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Abstract

Video captioning has attracted an increasing
amount of interest, due in part to its potential
for improved accessibility and information re-
trieval. While existing methods rely on differ-
ent kinds of visual features and model archi-
tectures, they do not make full use of pertinent
semantic cues. We present a unified and exten-
sible framework to jointly leverage multiple
sorts of visual features and semantic attributes.
Our novel architecture builds on LSTMs with
two multi-faceted attention layers. These first
learn to automatically select the most salient
visual features or semantic attributes, and then
yield overall representations for the input and
output of the sentence generation component
via custom feature scaling operations. Exper-
imental results on the challenging MSVD and
MSR-VTT datasets show that our framework
outperforms previous work and performs ro-
bustly even in the presence of added noise to
the features and attributes.

1 Introduction

The task of automatically generating captions for
videos has been receiving an increasing amount of
attention. On YouTube, for example, every single
minute, hundreds of hours of video content are up-
loaded. Obviously, there is no way a person could
sit and binge-watch these overwhelming amounts of
video, so new techniques to search and quickly un-
derstand them are highly sought. Generating cap-
tions, i.e., short natural language descriptions, for
videos is an important technique to address this chal-

Video: 301 frames

a monkey is playing 
with a dog.

Semantic Attributes: “Monkey”,  “Animal”, 

“Dog”, “Playing”, “Pulling”, “Grass”...

Temporal Features: Resnet-152  

Motion Features: C3D × 184096

× 3012048

Figure 1: Example video with extracted visual features,
semantic attributes, and the generated caption as output.

lenge, while also greatly improving their accessibil-
ity for blind and visually impaired users.

The study of video captioning has an extensive
history but remains challenging, given the difficul-
ties of video interpretation, natural language genera-
tion, and their interplay. Video interpretation hinges
on our ability to make sense of a stream of video
frames and of the relationships between consecutive
frames. The generated output needs to be a gram-
matically correct sequence of words, and different
parts of the output caption may pertain to different
parts of the video. In previous work, 3D ConvNets
(Du et al., 2015) have been proposed to capture
motion information in short videos, while LSTMs
(Hochreiter and Schmidhuber, 1997) can be used to
generate natural language, and a variety of different
visual attention models (Yao et al., 2015; Pan et al.,
2016a; Yu et al., 2016; Long et al., 2018) have been
deployed, attempting to capture the relationship be-
tween caption words and the video content.

These methods, however, only make use of visual
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information from the video, often with unsatisfac-
tory results. In many real-world settings, we can
easily obtain additional information related to the
video. Apart from sound, there may also be a ti-
tle, tags, categories, and other metadata (Shutova et
al., 2015), as well as user-supplied comments and
cross-lingual cues. Moreover, extra labels may also
be predicted automatically, as we do in the experi-
ments in this paper. Both visual video features, as
well as attributes, can be imperfect and incomplete.

However, by jointly considering all available sig-
nals, we may obtain complementary information
that aids in generating better captions. Humans often
benefit from additional context information when
trying to understand what a video is portraying, as
well.

Incorporating these additional signals is not just
a matter of including additional features. While
generating the sequence of words in the caption,
we need to flexibly attend to 1) the relevant frames
along the time axis, 2) the relevant parts within a
given frame, and 3) relevant additional signals to the
extent that they pertain to a particular output word.
In doing so, we need to account for the heterogeneity
of different features and attributes in terms of their
number and scale, and we need to exploit the rela-
tionships between input words, features, and seman-
tic attributes.

Based on these considerations, we propose
a novel multi-faceted attention architecture that
jointly considers multiple heterogeneous forms of
input. This model flexibly attends to temporal in-
formation, motion features, and semantic attributes
for every channel. The temporal and motion fea-
tures are commonly used computer vision signals,
while the semantic attributes, which in our paper
are mainly automatically predicted labels and cross-
lingual cues, provide additional information. An
example of this is given in Figure 1. Each part
of the attention model is an independent branch
and it is straightforward incorporating additional
branches for further kinds of features, making our
model highly extensible. We present a series of
experiments that highlight our contribution of el-
egantly combining features and attributes outper-
forming previous work on standard datasets and an-
alyzing the stability of our model against noisy fea-
tures and attributes.

