges and differ-
ent random initializations for model parameters. We
use early stopping based on development set perfor-
mance with all models.

1https://github.com/nyu-mll/spinn/tree/
is-it-syntax-release

Model SNLI MNLI

Prior Work: Baselines

100D LSTM (Yogatama) 80.2 –
100D TreeLSTM (Yogatama) 78.5 –
300D SPINN (Bowman) 83.2 –
300D SPINN-PI-NT (Bowman) 80.9 –
300D BiLSTM (Williams) 81.5 67.5

Prior Work: Latent Tree Learning

100D RL-SPINN (Yogatama) 80.5 –
100D Soft Gating (Maillard) 81.6 –
100D ST-Gumbel (Choi) 81.9 –

w/o Leaf LSTM 80.2 –
300D ST-Gumbel (Choi) 84.6 –

w/o Leaf LSTM 82.2 –
600D ST-Gumbel (Choi) 85.4 –

This Work: Baselines

300D LSTM 82.6 69.1
300D SPINN 81.9 66.9

w/o Leaf GRU 82.2 67.5
300D SPINN-NC 81.6 68.1

w/o Leaf GRU 82.4 67.8
300D SPINN-PI-NT 81.9 68.2

w/o Leaf GRU 81.7 67.6
300D SPINN-PI-NT (Rand.) 81.6 68.0

w/o Leaf GRU 80.4 66.2
300D SPINN-PI-NT (Bal.) 81.9 68.2

w/o Leaf GRU 81.3 66.5

This Work: Latent Tree Learning

300D ST-Gumbel 83.3 69.5
w/o Leaf GRU 83.7 67.5

300D RL-SPINN 81.7 67.3
w/o Leaf GRU 82.3 67.4

Table 1: Test set results. Our implementations of
SPINN and RL-SPINN differ only in how they are
trained to parse, and our implementations of SPINN-
NC and ST-Gumbel also differ only in how they are
trained to parse. SPINN-PI-NT includes no tracking
or parsing component and instead uses externally
provided Stanford Parser trees, random trees (Rand.)
or balanced trees (Bal.), as described in Section 3.

4 Does latent tree learning help sentence
understanding?

Table 1 shows the accuracy of all models on two test
sets: SNLI (training on SNLI only, for comparison
with prior work), and MultiNLI (training on both
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Dev. Acc. (%) Self
Model µ (σ) max F1

300D SPINN 67.1 (1.0) 68.3 71.5
w/o Leaf GRU 68.3 (0.4) 68.9 67.7

300D SPINN-NC 67.7 (0.7) 68.5 73.2
w/o Leaf GRU 68.7 (0.4) 69.1 67.6

300D ST-Gumbel 69.1 (0.7) 70.0 49.9
w/o Leaf GRU 63.5 (6.5) 68.1 41.2

300D RL-SPINN 67.4 (1.6) 68.6 92.7
w/o Leaf GRU 68.8 (0.4) 69.3 98.5

Random Trees – – 32.6
Balanced Trees – – 100.0

Table 2: Dev. Acc. shows MultiNLI development set
accuracy across the five runs (expressed as mean,
standard deviation, and maximum). Self F1 shows
how well each of the five models agrees in its pars-
ing decisions with the other four.

datasets). Each figure represents the accuracy of the
best run, selected using the development set, of five
runs with different random initializations and hyper-
parameter values.

Our LSTM baseline is strikingly effective, and
matches or exceeds the performance of all of our
PTB grammar-based tree-structured models on both
SNLI and MultiNLI. This contradicts the primary
result of Bowman et al. (2016), and suggests that
there is little value in using the correct syntactic
structure for a sentence to guide neural network
composition, at least in the context of the TreeLSTM
composition function and the NLI task.

We do, however, reproduce the key result of Choi
et al. (2018) on both datasets. Their ST-Gumbel
model, which receives no syntactic information at
training time, outperforms SPINN-NC, which per-
forms composition in an identical manner but is ex-
plicitly trained to parse, and also outperforms the
LSTM baseline. This suggests that the learned la-
tent trees are helpful in the construction of seman-
tic representations for sentences, whether or not they
resemble conventional parse trees.

