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Abstract

Existing neural machine translation systems
do not explicitly model what has been trans-
lated and what has not during the decoding
phase. To address this problem, we propose
a novel mechanism that separates the source
information into two parts: translated PAST
contents and untranslated FUTURE contents,
which are modeled by two additional recur-
rent layers. The PAST and FUTURE contents
are fed to both the attention model and the de-
coder states, which provides Neural Machine
Translation (NMT) systems with the knowl-
edge of translated and untranslated contents.
Experimental results show that the proposed
approach significantly improves the perfor-
mance in Chinese-English, German-English,
and English-German translation tasks. Specif-
ically, the proposed model outperforms the
conventional coverage model in terms of both
the translation quality and the alignment error
rate.†

1 Introduction

Neural machine translation (NMT) generally adopts
an encoder-decoder framework (Kalchbrenner and
Blunsom, 2013; Cho et al., 2014; Sutskever et al.,
2014), where the encoder summarizes the source
sentence into a source context vector, and the de-
coder generates the target sentence word-by-word
based on the given source. During translation, the
decoder implicitly serves several functionalities at
the same time:

*Equal contributions.
†Our code can be downloaded from https://github.

com/zhengzx-nlp/past-and-future-nmt.

1. Building a language model over the target sen-
tence for translation fluency (LM).

2. Acquiring the most relevant source-side in-
formation to generate the current target word
(PRESENT).

3. Maintaining what parts in the source have
been translated (PAST) and what parts have
not (FUTURE).

However, it may be difficult for a single recur-
rent neural network (RNN) decoder to accomplish
these functionalities simultaneously. A recent suc-
cessful extension of NMT models is the attention
mechanism (Bahdanau et al., 2015; Luong et al.,
2015), which makes a soft selection over source
words and yields an attentive vector to represent the
most relevant source parts for the current decoding
state. In this sense, the attention mechanism sepa-
rates the PRESENT functionality from the decoder
RNN, achieving significant performance improve-
ment.

In addition to PRESENT, we address the impor-
tance of modeling PAST and FUTURE contents in
machine translation. The PAST contents indicate
translated information, whereas the FUTURE con-
tents indicate untranslated information, both being
crucial to NMT models, especially to avoid under-
translation and over-translation (Tu et al., 2016).
Ideally, PAST grows and FUTURE declines during
the translation process. However, it may be difficult
for a single RNN to explicitly model the above pro-
cesses.

In this paper, we propose a novel neural machine
translation system that explicitly models PAST and
FUTURE contents with two additional RNN layers.
The RNN modeling the PAST contents (called PAST

layer) starts from scratch and accumulates the in-
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formation that is being translated at each decoding
step (i.e., the PRESENT information yielded by at-
tention). The RNN modeling the FUTURE contents
(called FUTURE layer) begins with holistic source
summarization, and subtracts the PRESENT infor-
mation at each step. The two processes are guided
by proposed auxiliary objectives. Intuitively, the
RNN state of the PAST layer corresponds to source
contents that have been translated at a particular
step, and the RNN state of the FUTURE layer cor-
responds to source contents of untranslated words.
At each decoding step, PAST and FUTURE together
provide a full summarization of the source informa-
tion. We then feed the PAST and FUTURE informa-
tion to both the attention model and decoder states.
In this way, our proposed mechanism not only pro-
vides coverage information for the attention model,
but also gives a holistic view of the source informa-
tion at each time.

We conducted experiments on Chinese-English,
German-English, and English-German benchmarks.
Experiments show that the proposed mechanism
yields 2.7, 1.7, and 1.1 improvements of BLEU
scores in three tasks, respectively. In addition, it ob-
tains an alignment error rate of 35.90%, significantly
lower than the baseline (39.73%) and the coverage
model (38.73%) by Tu et al. (2016). We observe
that in traditional attention-based NMT, most errors
occur due to over- and under-translation, which is
probably because the decoder RNN fails to keep
track of what has been translated and what has not.
Our model can alleviate such problems by explicitly
modeling PAST and FUTURE contents.

2 Motivation

In this section, we first introduce the standard
attention-based NMT, and then motivate our model
by several empirical findings.