2 Related Work

Machine Translation. Some of the first widely
noted successes of deep sequence-to-sequence
learning models were for the task of machine trans-
lation (Cho et al., 2014b; Cho et al., 2014a;
Sutskever et al., 2014). In several respects, this is
actually a similar task to video caption generation,
just with a rather different input modality. What
they share in common is that both require bridg-
ing different representations, and that often both use
an encoder-decoder paradigm with a Recurrent Neu-
ral Network (RNN) decoder to generate sentences
(Cao et al., 2017) in the target language. Many tech-
niques for video captioning are inspired by neural
machine translation techniques, including soft atten-
tion mechanisms focusing on different parts of the
input when generating the target sentence word by
word (Bahdanau et al., 2015).

Image Captioning. Image captioning can be re-
garded as a greatly simplified case of video caption-
ing, with videos consisting of just a single frame.
Recurrent architectures are often used here as well
(Karpathy et al., 2014; Kiros et al., 2014; Chen
and Zitnick, 2015; Mao et al., 2015; Vinyals et al.,
2015). Spatial attention mechanisms allow for fo-
cusing on different areas of an image (Xu et al.,
2015b). Recently, image captioning that incorpo-
rate semantic concepts has achieved strong results.
You et al. (2016) proposed a semantic attention ap-
proach to selectively attend to semantic concept pro-
posals and fuse them into hidden states and outputs
of RNNs, but their model is difficult to extend to deal
with multiple sets of features and attributes together.
Overall, none of these methods for image captioning
need to account for temporal and motion aspects.

Video captioning. For video captioning, many
works utilize a recurrent neural architecture to gen-
erate video descriptions, conditioned on either an
average-pooling (Venugopalan et al., 2015b) or re-
current encoding (Xu et al., 2015a; Donahue et al.,
2015; Venugopalan et al., 2015a; Venugopalan et al.,
2016) of frame-level features, or on a dynamic linear
combination of annotation vectors obtained via tem-
poral attention (Yao et al., 2015). Hierarchical recur-
rent neural encoders (HRNE) with attention mecha-
nisms have been proposed to better encode videos
(Pan et al., 2016a). Yu et al. (2016) exploit several
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forms of visual attention and rely on a multimodal
layer to combine them. In our work, we present an
effective multi-faceted attention, which can achieve
more stable improvements in comparison to simple
multimodal layers, to jointly model multiple hetero-
geneous signals, and we experimentally show the
benefits of this approach over previous work in Sec-
tion 4.

3 The Proposed Approach

In this section, we describe our approach for com-
bining multiple forms of attention for video cap-
tioning. Figure 3 illustrates the architecture of our
model. The core of our model is a sentence gen-
erator based on Long Short Term Memory (LSTM)
units (Hochreiter and Schmidhuber, 1997). Instead
of a traditional sentence generator, which directly re-
ceives a previous word and selects the next word, our
model relies on two multi-faceted attention layers
to selectively focus on important parts of temporal,
motion, and semantic features. The multi-faceted at-
tention layers integrate information before the input
reaches the sentence generator to enable better hid-
den representations in the LSTM, and before pre-
diction of the next word to obtain more reasonable
probability scores.

We first briefly review the basic LSTM, and then
describe our model in detail, including our multi-
faceted attention mechanism to consider temporal,
motion, and semantic attribute perspectives.

3.1 Long Short Term Memory Networks
A Recurrent Neural Network (RNN) (Elman, 1990)
is a neural network adding extra feedback connec-
tions to feed-forward networks, enabling it to work
with sequences of inputs. The network is updated
not only based on each input item but also based on
the previous hidden state. RNNs can compute the
hidden states (h1,h2, . . . ,hm) given an input se-
quence (x1,x2, . . . ,xm) based on a recurrence of
the form:

ht = φ(Whxt + Uhht−1 + bh), (1)

where the weight matrices W, U and bias bh are
parameters to be learned, m is the length of the in-
put sequence, and φ(·) is an element-wise activation
function.