Our results with RL-SPINN are more equivocal.
That model matches, but does not beat, the perfor-
mance of the full SPINN model, which is equivalent
except that it is trained to parse. However, our im-
plementation of RL-SPINN outperforms Yogatama

et al. (2017)’s (lower-dimensional) implementation
by a substantial margin. The impact of the leaf GRU
is sometimes substantial, but the direction of its ef-
fect is not consistent.

Our results with SPINN-PI-NT are not substan-
tially better than those with any other model, sug-
gesting the relatively simple greedy parsing strate-
gies used by the other models are not a major limit-
ing factor in their performance. Balanced trees con-
sistently outperform randomly sampled transitions
(albeit by a small margin), yet perform worse than
ST-Gumbel even though ST-Gumbel uses very shal-
low trees as well. Similarly, RL-SPINN depends on
mostly left-branching binary parse trees, but is out-
performed by a forward LSTM. Structure is impor-
tant, but there are differences between the architec-
tures of compositional models worth investigating in
future work.

None of our latent tree learning models reach the
state of the art on either task, but all are comparable
in both absolute and relative performance to other
published results, suggesting that we have trained
reasonable examples of latent tree learning models
and can draw informative conclusions by studying
the behaviors of these models.

5 Are these models consistent?

If it were the case that a latent tree learning model
outperforms its baselines by identifying some spe-
cific grammar for English that is better than the one
used in PTB and the Stanford Parser, then we would
expect these models to identify roughly the same
grammar across random restarts and minor config-
uration changes, and to use that grammar to pro-
duce consistent task performance. Table 2 shows
two measures of consistency for the four models that
produce parses, a simple random baseline that pro-
duces parses by randomly merging pairs of adjacent
words and phrases, and (trivially) the deterministic
strategy used in the Balanced Trees runs.

We first show the variation in accuracy on the
MultiNLI development set across runs. While one
outlier distorts these numbers for ST-Gumbel with-
out the leaf GRU, these figures are roughly equiva-
lent between the latent tree learning models and the
baselines, suggesting that these models are not sub-
stantially more brittle or more hyperparameter sen-
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F1 Accuracy
Model µ (σ) max ADJP NP PP INTJ

300D SPINN 53.4 (5.6) 59.6 29.3 48.3 39.0 57.1
w/o Leaf GRU 44.4 (2.7) 47.7 25.2 39.2 30.8 60.0

300D SPINN-NC 54.3 (3.0) 58.7 31.8 49.3 39.3 58.2
w/o Leaf GRU 45.3 (3.0) 49.2 27.1 39.9 31.4 60.6

300D ST-Gumbel 19.0 (1.0) 20.1 15.6 18.8 9.9 59.4
w/o Leaf GRU 22.8 (1.6) 25.0 18.9 24.1 14.2 51.8

300D RL-SPINN 13.2 (0.0) 13.2 1.7 10.8 4.6 50.6
w/o Leaf GRU 13.1 (0.1) 13.2 1.6 10.9 4.6 50.0

Random Trees 21.3 (0.0) 21.4 17.4 22.3 16.0 40.4
Balanced Trees 21.3 (0.0) 21.3 22.1 20.2 9.3 55.9

Table 3: Results on the full Wall Street Journal section of the Penn Treebank. The F1 columns represent
overall unlabeled binary F1. The Accuracy columns represent the fraction of ground truth constituents of a
given type that correspond to constituents in the model parses. Italics mark results that are worse than the
random baseline.

sitive in their task performance. The second metric
shows the self F1 for each model: the unlabeled bi-
nary F1 between the parses produced by two runs
of the same model for the MultiNLI development
set, averaged out over all possible pairings of dif-
ferent runs. This measures the degree to which the
models reliably converge on the same parses, and
sheds some light on the behavior of the models. The
baseline models show relatively high consistency,
with self F1 above 65%. ST-Gumbel is substantially
less consistent, with scores below 50% but above
the 32.6% random baseline. RL-SPINN appears to
be highly consistent, with the runs without the leaf
GRU reaching 98.5% self F1, suggesting that it reli-
ably converges to a specific grammar. However, as
we will discuss in later sections, this grammar ap-
pears to be trivial.