The attention mechanism, proposed in Bahdanau
et al. (2015), yields a dynamic source context vec-
tor for the translation at a particular decoding step,
modeling PRESENT information as described in Sec-
tion 1. This process is illustrated in Figure 1.

Formally, let x = {x1, . . . , xI} be a given in-
put sentence. The encoder RNN—generally imple-
mented as a bi-directional RNN (Schuster and Pali-
wal, 1997)—transforms the sentence to a sequence
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Figure 1: Architecture of attention-based NMT.

of annotations with hi =
[−→
h i;
←−
h i

]
being the an-

notation of xi. (
−→
h i and

←−
h i refer to RNN’s hidden

states in both directions.)
Based on the source annotations, another decoder

RNN generates the translation by predicting a target
word yt at each time step t:

P (yt|y<t,x) = softmax(g(yt−1, st, ct)), (1)

where g(·) is a non-linear activation, and st is the
decoding state for time step t, computed by

st = f(yt−1, st−1, ct). (2)

Here f(·) is an RNN activation function, e.g., the
Gated Recurrent Unit (GRU) (Cho et al., 2014) and
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997). ct is a vector summarizing
relevant source information. It is computed as a
weighted sum of the source annotations:

ct =
I∑

i=1

αt,i · hi, (3)

where the weights (αt,i for i = 1 · · · , I) are given
by the attention mechanism:

αt,i = softmax
(
a(st−1,hi)

)
. (4)

Here, a(·) is a scoring function, measuring the de-
gree to which the decoding state and source infor-
mation match to each other.
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SRC
与此同时,他呼吁提高民事服务效
率,这也是鼓舞民心之举。

REF

in the meanwhile he calls for bet-
ter efficiency in civil service , which
helps to promote people ’s trust .

NMT
at the same time , he called for a
higher efficiency in civil service ef-
ficiency .

(a) Translation example. We highlight under-translated
words in bold and italicize over-translated words.

Initialize Decoder States with . . . BLEU
Source Summarization 35.13

All-Zero Vector 35.01
(b) Source summarization is not fully exploited by NMT
decoder.

Table 1: Evidence shows that attention-based NMT
fails to make full use of source information, thus los-
ing the holistic picture of source contents.

Intuitively, the attention-based decoder selects
source annotations that are most relevant to the de-
coder state, based on which the current target word
is predicted. In other words, ct is some source infor-
mation for the PRESENT translation.

The decoder RNN is initialized with the sum-
marization of the entire source sentence

[−→
h I ;
←−
h 1

]
,

given by:

s0 = tanh(Ws

[−→
h I ;
←−
h 1

]
). (5)

After we analyze existing attention-based NMT in
detail, our intuition arises as follows. Ideally, with
the source summarization in mind, after generating
each target word yt from the source contents ct, the
decoder should keep track of (1) translated source
contents by accumulating ct, and (2) untranslated
source contents by subtracting ct from the source
summarization. However, such information is not
well learned in practice, as there lacks explicit mech-
anisms to maintain translated and untranslated con-
tents. Evidence shows that attention-based NMT
still suffers from serious over- and under-translation
problems (Tu et al., 2016; Tu et al., 2017b). Exam-
ples of under-translation are shown in Table 1a.

Another piece of evidence also shows that the de-
coder may lack a holistic view of the source infor-

mation, as explained below. We conduct a pilot ex-
periment by removing the initialization of the RNN 
decoder. If the “holistic” context is well exploited by 
the decoder, translation performance would signifi-
cantly decrease without the initialization. As shown 
in Table 1b, however, translation performance only 
decreases slightly after we remove the initialization. 
This indicates NMT decoders do not make full use 
of source summarization, that the initialization only 
helps the prediction at the beginning of the sentence. 
We attribute the vanishing of such signals to the 
overloaded use of decoder states (e.g., LM, PAST, 
and FUTURE functionalities), and hence we propose 
to explicitly model the holistic source summariza-
tion by PAST and FUTURE contents at each decod-
ing step.

3 Related Work

Our research is built upon an attention-based 
sequence-to-sequence model (Bahdanau et al., 
2015), but is also related to coverage modeling, fu-
ture modeling, and functionality separation. We dis-
cuss these topics in the following.