RNNs trained via unfolding have proven infe-
rior at capturing long-term temporal information.
LSTM units were introduced to avoid these chal-
lenges. LSTMs not only compute the hidden states
but also maintain an additional cell state to account
for relevant signals that have been observed. They
have the ability to remove or add information to the
cell state, modulated by gates.

Given an input sequence (x1,x2, . . . ,xm),
an LSTM unit computes the hidden state
(h1,h2, . . . ,hm) and cell states (c1, c2, . . . , cm)
via repeated application of the following equations:

it = σ(Wixt + Uiht−1 + bi) (2)

ft = σ(Wfxt + Ufht−1 + bf ) (3)

ot = σ(Woxt + Uoht−1 + bo) (4)

gt = φ(Wgxt + Ught−1 + bg) (5)

ct = ft � ct−1 + it � gt (6)

ht = ot � ct, (7)

where Wi, Wf , Wo, Wg are input-to-state tran-
sition matrices, Ui, Uf , Uo, Ug are state-to-state
transition matrices, bi, bf , bo, bg are biases to be
learned, σ(·) is the sigmoid function, and � de-
notes the element-wise multiplication of two vec-
tors. For convenience, we denote the computa-
tions of the LSTM at each time step t as ht, ct =
LSTM(xt,ht−1, ct−1).

3.2 Input Representations

When training a video captioning model, as a first
step, we need to extract feature vectors and attributes
that serve as inputs to the network. For visual fea-
tures, we can extract one feature vector per frame,
leading to a series of what we shall refer to as tem-
poral features. We can also compute another form
of feature vector from several consecutive frames,
which we call motion features. Additionally, we
could also extract other forms of visual features,
such as features from an area of a frame, the same
area of consecutive frames, etc. In this paper, we
only consider temporal features, denoted by {vi},
and motion features, denoted by {ui}, which are
commonly used in video captioning.

For semantic attributes, we need to extract a set
of related attributes denoted by {ai}. These can be
based on title, tags, etc., if available. In our experi-
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Figure 2: Multi-faceted attention for temporal features,
motion features, and semantic attributes.

ments, we instead consider techniques to automati-
cally extract or predict attributes that are not directly
given. This has the advantage of being more broadly
applicable. Since we have captions for the videos in
the training set, we are able to train different mod-
els to predict caption-related semantic attributes for
videos in the validation and test sets. We also con-
duct additional experiments with cross-lingual cues
as external semantic attributes. We describe our spe-
cific experimental setups in Section 4.2.

The vocabulary then not only consists of the union
over all words wi in any caption of the training set,
but also of the union of all attributes ai in any video
across the dataset.

An embedding matrix E is used to represent
words and we denote Ew by an embedding vector
of a given w. Thus, we obtain input word embed-
ding vectors as:

xt = Ewt . (8)

3.3 Multi-Faceted Attention

In this section, we introduce the core part of our
proposed model, the multi-faceted attention mech-
anism. First, we introduce the components of this
attention model and subsequently, we describe how
it is instantiated to operate on temporal features, mo-

tion features, and semantic attributes.

3.3.1 Attribute Embedding

We have two different kinds of representations of
the input video: regular features and semantic at-
tributes. The former are feature vectors that can
directly be fed to the network, while the latter are
items in the vocabulary. While it is possible to trans-
form these into vectors via one-hot encoding, the re-
sults are unsatisfactory. Considering that semantic
attributes and words in captions may share a great
deal of overlap, we can use the same word embed-
ding matrix E to transform semantic attributes into
semantic embedding vectors:

si = Eai . (9)

3.3.2 Attention

Assuming that we have a series of feature vec-
tors for a given video, we generate a caption word
by word. At each step, we need to select rele-
vant information from these feature vectors, which
we from now on refer to as annotation vectors
{d1,d2, . . . ,dn}, where n is the number of anno-
tation vectors.