6 Do these models learn PTB grammar?

Given that our latent tree learning models are at least
somewhat consistent in what they learn, it is reason-
able to ask what it is that they learn. We investi-
gate this first quantitatively, then, in the next section,
more qualitatively.

Table 3 shows parsing performance on the Wall
Street Journal sections of PTB for models trained
on SNLI and MultiNLI. The baseline models per-
form fairly poorly in absolute terms, as they are nei-
ther well tuned for parse quality nor trained on news

text, but the latent tree learning models perform dra-
matically worse. The ST-Gumbel models perform
at or slightly above chance (represented by the ran-
dom trees results), while the RL-SPINN models per-
form consistently below chance. These results sug-
gest that these models do not learn grammars that in
any way resemble PTB grammar.

To confirm this, we also show results for indi-
vidual Penn Treebank nonterminal node types. On
common intermediate node types such as ADJP, NP,
and PP, the latent tree learning models do not per-
form substantially better than chance. It is only on
two rare types that any latent tree learning model, or
the balanced tree baseline, outperforms random trees
by a significant margin: INTJ (interjection, as in Oh
no, he ’s...) and the even rarer LST (list marker, as
in 1 . Determine if...), both of which are generally
short and sentence-initial (discussed in more detail
in Section 7).

Next, we turn to the MultiNLI development set
for further investigation. Table 4 shows results on
MultiNLI for a wider range of measures. The ta-
ble shows F1 measured with respect to three differ-
ent references: automatically generated trivial trees
for the corpus that are either strictly left-branching
or strictly right-branching, and the PTB-style trees
produced by the Stanford Parser for the corpus. We
see that the baseline models perform about as well
on MultiNLI as on PTB, with scores above 65%,
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F1 wrt. Macroavg.
Left Branching Right Branching Stanford Parser Depth

Model µ (σ) max µ (σ) max µ (σ) max µ (σ) max

300D SPINN 19.3 (0.4) 19.8 36.9 (3.4) 42.6 70.2 (3.6) 74.5 6.2 (0.2) 6.5
w/o Leaf GRU 21.2 (1.4) 22.9 39.0 (2.6) 41.4 63.5 (1.7) 65.7 6.4 (0.1) 6.5

300D SPINN-NC 19.2 (0.4) 19.7 36.2 (1.4) 38.2 70.5 (2.0) 73.1 6.1 (0.0) 6.1
w/o Leaf GRU 20.6 (0.5) 21.3 38.9 (2.5) 41.9 64.1 (2.7) 67.1 6.3 (0.0) 6.3

300D ST-Gumbel 32.6 (2.0) 35.6 37.5 (2.4) 40.3 23.7 (0.9) 25.2 4.1 (0.1) 4.2
w/o Leaf GRU 30.8 (1.2) 32.3 35.6 (3.3) 39.9 27.5 (1.0) 29.0 4.6 (0.1) 4.7

300D RL-SPINN 95.0 (1.4) 96.6 13.5 (1.8) 15.8 18.8 (0.2) 19.0 8.6 (0.0) 8.6
w/o Leaf GRU 99.1 (0.6) 99.8 10.7 (0.2) 11.1 18.1 (0.1) 18.2 8.6 (0.0) 8.6

Yogatama et al. (2017) (SNLI) – – 41.4 – – 19.9 – – 41.7 – – –

Random Trees 27.9 (0.1) 27.9 28.0 (0.1) 28.1 27.0 (0.1) 27.1 4.4 (0.0) 4.4
Balanced Trees 21.7 (0.0) 21.7 36.8 (0.0) 36.8 21.3 (0.0) 21.3 3.9 (0.0) 3.9

Table 4: F1 wrt. shows F1 scores on the MultiNLI development set with respect to strictly right- and left-
branching trees and with respect to the Stanford Parser trees supplied with the corpus. The F1 results from
Yogatama et al. (2017) are reported for SNLI. Macroavg. Depth shows the average across sentences of the
average depth of each word in its tree. Each is shown with the mean, standard deviation, and maximum of
the metric across the five runs of each model.

and that these models produce trees that tend toward
right branching rather than left branching.