Coverage Modeling. Tu et al. (2016) and Mi et al.
(2016) maintain a coverage vector to indicate which 
source words have been translated and which source 
words have not. These vectors are updated by ac-
cumulating attention probabilities at each decoding 
step, which provides an opportunity for the attention 
model to distinguish translated source words from 
untranslated ones. Viewing coverage vectors as a 
(soft) indicator of translated source contents, follow-
ing this idea, we take one step further. We model 
translated and untranslated source contents by di-
rectly manipulating the attention vector (i.e., the 
source contents that are being translated) instead of 
attention probability (i.e., the probability of a source 
word being translated).

In addition, we explicitly model both translated 
(with PAST-RNN) and untranslated (with FUTURE-
RNN) instead of using a single coverage vector to 
indicate translated source words. The difference 
with Tu et al. (2016) is that the PAST and FUTURE 
contents in our model are fed not only to the 
attention mechanism but also the decoder’s states.

In the context of semantic-level coverage, Wang 
et al. (2016) propose a memory-enhanced decoder
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Figure 2: NMT decoder augmented with PAST and FUTURE layers.

and Meng et al. (2016) propose a memory-enhanced
attention model. Both implement the memory with
a Neural Turing Machine (Graves et al., 2014), in
which the reading and writing operations are ex-
pected to erase translated contents and highlight un-
translated contents. However, their models lack an
explicit objective to guide such intuition, which is
one of the key ingredients for the success in this
work. In addition, we use two separate layers to ex-
plicitly model translated and untranslated contents,
which is another distinguishing feature of the pro-
posed approach.

Future Modeling. Standard neural sequence de-
coders generate target sentences from left to right,
thus failing to estimate some desired properties in
the future (e.g., the length of target sentence). To
address this problem, actor-critic algorithms are em-
ployed to predict future properties (Li et al., 2017;
Bahdanau et al., 2017), in their models, an interpola-
tion of the actor (the standard generation policy) and
the critic (a value function that estimates the future
values) is used for decision making. Concerning the
future generation at each decoding step, Weng et al.
(2017) guide the decoder’s hidden states to not only
generate the current target word, but also predict the
target words that remain untranslated. Along the di-
rection of future modeling, we introduce a FUTURE

layer to maintain the untranslated source contents,
which is updated at each decoding step by subtract-
ing the source content being translated (i.e., atten-
tion vector) from the last state (i.e., the untranslated
source content so far).

Functionality Separation. Recent work has re-
vealed that the overloaded use of representations
makes model training difficult, and such problems
can be alleviated by explicitly separating these func-
tions (Reed and Freitas, 2015; Ba et al., 2016; Miller
et al., 2016; Gulcehre et al., 2016; Rocktäschel et
al., 2017). For example, Miller et al. (2016) sep-
arate the functionality of look-up keys and mem-
ory contents in memory networks (Sukhbaatar et al.,
2015). Rocktäschel et al. (2017) propose a key-
value-predict attention model, which outputs three
vectors at each step: the first is used to predict the
next-word distribution; the second serves as the key
for decoding; and the third is used for the attention
mechanism. In this work, we further separate PAST

and FUTURE functionalities from the decoder’s hid-
den representations.

4 Modeling PAST and FUTURE for Neural
Machine Translation

In this section, we describe how to separate PAST

and FUTURE functions from decoding states. We
introduce two additional RNN layers (Figure 2):

• FUTURE Layer (Section 4.1) encodes source
contents to be translated.

• PAST Layer (Section 4.2) encodes translated
source contents.

Let us take y = {y1, y2, y3, y4} as an example of
the target sentence. The initial state of the FUTURE

layer is a summarization of the whole source sen-
tence, indicating that all source contents need to be
translated. The initial state of the PAST layer is an
all-zero vector, indicating no source content is yet
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Figure 3: Variants of activation functions for the FUTURE layer.

translated.
After c1 is obtained by the attention mechanism,

we (1) update the FUTURE layer by “subtracting”
c1 from the previous state, and (2) update the PAST

layer state by “adding” c1 to the previous state. The
two RNN states are updated as described above at
every step of generating y1, y2, y3, and y4. In this
way, at each time step, the FUTURE layer encodes
source contents to be translated in the future steps,
while the PAST layer encodes translated source con-
tents up to the current step.