Due to the variability of the length of videos, it
is challenging to directly input all these vectors to
the model at every time step. A simple strategy is to
compute the average of the annotation vectors and
provide this average vector to the model at every
time step:

yt =
1

m

m∑

i=1

di. (10)

However, this strategy collapses all available infor-
mation into a single vector, neglecting the inher-
ent structure, which captures the temporal progres-
sion, among other things. Thus, this sort of folding
leads to a significant loss of information. Instead,
we wish to focus on the most salient parts of the
features at every time step. Instead of naively av-
eraging the annotation vectors {d1,d2, . . . ,dn}, a
soft attention model calculates weights αt

i for each
di, conditioning on the input vector x. For this, we
first compute basic attention scores ei and then feed
these through a softmax layer to obtain a set of at-
tention weights {αt

1, α
t
2, . . . , α

t
n} that quantify the
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Figure 3: Overall model architecture.

relevance of {d1,d2, . . . ,dn} for x:

ei = xᵀUdi (11)

αi =
exp(ei)∑n
j=1 exp(ej)

(12)

y =
n∑

i=1

αidi, (13)

where U is the parameter matrix to be learned.
We obtain the corresponding output vectors y as
weighted averages. For convenience, we denote the
attention model output as y = Attention(x, {di}).

3.3.3 Feature Scaling
Through attention, we obtain one output vector

for one feature set. Before combining them together,
we need to overcome another problem. These fea-
tures do not have the same scale and distribution,
making it difficult to learn relationships between
them. We introduce a feature scaling operation to
convert features to the same scale. We also tried
L2 normalization and batch normalization (Ioffe and
Szegedy, 2015), but neither of these proved effec-
tive. We speculate that the former is due to the fact
that the transformation for each feature is different,

which breaks the value relationship along each di-
mension, whereas in the latter, batch normalization
does not work well when the batch size is small. Our
feature scaling instead is both simple and effective.
For each feature, we apply an element-wise multi-
plication with a parameter vector of the same dimen-
sion:

ỹ = wy � y. (14)

For convenience, we denote the feature scaling oper-
ation as ỹ = FS(y). We apply feature scaling only
to features such as the temporal and motion features,
but not to input words and semantic attributes, be-
cause the attribute embedding shares the same em-
bedding matrix with the caption words. Keeping it
unchanged can help the model discover relationships
between attributes and words. In fact, we found that
applying feature scaling to input words and semantic
attributes leads to poorer results.

3.3.4 Multi-Faceted Attention for Temporal,
Motion and Semantic

We next introduce our multi-faceted attention for
temporal features, motion features, and semantic at-
tributes, as illustrated in Figure 2. First, we transfer
semantic attributes {ai} to semantic features {si}
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following Equation 9. For input x, we then apply
the attention model to the temporal features {vi},
motion features {ui}, and semantic features {si}:

v = Attention(x, {vi}) (15)

u = Attention(x, {ui}) (16)

s = Attention(x, {si}). (17)

Subsequently, we apply feature scaling to the tem-
poral output ṽ = FS(v) and motion output ũ =
FS(u).

Finally, we obtain the output of the multi-facted
attention via a fully connected layer after concate-
nating the input with the previous outputs.

MFATT(x) = φ (W [x, s, ṽ, ũ] + b) (18)

where [·] denotes concatenation. This model is
highly extensible, since we can easily add extra
branches for additional features or attributes.

3.4 Overall Architecture

The overall architecture is shown in Figure 3. The
core of our model is the LSTM sentence genera-
tor. Unlike traditional generators, we do not directly
feed the word embedding of the previous word xt to
the LSTM. Instead, we first apply our multi-faceted
attention to xt:

mx
t = MFATT(xt). (19)

Subsequently, we can obtain ht via the LSTM. At
the first time step, the mean values of the features are
used to initialize the LSTM states to yield a general
overview of the video:

mx
0 = Wi[AP({si}),AP({vi}),AP({ui})] (20)

h0, c0 = LSTM(mx
0 , 0, 0) (21)

ht, ct = LSTM(mx
t ,ht−1, ct−1), (22)

where AP(·) denotes average pooling of the given
feature set.