The ST-Gumbel models perform only at or
slightly above chance on the parsed sentences, and
show a similar use of both right- and left-branching
structures, with only a slight preference for the
more linguistically common right-branching struc-
tures. This suggests that they learn grammars that
differ quite substantially from PTB grammars, but
may share some minor properties. Our implementa-
tion of an ST-Gumbel model has F1 scores with re-
spect to left-branching and Stanford Parser trees that
are much closer to the ones Yogatama et al. (2017)
report than to the ones we find for our RL-SPINN
implementation.

Our RL-SPINN results are unequivocally nega-
tive. We find that our models could be tuned to pro-
duce trees that are qualitatively similar to those in
Yogatama et al. (2017). However, in our primary
experiments, we tune model hyperparameters with
the sole criterion of downstream task performance,
and find that the trees from these experiments yield
relatively trivial trees, with F1 scores that are much
lower than theirs with respect to the Stanford Parser,
and much higher with respect to left branching trees
(see Table 4). All runs perform below chance on the

parsed sentences, and all have F1 scores over 92%
with respect to the left-branching structures, sug-
gesting that they primarily learn to produce strictly
left-branching trees. This trivial strategy, which
makes the model roughly equivalent to a sequential
RNN, is very easy to learn. In a shift–reduce model
like SPINN, the model can simply learn to perform
the REDUCE operation whenever it is possible to do
so, regardless of the specific words and phrases be-
ing parsed. This can be done by setting a high bias
value for this choice in the transition classifier.

The rightmost column shows another measure of
what is learned: the average depth—the length of
the path from the root to any given word—of the in-
duced trees. For the baseline models, this value is
slightly above the 5.7 value for the Stanford Parser
trees. For the RL-SPINN models, this number is pre-
dictably much higher, reflecting the very deep and
narrow left-branching trees that those models tend
to produce. For the ST-Gumbel model, though, this
metric is informative: the models consistently pro-
duce shallow trees with depth under 5—closer to the
balanced trees baseline than to SPINN. This hints at
a possible interpretation: while shallower trees may
be less informative about the structure of the sen-
tence than real PTB trees, they reduce the number of
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layers that a word needs to pass through to reach the
final classifier, potentially making it easier to learn
an effective composition function that faithfully en-
codes the contents of a sentence. This interpretation
is supported by the results of Munkhdalai and Yu
(2017b), who show that it is possible to do well on
SNLI using a TreeLSTM (with a leaf LSTM) over
arbitrarily chosen balanced trees with low depths,
and our balanced trees baseline, which approximates
this result.

The ST-Gumbel models tend to implement their
shallow parsing strategy with a good deal of ran-
domness. They tend to assign near-zero probabil-
ity (< 10−10) to many possible compositions, gen-
erally those that would result in unnecessarily deep
trees, and relatively smooth probabilities (generally
> 0.01) to the remaining options. The trainable tem-
perature parameter for these models generally con-
verged slowly to a value between 1 and 20, and did
not fluctuate substantially during training.

7 Analyzing the Learned Trees

In the previous three sections, we have shown that
latent tree learning models are able to perform as
well or better than models that have access to lin-
guistically principled parse trees at training or test
time, but that the grammars that they learn are nei-
ther consistent across runs, nor meaningfully similar
to PTB grammar. In this section, we investigate the
trees produced by these learned grammars directly to
identify whether they capture any recognizable syn-
tactic or semantic phenomena.

The RL-SPINN models create overwhelmingly
left-branching trees. We observe few deviations
from this pattern, which occur almost exclusively on
sentences with fewer than seven words. Given that
the self-F1 scores for these models (92.7 and 98.5,
Table 2) are similar to their F1 scores with respect to
strictly left-branching trees (95.0 and 99.1, Table 4),
there is little room for these models to have learned
any consistent behavior beside left branching.

In some preliminary tuning runs not shown above,
we saw models that deviated from this pattern more
often, and one that fixated on right-branching struc-
tures instead, but we find no grammatically interest-
ing patterns in any of these deviant structures.

The ST-Gumbel models learned substantially

The grammar was great . He shot his gun at the man .

Kings frequently founded orders that can still be found today .