The advantages of the PAST and the FUTURE lay-
ers are two-fold. First, they provide coverage in-
formation, which is fed to the attention model and
guides NMT systems to pay more attention to un-
translated source contents. Second, they provide a
holistic view of the source information, since we
would anticipate “PAST + FUTURE = HOLISTIC.”
We describe them in detail in the rest of this section.

4.1 Modeling FUTURE

Formally, the FUTURE layer is a recurrent neural
network (the first gray layer in Figure 2) , and its
state at time step t is computed by

sFt = F(sFt−1, ct), (6)

where F is the activation function for the FUTURE

layer. We have several variants of F, aiming to bet-
ter model the expected subtraction, as described in
Section 4.1.1. The FUTURE RNN is initialized with
the summarization of the whole source sentence, as
computed by Equation 5.

When calculating attention context at time step t,
we feed the attention model with the FUTURE state

from the last time step, which encodes source con-
tents to be translated. We rewrite Equation 4 as

αt,i = softmax
(
a(st−1,hi, sFt−1)

)
. (7)

After obtaining attention context ct, we update
FUTURE states via Equation 6, and feed both of
them to decoder states:

st = f(st−1, yt−1, ct, sFt ), (8)

where ct encodes the source context of the present
translation, and sFt encodes the source context on the
future translation.

4.1.1 Activation Functions for Subtraction
We design several variants of RNN activation

functions to better model the subtractive operation
(Figure 3):

GRU. A natural choice is the standard GRU1,
which learns subtraction directly from the data:

sFt = GRU(sFt−1, ct) (9)

= ut · sFt−1 + (1− ut) · s̃Ft ;

s̃Ft = tanh(U(rt · sFt−1) +Wct); (10)

rt = σ(Urs
F
t−1 +Wrct); (11)

ut = σ(Uus
F
t−1 +Wuct), (12)

where rt is a reset gate determining the combination
of the input with the previous state, and ut is an up-
date gate defining how much of the previous state to
keep around. The standard GRU uses a feed-forward

1Our work focuses on GRU, but can be applied to any RNN
architectures such as LSTM.
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neural network (Equation 10) to model the subtrac-
tion without any explicit operation, which may lead
to the difficulty of the training.

In the following two variants, we provide GRU
with explicit subtraction operations, which are in-
spired by the well known phenomenon that minus
operation can be applied to the semantics of word
embeddings (Mikolov et al., 2013).2 Therefore we
subtract the semantics being translated from the un-
translated FUTURE contents at each decoding step.

GRU with Outside Minus (GRU-o). Instead of
directly feeding ct to GRU, we compute the current
untranslated contents M(sFt−1, ct) with an explicit
minus operation, and then feed it to GRU:

sFt = GRU(sFt−1,M(sFt−1, ct)); (13)

M(sFt−1, ct) = tanh(UmsFt−1 −Wmct). (14)

GRU with Inside Minus (GRU-i). We can alter-
natively integrate a minus operation into the calcu-
lation of s̃Ft :

s̃Ft = tanh(UsFt−1 −W (rt · ct)). (15)

Compared with Equation 10, the differences be-
tween GRU-i and standard GRU are:

1. Minus operation is applied to produce the en-
ergy of the intermediate candidate state s̃Ft ;

2. The reset gate rt is used to control the amount
of information flowing from inputs instead of
from the previous state sFt−1.

Note that for both GRU-o and GRU-i, we leave
enough freedom for GRU to decide the extent of
integrating with subtraction operations. In other
words, the information subtraction is “soft.”

4.2 Modeling PAST

Formally, the PAST layer is another recurrent neural
network (the second gray layer in Figure 2), and its
state at time step t is calculated by:

sPt = GRU(sPt−1, ct). (16)

Initially, sPt is an all-zero vector, which denotes no
source content is yet translated. We choose GRU
as the activation function for the PAST layer, since

2E(“King”)−E(“Man”) = E(“Queen”)−E(“Woman”),
where E(·) is the embedding of a word.

the internal structure of GRU is in accord with the
“addition” operation.