We also apply the multi-faceted attention to hid-
den states ht. This multi-faceted attention is fol-
lowed by a softmax layer with a dimensionality
equal to the size of the vocabulary. The projection
matrix from the multi-faceted attention layer to the

softmax layer is set to be the transpose of the word
embedding matrix:

mh
t = MFATT(ht) (23)

pt+1 = Softmax(Eᵀmh
t ), (24)

where Softmax(·) denotes the softmax operation.
We apply dropout (Srivastava et al., 2014) to each
multi-faceted attention layer to reduce overfitting.

3.5 Training and Generation
We can interpret the output of the softmax layer
pt+1 as a probability distribution over words:

P(wt+1 | w1:t, V, S,Θ), (25)

where V denotes the corresponding video, S denotes
the semantic attributes, and Θ denotes the model pa-
rameters. The overall loss function is defined as the
negative logarithm of the likelihood and our goal is
to learn all parameters Θ in our model by minimiz-
ing the loss function over the entire training set:

min
Θ
− 1

N

N∑

i=1

Ti∑

t=1

log P(wi
t+1 | wi

1:t,V
i,Si,Θ),

(26)
where N is the total number of captions in the train-
ing set, and Ti is the number of words in caption
i. During the training phase, we add a begin-of-
sentence tag 〈BOS〉 to the start of the sentence and
an end-of-sentence tag 〈EOS〉 to the end of sentence.
We use Stochastic Gradient Descent to find the op-
timum Θ with the gradient computed via Back-
propagation Through Time (BPTT) (Werbos, 1990).
Training continues until the METEOR evaluation
score on the validation set stops increasing, follow-
ing previous studies that found that METEOR is
more consistent with human judgments than BLEU
or ROUGE (Vedantam et al., 2015). We optimize
the hyperparameters, the number of hidden units in
the first multi-facted attention layer as well as in the
LSTM, starting from 64 and doubling the number
until 2048 to maximize METEOR on the validation
set.

After the parameters are learned, during the test-
ing phase, we also have temporal and motion fea-
tures extracted from the video as well as semantic
attributes, which were either already given or are
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predicted using a model trained on the training set.
Given a previous word, we can calculate the prob-
ability distribution of the next word pt+1 using the
model described above. Thus, we can generate cap-
tions starting from the special symbol 〈BOS〉 with
Beam Search.

4 Experimental Results

4.1 Datasets

MSVD: We evaluate our video captioning models
on the Microsoft Research Video Description Cor-
pus (Chen and Dolan, 2011). MSVD consists of
1,970 video clips downloaded from YouTube that
typically depict a single activity. Each video clip is
annotated with multiple human-written descriptions
in several languages. We only use the English de-
scriptions, about 41 descriptions per video. In to-
tal, the dataset consists of 80,839 video-description
pairs. Each description on average contains about 8
words. We use 1,200 videos for training, 100 videos
for validation, and 670 videos for testing, as pro-
vided by previous work (Guadarrama et al., 2013).

MSR-VTT: We also evaluate on the MSR Video-
to-Text (MSR-VTT) dataset (Xu et al., 2016), a re-
cent large-scale video benchmark for video caption-
ing. MSR-VTT provides 10,000 web video clips.
Each video is annotated with about 20 sentences.
Thus, we have 200,000 video-caption pairs in total.
Our video captioning models are trained and hyper-
parameters are selected using the official training
and validation set, which consists of 6,513 and 497
video clips, respectively. The models are evaluated
using the test set of 2,990 video clips.