Figure 4: The ST-Gumbel models often form con-
stituents from the first two words of sentences.

more complex grammars, and we focus on these
for the remainder of the section. We discuss three
model behaviors which yield linguistically implau-
sible constituents. The first two highlight settings
where the ST-Gumbel model is consistent where it
shouldn’t be, and the third highlights a setting in
which it is worryingly inconsistent. The models’
treatment of these three phenomena and our obser-
vation of these models’ behavior more broadly sug-
gest that the models do not produce trees that follow
any recognizable semantic or syntactic principles.

Initial and Final Two-Word Constituents The
shallow trees produced by the ST-Gumbel models
generally contain more constituents comprised of
two words (rather than a single word combined with
a phrase) than appear in the reference parses. This
behavior is especially pronounced at the edges of
sentences, where the models frequently treat the first
two words and the last two words as constituents.
Since this behavior does not correspond to any
grammatical phenomenon known to these authors,
it likely stems from some unknown bias within the
model design.

These models parse the first two words of a sen-
tence into a constituent at rates well above both the
50% rate seen in random and balanced parses2 and
the 27.7% rate seen with the SPINN models. This
strategy appears in 77.4% of the model’s parses with
the leaf GRU and 64.1% without. While it was con-
sistently discovered across all of our runs of ST-
Gumbel models with the leaf GRU, it was discov-
ered less frequently across restarts for runs without,
which do not have direct access to linear position in-
formation. We observe that the models combine the
final two words in each sentence at similar rates.

2The balanced parses are right-aligned, following
Munkhdalai and Yu (2017a); they parse the first two words as a
constituent in about 50% of cases, but the final two in all cases.
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While merging the final two words of a sentence
nearly always results in a meaningless constituent
containing a period or punctuation mark, merging
the first two words can produce reasonable parses.
This strategy is reasonable, for example, in sen-
tences that begin with a determiner and a noun (Fig-
ure 4, top left). However, combining the first two
words in sentences that start with adverbials, proper
names, bare plurals, or noun phrases with multiple
modifiers will generally result in meaningless con-
stituents like Kings frequently (Figure 4, bottom).

Combining the first two words of a sentence also
often results in more subtly unorthodox trees—like
the one in the top right of Figure 4—that combine
a verb with its subject rather than its object. This
contrasts with some mainstream syntactic theories
(Adger 2003; Sportiche et al. 2013), which gener-
ally take the object and the verb of a sentence to form
a constituent for three reasons: taking the top right
sentence in Figure 4 as an example, (i) we can re-
place it with a new constituent of the same type with-
out changing the surrounding sentence structure, as
in he did so, (ii) it can stand alone as an answer
to a question like what did he do?, and (iii) it can
be omitted in otherwise-repetitive sentences like He
shot his gun, but Bill didn’t .

Negation The ST-Gumbel models also tend to
learn a systematic and superficially reasonable strat-
egy for negation: they pair any negation word (e.g.,
not, n’t, no, none) with the word that immediately
follows it. Random parses only form these con-
stituents in 34% of the sentences, and balanced
parses only do so in 50%, but the ST-Gumbel mod-
els with the leaf GRU do so about 67% of the time
and consistently across runs, while those without the
leaf GRU do so less consistently, but over 90% of the
time in some runs.

This strategy is effective when the negation word
is meant to modify a single other word to its right, as
in Figure 5, top left sub-figure, but this is frequently
not the case. In Figure 5, bottom left, although the
model creates the potentially reasonable constituent,
not at all, it also combines not with the preposi-
tion at to form a constituent with no clear interpre-
tation (or, at best, an incredibly bizarre one). Fur-
ther, combining not with at goes against the syntac-
tic observation that prepositional phrases can gen-

It ’s not predictable . It ’s not predictable .

He is not at all sure . He is not at all sure .

Figure 5: Left: ST-Gumbel models reliably at-
tach negation words to the words directly following
them. Right: Stanford Parser trees for comparison.

erally move along with the following noun phrases
as a constituent (as in semantically comparably sen-
tences like, He is not sure at all.).

Function Words and Modifiers Finally, the ST-
Gumbel models are not consistent in their treatment
of function words, like determiners or prepositions,
or in their treatment of modifiers like adverbs and
adjectives. This reflects quantitative results in Table
3 showing that ST-Gumbel parse trees correspond to
PTB for PP and ADJP constituents at much lower
rates than do SPINN-based models or models sup-
plied with random trees. For example, the top left
tree of Figure 6 (ST-Gumbel) associated the deter-
miner the with the verb, when it should form a con-
stituent with the noun phrase Nazi angle as in the top
right tree (PTB). The resulting phrase, the Nazi an-
gle, has a clear meaning—unlike discussed the—and
it passes syntactic tests for constituency; for exam-
ple, one can replace the noun phrase with the pro-
noun it without otherwise modifying the meaning of
the sentence.