We feed the PAST state from last time step to both
attention model and decoder state:

αt,i = softmax
(
a(st−1,hi, sPt−1)

)
; (17)

st = f(st−1, yt−1, ct, sPt−1). (18)

4.3 Modeling PAST and FUTURE

We integrate PAST and FUTURE layers together in
our final model (Figure 2):

αt,i = softmax
(
a(st−1,hi, sFt−1, s

P
t−1)

)
; (19)

st = f(st−1, yt−1, ct, sFt−1, s
P
t−1). (20)

In this way, both the attention model and the decoder
state are aware of what has, and what has not yet
been translated.

4.4 Learning
We introduce additional loss functions to estimate
the semantic subtraction and addition, which guide
the training of the FUTURE layer and PAST layer,
respectively.

Loss Function for Subtraction. As described
above, the FUTURE layer models the future seman-
tics in a declining way: ∆F

t = sFt−1 − sFt ≈ ct.
Since source and target sides contain equivalent se-
mantic information in machine translation (Tu et al.,
2017a): ct ≈ E(yt), we directly measure the con-
sistence between ∆F

t and E(yt), which guides the
subtraction to learn the right thing:

loss(∆F
t ,E(yt)) = − log

exp
(
l(∆F

t ,E(yt))
)

∑
y exp

(
l(∆F

t ,E(y))
) ;

l(u,v) = u>Wv + b.

In other words, we explicitly guide the FUTURE

layer by this subtractive loss, expecting ∆F
t to be

discriminative of the current word yt.

Loss Function for Addition. Likewise, we intro-
duce another loss function to measure the informa-
tion incrementation of the PAST layer. Notice that
∆P
t = sPt − sPt−1 ≈ ct, is defined similarly to ∆F

t

except a minus sign. In this way, we can reasonably
assume the FUTURE and PAST layers are indeed do-
ing subtraction and addition, respectively.
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Training Objective. We train the proposed model
θ̂ on a set of training examples {[xn,yn]}Nn=1, and
the training objective is

θ̂ = arg min
θ

N∑

n=1

|y|∑

t=1

{
− logP (yt|y<t,x; θ)︸ ︷︷ ︸
neg. log-likelihood

+ loss(∆F
t ,E(yt)|θ)︸ ︷︷ ︸

FUTURE loss

+ loss(∆P
t ,E(yt)|θ)︸ ︷︷ ︸

PAST loss

}
.

5 Experiments

Dataset. We conduct experiments on Chinese-
English (Zh-En), German-English (De-En), and
English-German (En-De) translation tasks.

For Zh-En, the training set consists of 1.6m sen-
tence pairs, which are extracted from the LDC cor-
pora3. The NIST 2003 (MT03) dataset is our devel-
opment set; the NIST 2002 (MT02), 2004 (MT04),
2005 (MT05), 2006 (MT06) datasets are test sets.
We also evaluate the alignment performance on the
standard benchmark of Liu and Sun (2015), which
contains 900 manually aligned sentence pairs. We
measure the alignment quality with the alignment er-
ror rate (Och and Ney, 2003).

For De-En and En-De, we conduct experiments
on the WMT17 (Bojar et al., 2017) corpus. The
dataset consists of 5.6M sentence pairs. We
use newstest2016 as our development set, and
newstest2017 as our testset. We follow Sen-
nrich et al. (2017a) to segment both German and
English words into subwords using byte-pair encod-
ing (Sennrich et al., 2016, BPE).

We measure the translation quality with
BLEU scores (Papineni et al., 2002). We use
the multi-bleu script for Zh-En4, and the
multi-bleu-detok script for De-En and
En-De5.

3The corpora includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl

5https://github.com/EdinburghNLP/
nematus/blob/master/data/
multi-bleu-detok.perl

Training Details. We use the Nematus6 (Sen-
nrich et al., 2017b), implementing a baseline trans-
lation system, RNNSEARCH. For Zh-En, we limit
the vocabulary size to 30K. For De-En and En-De,
the number of joint BPE operations is 90,000. We
use the total BPE vocabulary for each side.

We tie the weights of the target-side embeddings
and the output weight matrix (Press and Wolf, 2017)
for De-En. All out-of-vocabulary words are mapped
to a special token UNK.

We train each model with sentences lengths of up
to 50 words in the training data. The dimension of
word embeddings is 512, and all hidden sizes are
1024. In training, we set the batch size to 80 for Zh-
En, and 64 for De-En and En-De. We set the beam
size to 12 in testing. We shuffle the training corpus
after each epoch.