4.2 Preprocessing

Visual Features: We extract two kinds of visual fea-
tures, temporal features and motion features. We use
a pretrained ResNet-152 model (He et al., 2016) to
extract temporal features, obtaining one fixed-length
feature vector for each frame. We use a pretrained
C3D (Du et al., 2015) to extract motion features.
The C3D net emits a fixed-length feature vector for
16 consecutive frames. For each video, we extract
20 features for both the temporal aspect and motion
with equal time interval.
Ground Truth Semantic Attributes: While
MSVD and MSR-VTT are standard video caption

datasets, they do not come with tags, titles, or other
semantic information about the videos. Neverthe-
less, we can reproduce a setting with semantic at-
tributes by extracting attributes from captions. First,
we tokenize captions and remove meaningless stop-
words such as ”is”, ”at”, ”that”, etc. We then select
the most frequent 10 words across captions of each
video as the ground truth semantic attributes.

We can use the ground truth semantic attributes
of the training set to train a model to predict seman-
tic attributes for the test set. Furthermore, such at-
tributes can also be used to evaluate the robustness
of our models.
Predicted Semantic Attributes: The advantage of
using predicted attributes is that it is far easier to
train a classification model than a captioning model.
Moreover, it is simple to transfer attributes from im-
ages to videos. The problem of predicting attributes
can hence be treated as a multi-label classification
task. Here, we propose an attribute classifier for both
images and video based on ResNet-152 features. For
an image, we extract one feature vector v and for a
video, we can extract a set of feature vectors vi for
its frames. We treat the ground truth semantic at-
tributes of an image or video as target classification
labels, which can be represented as a one hot vector
ŷ

We apply a multilayer perceptron (MLP) to pre-
dict labels for an image y = σ(W2 tanh(W1v +
b1) + b2). For video, we first apply a simple atten-
tion layer and then invoke the same MLP layer as for
images:

ei = wᵀvi (27)

αi =
exp(ei)∑n
j=1 exp(ej)

(28)

vatt =

n∑

i=1

αivi (29)

y = MLP(vatt), (30)

where w is a parameter vector that has the same di-
mensionality as vi. Then, we can train the model by
minimizing:

1

N

N∑

j=1

(yᵀ
j log(ŷj) + (1− yj)

ᵀ log(1− ŷj)) (31)
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr
LSTM-YT (Venugopalan et al., 2015b) - - - 0.333 0.291 -
S2VT (Venugopalan et al., 2015a) - - - - 0.298 -
TA (Yao et al., 2015) 0.800 0.647 0.526 0.419 0.296 0.517
TA∗ 0.811 0.655 0.541 0.422 0.304 0.524
LSTM-E (Pan et al., 2016b) 0.788 0.660 0.554 0.453 0.310 -
HRNE-A (Pan et al., 2016a) 0.792 0.663 0.551 0.438 0.331 -
h-RNN (Yu et al., 2016) 0.815 0.704 0.604 0.499 0.326 0.658
h-RNN∗ 0.824 0.711 0.610 0.504 0.329 0.675
MFATT-TM (Ours) 0.826 0.717 0.619 0.508 0.332 0.694
MFATT-TM-SP (Ours) 0.830 0.719 0.630 0.520 0.335 0.721

Table 1: Comparison with existing results on MSVD, where (-) indicates unknown scores.

where the summation is over both images and
videos.

We train this attribute classifier on both MSCOCO
(Chen et al., 2015) and the training set of the video
captioning dataset, predicting attributes on the val-
idation and test set of the video captioning dataset.
We refer to these attributes as predicted semantic at-
tributes (SP).
External Semantic Attributes: We also consider
using external information such as cross-lingual
cues (de Melo and Weikum, 2009) to generate
video captions. This is related to multimodal ma-
chine translation and cross-lingual image descrip-
tion (Specia et al., 2016; Elliott et al., 2017), which
aims to generate captions in a target language based
on both source language captions and images. Our
model can produce captions in the target language
either with or without source language cues. For the
MSVD dataset, a small number of captions in other
languages are available. We consider German (DE)
and Chinese (CN). The latter is tokenized using the
Stanford Word Segmenter (Chang et al., 2008). We
consider the words in these other languages as exter-
nal semantic attributes.