Similarly, prepositions are generally expected to
form constituents with the noun phrases that follow
them (Adger, 2003; Sportiche et al., 2013), as in the
the bottom right tree (PTB) of Figure 6. One syn-
tactic test that with horror forms a P-NP constituent
comes from the fact that it can be a stand-alone an-
swer to a question; for example, the question how
did the students react? can be answered simply
with with horror. ST-Gumbel models often instead
pair prepositions with the verb phrases that precede
them, as in Figure 6, lower left, where this results in
the constituent the students acted with, which can-
not be a stand-alone answer to a question. From
this perspective, constituents like discussed the and
we briefly (Figure 6, top left) are also syntactically
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We briefly discussed the Nazi angle We briefly discussed the Nazi angle

The students reacted with horror . The students reacted with horror .

Figure 6: Left: ST-Gumbel models are inconsistent
in their treatment of function words and modifiers.
Right: Stanford Parser trees for comparison.

anomalous, and cannot be given coherent meanings.
The ST-Gumbel models outperform syntax-based

models on MultiNLI and SNLI, and the trees that
they assign to sentences do not generally resemble
those of PTB grammar. If we attempt to interpret
these trees under the standard assumption that all the
constituents in a sentence must be interpretable and
must contribute to the meaning of the sentence, we
force ourselves to interpret implausible constituents
like we briefly, and reach implausible sentence-level
interpretations, such as taking the sentence in Fig-
ure 6, top left, to mean that those of us who are brief
discussed the Nazi angle. It is clear that these mod-
els do not use constituency in the same way as the
widely accepted syntactic or semantic frameworks
we cite do.

In sum, we find that RL-SPINN adopts a trivial,
largely left-branching parse strategy, which is con-
sistent across runs. ST-Gumbel, on the other hand,
adopts the unexpected strategy to merge initial and
final constituents at higher than average rates, and
is also very inconsistent with its behavior on func-
tion words and modifiers. We weren’t able to qual-
itatively identify structure that matches PTB-style
syntax in ST-Gumbel parses, but we do find that it
utilizes a strategy for negation—merging it with the
immediately following constituent—that can lead to
unexpected constituents, but nevertheless, is some-
what promising.

8 Conclusion

The experiments and analysis presented in this paper
show that the best available models for latent tree
learning learn grammars that do not correspond to
the structures of formal syntax and semantics in any
recognizable way. In spite of this, these models per-
form as well or better on sentence understanding—
as measured by MultiNLI performance—as models

with access to Penn Treebank-style parses.
This result leaves us with an immediate puzzle:

What do these models—especially those based on
the ST-Gumbel technique—learn that allows them
to do so well? We present some observations, but
we are left without a fully satisfying explanation. A
thorough investigation of this problem will likely re-
quire a search of new architectures for sentence en-
coding that borrow various behaviors from the mod-
els trained in this work.

This result also opens farther-reaching questions
about grammar and sentence understanding: Will
the optimal grammars for sentence understanding
problems like NLI—were we to explore the full
space of grammars to find them—share any recog-
nizable similarities with the structures seen in for-
mal work on syntax and semantics? A priori, we
should expect that they should. While it is unlikely
that PTB grammar is strictly optimal for any task,
the empirical motivations for many of its core con-
stituent types—the noun phrase, the prepositional
phrase, and so forth—are straightforward and com-
pelling. However, our best latent tree learning mod-
els do not seem able to discover these structures.

If we accept that some form of principled con-
stituent structure is necessary or desirable, then we
are left with an engineering problem: How do we
identify this structure? Making progress in this di-
rection will likely involve both improvements to the
TreeRNN models at the heart of latent tree learning
systems, to make sure that these models are able to
perform composition effectively enough to be able
to make full use of learned structures, and also im-
provements to the structure search methods that are
used to explore possible grammars.
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