We use Adam (Kingma and Ba, 2014) with an-
nealing (Denkowski and Neubig, 2017) as our opti-
mization algorithm. We set the initial learning rate
as 0.0005, which halves when the validation cross-
entropy does not decrease.

For the proposed model, we use the same set-
ting as the baseline model. The FUTURE and PAST

layer sizes are 1024. We employ a two-pass strategy
for training the proposed model, which has proven
useful to ease training difficulty when the model is
relatively complicated (Shen et al., 2016; Wang et
al., 2017; Wang et al., 2018). Model parameters
shared with the baseline are initialized by the base-
line model.

5.1 Results on Chinese-English

We first evaluate the proposed model on the
Chinese-English translation and alignment tasks.

5.1.1 Translation Quality
Table 2 shows the translation performances on

Chinese-English. Clearly the proposed approach
significantly improves the translation quality in all
cases, although there are still considerable differ-
ences among different variants.

FUTURE Layer. (Rows 1-4). All the activation
functions for the FUTURE layer obtain BLEU score
improvements: GRU +0.52, GRU-o +1.03, and
GRU-i +1.12. Specifically, GRU-o is better than

6https://github.com/EdinburghNLP/nematus
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# Model Dev MT02 MT04 MT05 MT06 Avg. ∆

0 RNNSEARCH 35.90 36.84 37.16 34.17 31.56 35.13 -
1 + FRNN (GRU) 36.11 36,94 38.52 34.58 32.08 35.65 +0.52
2 + FRNN (GRU-o) 36.70 37.81 38.59 35.10 32.60 36.16 +1.03
3 + FRNN (GRU-i) 36.98 38.24 38.66 34.68 32.66 36.24 +1.12
4 + FRNN (GRU-i) + LOSS 37.15 38.80 39.13 35.79 33.75 36.92 +1.80
5 + PRNN 36.90 37.62 39.04 35.24 32.80 36.32 +1.19
6 + PRNN + LOSS 36.95 39.06 39.55 35.05 33.80 36.88 +1.76
7 + FRNN (GRU-i) + PRNN 37.44 37.26 39.10 35.29 32.78 36.37 +1.25
8 + FRNN (GRU-i) + PRNN + LOSS 37.90 39.65 40.37 36.75 34.55 37.84 +2.71
9 RNNSEARCH-2DEC 35.56 36.74 37.38 34.09 31.82 35.12 -0.01
10 RNNSEARCH-3DEC 36.07 37.64 37.62 34.14 32.73 35.64 +0.51
11 COVERAGE (Tu et al., 2016) 36.56 37.54 38.39 34.47 32.38 35.87 +0.74

Table 2: Case-insensitive BLEU on Chinese-English Translation. “LOSS” means applying loss functions
for FUTURE layer (FRNN) and PAST layer (PRNN).

a regular GRU for its minus operation, and GRU-
i is the best, which shows that our elaborately de-
signed architecture is more proper for modeling the
decreasing phenomenon of the future semantics.

Adding subtractive loss gives an extra 0.68 BLEU
score improvement, which indicates that adding g
is beneficial guided objective for FRNN to learn the
minus operation.

PAST Layer. (Rows 5-6). We observe the same
trend on introducing the PAST layer: using it alone
achieves a significant improvement (+1.19), and
with the additional objective, it further improves the
translation performance (+0.57).

Stacking the FUTURE and the PAST Together.
(Rows 7-8). The model’s final architecture outper-
forms our intermediate models (1-6) by combin-
ing FRNN and PRNN. By further separating the
functionaries of past content modeling and language
modeling into different neural components, the final
model is more flexible, obtaining a 0.91 BLEU im-
provement over the best intermediate model (Row 4)
and an improvement of 2.71 BLEU points over the
RNNSEARCH baseline.

Comparison with Other Work. (Rows 9-11).
We also conduct experiments with multi-layer de-
coders (Wu et al., 2016) to see whether the NMT
system can automatically model the translated and
untranslated contents with additional decoder lay-

ers (Rows 9-10). However, we find that the per-
formance is not improved using a two-layer decoder
(Row 9), until a deeper version (three-layer decoder,
Row 10) is used. This indicates that enhancing per-
formance by simply adding more RNN layers into
the decoder without any explicit instruction is non-
trivial, which is consistent with the observation of
Britz et al. (2017).