4.3 Evaluation Metrics

We rely on three standard metrics, BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
and CIDEr (Vedantam et al., 2015) to evaluate our
methods. These are commonly used in image and
video captioning tasks, and allow us to compare our
results against previous work. We use the Microsoft
COCO evaluation toolkit (Chen et al., 2015), which
is widely used in previous work, to compute the met-

ric scores. Across all three metrics, higher scores
indicate that the generated captions are assessed as
being closer to captions authored by humans.

4.4 Experimental Settings

Based on our hyperparameter optimization on the
validation set, the number of hidden units in the first
multi-facted attention layer and in the LSTM are
both set to 512. The activation function of the LSTM
is tanh and the activation functions of both multi-
faceted attention layers are linear. The dropout rates
of both of the multi-facted attention layers are set
to 0.5. We use pretrained 300-dimensional GloVe
(Pennington et al., 2014) vectors as our word embed-
ding matrix. We rely on the RMSPROP algorithm
(Tieleman and Hinton, 2012) to update parameters
for better convergence, with a learning rate of 10−4.
The beam size during sentence generation is set to
5. Our system is implemented using the Theano
(Bastien et al., 2012; Bergstra et al., 2010) frame-
work.

4.5 Results

Comparison with Existing Baselines: In Table 1,
we compare our methods with six state-of-the-art
methods: LSTM-YT (Venugopalan et al., 2015b),
S2VT (Venugopalan et al., 2015a), TA (Yao et al.,
2015), LSTM-E (Pan et al., 2016b), HRNE-A (Pan
et al., 2016a), and h-RNN (Yu et al., 2016). Since
some of the previous work uses different features,
we also run experiments for some of them whose
source code was provided by the authors, or we re-
implement the models described in their papers, and
then evaluate them using our features. The corre-
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Model BLEU-4 METEOR
MFATT-T 0.497 0.318
MFATT-M 0.422 0.304
Cat-TM 0.493 0.317
NFS-TM 0.501 0.322
Fuse-TM 0.502 0.324
MFATT-TM 0.508 0.332
MFATT-TM-SP 0.520 0.335

Table 2: Results on MSVD.

sponding additional results are marked with ‘∗’.
We observe that our approach is competitive even

when just relying on visual attention. Specifically,
we consider using only the temporal features and
motion features (MFATT-TM), by removing the se-
mantic branch with other components of our model
unchanged. To evaluate the effectiveness of differ-
ent sorts of visual cues, we also report the results of
using only temporal features (MFATT-T) and using
only motion features (MFATT-M). We find that even
just with temporal features alone, we obtain fairly
good results, which implies that the attention model
in our approach is useful. Combining temporal and
motion features, we see that our method can out-
perform previous work, confirming that our multi-
faceted attention layers can extract useful informa-
tion from temporal and motion features effectively.
In fact, the TA, LSTM-E approaches also employ
both temporal and motion features, but do not have
a separate motion attention mechanism.

As for the h-RNN approach, an important differ-
ence is that h-RNNs only consider attention after
the sentence generator. Instead, our attention mech-
anism operates both before and after the sentence
generator, enabling it to attend to different aspects
during the analysis and synthesis processes for a sin-
gle sentence.

Effect of Multi-Faceted Attention: We compare
multi-faceted attention with other alternatives: 1.
Concatenating temporal and motion features at each
time step (Cat-TM). 2. Simple multimodal layers,
which do not apply feature scaling (NFS-TM) in
multi-faceted attention. 3. Applying the model for
temporal and motion features separately, averaging
the final probabilities of the two models (Fuse-TM).
The results are given in Tables 2 and 3. We observe

Model BLEU-4 METEOR
TA∗ (Yao et al., 2015) 0.365 0.257
h-RNN∗ (Yu et al., 2016) 0.368 0.259
MFATT-T 0.367 0.257
MFATT-M 0.361 0.253
Cat-TM 0.366 0.256
NFS-TM 0.370 0.259
Fuse-TM 0.375 0.259
MFATT-TM 0.386 0.265
MFATT-TM-SP 0.391 0.267