Our model also outperforms the word-level COV-
ERAGE (Tu et al., 2016), which considers the cover-
age information of the source words independently.
Our proposed model can be regarded as a high-level
coverage model, which captures higher level cover-
age information, and gives more specific signals for
the decision of attention and target prediction. Our
model is more deeply involved in generating target
words, by being fed not only to the attention model
as in Tu et al. (2016), but also to the decoder state.

5.1.2 Subjective Evaluation
Following Tu et al. (2016), we conduct subjective

evaluations to validate the benefit of modeling the
PAST and the FUTURE (Table 3). Four human eval-
uators are asked to evaluate the translations of 100
source sentences, which are randomly sampled from
the testsets without knowing from which system the
translation is selected. For the BASE system, 1.7%
of the source words are over-translated and 8.8%
are under-translated. Our proposed model alleviates
these problems by explicitly modeling the dynamic
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System Architecture De-En En-De
Dev Test Dev Test

Rikters et al. (2017)
cGRU + BPE + dropout 31.9 27.2 27.4 21.0

+ name entity forcing + synthetic data 36.9 29.0 30.9 22.7

Escolano et al. (2017)
Char2Char + Rescoring with inverse model 32.1 - 27.0 -

+ synthetic data - 28.1 - 21.2
Sennrich et al. (2017a) cGRU + BPE + synthetic data 38.0 32.0 32.2 26.1

this work
BASE 32.0 27.8 28.3 23.3
COVERAGE 32.2 28.7 28.9 23.6
OURS 33.5 29.7 29.5 24.3

Table 5: Results of De-En and En-De “synthetic data” denotes additional 10M monolingual sentences,
which is not used in our work.

Model Over-Trans Under-Trans
Ratio ∆ Ratio ∆

BASE 1.7% – 8.8% –
COVERAGE 1.5% -11.8% 7.7% -12.4%
OURS 1.6% -5.9% 5.7% -35.2%

Table 3: Subjective evaluation on over- and under-
translation for Chinese-English. “Ratio” denotes
the percentage of source words which are over-
or under-translated, “∆” indicates relative improve-
ment. “BASE” denotes RNNSEARCH and “OURS”
denotes “+ FRNN (GRU-i) + PRNN + LOSS”.

source contents by the PAST and the FUTURE lay-
ers, reducing 11.8% and 35.2% of over-translation
and under-translation errors, respectively. The pro-
posed model is especially effective for alleviating
the under-translation problem, which is a more se-
rious translation problem for NMT systems, and is
mainly caused by lacking necessary coverage infor-
mation (Tu et al., 2016).

5.1.3 Alignment Quality

Table 4 lists the alignment performances of our
proposed model. We find that the COVERAGE model
does improve attention model. But our model can
produce much better alignments compared to the
word level coverage (Tu et al., 2016). Our model
distinguishes the PAST and FUTURE directly, which
is a higher level coverage mechanism than the word
coverage model.

Model AER ∆

BASE 39.73 –
COVERAGE 38.73 -1.00
OURS 35.90 -3.83

Table 4: Evaluation of the alignment quality. The
lower the score, the better the alignment quality.

5.2 Results on German-English

We also evaluate our model on the WMT17 bench-
marks for both De-En and En-De. As shown in Table
5, our baseline gives comparable BLEU scores to the
state-of-the-art NMT systems of WMT17. Our pro-
posed model improves the strong baseline on both
De-En and En-De. This shows that our proposed
model works well across different language pairs.
Rikters et al. (2017) and Sennrich et al. (2017a) ob-
tain higher BLEU scores than our model, because
they use additional large scale synthetic data (about
10M) for training. It maybe unfair to compare our
model to theirs directly.

5.3 Analysis

We conduct analyses on Zh-En, to better understand
our model from different perspectives.