Table 3: Results on MSR-VTT.

that these variants prove ineffective in comparison
with our multi-faceted attention (MFATT-TM). We
conjecture that there are several reasons why multi-
faceted attention outperforms the alternatives: First,
multi-faceted attention can attend to different time
periods in a video for temporal and motion features,
while Cat-TM cannot. Second, multi-faceted at-
tention smartly converts features to the same scale,
while NFS-TM cannot. Third, multi-faceted atten-
tion can explore the relationships between temporal
and motion features, while Fuse-TM cannot.

Another advantage of multi-faceted attention is
that it can deal with semantic attributes. We ob-
serve that combining predicted semantic attributes
with temporal and motion features (MFATT-TM-SP)
obtains better results, which means that our multi-
faceted attention can effectively combine features
and attributes.

Robustness of Multi-Faceted Attention To further
investigate the stability of multi-faceted attention,
we first analyze the influence of noise in the fea-
tures. For this, we randomly select values in the tem-
poral features and replace them with random ones
for both the training and test sets, while keeping
the motion features unchanged. Figure 4 (top) pro-
vides the results with noise on MSVD (MFATT-M-
Tn). These results show that even when we pro-
vide complete noise as temporal features, the results
do not change significantly compared to using only
motion features, i.e. omitting the temporal features.
Then, we analyze the influence of noise for seman-
tic attributes. For this, we randomly select ground
truth semantic attributes and replace them with ran-
dom ones and keep the temporal and motion features
unchanged. Figure 4 (bottom) provides the results
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Figure 4: Results of adding noise to temporal features
(top) and ground truth semantic attributes (bottom) of
MSVD. The blue solids are results of adding noise.

with noise on MSVD (MFATT-TM-GTn). These
result show that even when we provide completely
noisy attributes, the results do not change signifi-
cantly compared to using only temporal and motion
features. We conclude that our multi-faceted atten-
tion model is robust with respect to noise in both fea-
tures and attributes. This shows that we are likely to
benefit from further semantic attributes such as tags,
titles, comments, and so on, which are often avail-
able for online videos, even if they are noisy.

We also consider External Semantic Attributes.
The results for German (MFATT-TM-DE) and Chi-
nese (MFATT-TM-CN) are shown in Fig. 4 (bot-
tom). We find that cross-lingual cues lead to sig-
nificantly improved results, although only 83% of
videos have German captions and merely 22% of
videos have Chinese captions. We conclude that
even just small amounts of tags that may be available
in other languages can successfully be exploited by
our multi-faceted attention model for captioning.

5 Conclusion

We have proposed a novel method for video cap-
tioning based on an extensible multi-faceted atten-

MFATT-TM: a man is playing with a car.

MFATT-TM-SP: a girl is jumping.

GT1: a girl is jumping to a car top.

GT2: a little girl jumped on top of a car.

MFATT-TM:  a person is cooking.

MFATT-TM-SP: a woman is mixing rice.

GT1: a woman is mixing flour and water in a bowl.

GT2: a woman mixes rice and water in a small pot.

MFATT-TM: a man is exercising.

MFATT-TM-SP: a man is exercising.

GT1: a man is lying down on a blue mat exercising.

GT2: a man is doing exercise.

Figure 5: Examples of generated captions on MSVD.
GT1 and GT2 are ground truth captions.

tion mechanism, outperforming previous work by
large margins. Even without semantic attributes,
our method outperforms previous work using visual
features. With automatically predicted semantic at-
tributes, our method can obtain better results. We
also examined the robustness of our multi-faceted
attention and find that its effectiveness remains sta-
ble in light of noise in the features and attributes.
Moreover, we find that with weaker external signals
such as cross-lingual cues, the scores can improve
significantly. This opens up important new avenues
for future work on exploring the large space of po-
tential additional forms of multi-modal features, in-
cluding visual and audio features, as well as seman-
tic attributes, including tags, titles, and comments.
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