Parameters and Speeds. As shown in Table 6,
the baseline model (BASE) has 80M parameters. A
single FUTURE or PAST layer introduces 15M to
17M parameters, and the corresponding objective
introduces 18M parameters. In this work, the most
complex model introduces 65M parameters, which
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Model #Para. Speed
Train Test

BASE 80M 42.59 2.05
+ FRNN (GRU) 96M 31.91 1.99
+ FRNN (GRU-o) 97M 30.88 1.93
+ FRNN (GRU-i) 97M 31.06 1.95

+ LOSS 115M 29.40 1.68
+ PRNN 95M 32.01 1.98

+ LOSS 113M 29.60 1.69
+ FRNN + PRNN 110M 26.01 1.88

+ LOSS 145M 22.94 1.52
RNNSEARCH-2DEC 93M 39.89 2.00
RNNSEARCH-3DEC 105M 35.57 1.82
COVERAGE 80M 40.48 1.90

Table 6: Statistics of parameters, training and testing
speeds (sentences per second).

leads to a relatively slower training speed. How-
ever, our proposed model does not significant slow
down the decoding speed. The most time consum-
ing part is the calculation of the subtraction and ad-
dition losses. As we show in the next paragraph,
our system works well by only using the losses in
training, which further improve the decoding speed
of our model.

Effectiveness of Subtraction and Addition Loss.
Adding subtraction and addition loss functions helps
twofold: (1) guiding the training of the proposed
subtraction and addition operation; (2) enabling bet-
ter reranking of generated candidates in testing. Ta-
ble 7 lists the improvements from the two perspec-
tives. When applied only in training, the two loss
functions lead to an improvement of 0.48 BLEU
points by better modeling subtraction and addition
operations. On top of that, reranking with FUTURE

and PAST loss scores in testing further improves the
performance by +0.99 BLEU points.

Initialization of the FUTURE Layer. The base-
line model does not obtain abundant accuracy im-
provement by feeding the source summarization into
the decoder (Table 1). We also experiment to not
feed the source summarization into the decoder of
the proposed model, which leads to a significant
BLEU score drop on Zh-En. This shows that our
proposed model better use the source summarization

Model LOSS used in BLEU ∆
Train Test

BASE – – 35.13 –

OURS

× × 36.37 +1.25
X × 36.85 +1.72
X X 37.84 +2.71

Table 7: Contributions of loss functions from param-
eter training (“Train”) and reranking of candidates in
testing (“Test”).

Initialize FRNN with . . . BLEU
Source Summarization 36.24
All-Zero Vector 35.81

Table 8: Influence of initialization of FRNN

layer (GRU-i)

with explicitly modeling the FUTURE compared to
the conventional encoder-decoder baseline.

Case Study. We also compare the translation
cases for the baseline, word level coverage and our
proposed models. As shown in Table 9, our base-
line system suffers from the over-translation prob-
lems (case 1), which is consistent with the results
of human evaluation (Section 3). The BASE system
also incorrectly translates “the royal family” into
“the people of hong kong”, which is totally irrele-
vant here. We attribute the former case to the lack
of untranslated future modeling, and the latter one
to the overloaded use of the decoder state where the
language modeling of the decoder leads to the flu-
ent but wrong predictions. In contrast, the proposed
approach almost addresses the errors in these cases.

6 Conclusion

Modeling source contents well is crucial for
encoder-decoder based NMT systems. However,
current NMT models suffer from distinguishing
translated and untranslated translation contents, due
to the lack of explicitly modeling past and future
translations. In this paper, we separate PAST and
FUTURE functionalities from decoder states, which
can maintain a dynamic yet holistic view of the
source content at each decoding step. Experimen-
tal results show that the proposed approach signifi-
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Source
布什还表示 ,应巴基斯坦和印度政府的邀请 ,他将于 3月份对巴基斯坦和
印度进行访问。

Reference
bush also said that at the invitation of the pakistani and indian governments , he
would visit pakistan and india in march .

BASE bush also said that he would visit pakistan and india in march .

COVERAGE
bush also said that at the invitation of pakistan and india , he will visit pakistan and
india in march .

OURS
bush also said that at the invitation of the pakistani and indian governments , he will
visit pakistan and india in march .

Source
所以有不少人认为 说 ,如果是这样的话 ,对皇室、对日本的社会也是
会有很大的影响的。

Reference
therefore , many people say that it will have a great impact on the royal family and
japanese society .

BASE
therefore , many people are of the view that if this is the case , it will also have a great
impact on the people of hong kong and the japanese society .

COVERAGE
therefore , many people think that if this is the case , there will be great impact on the
royal and japanese society .

OURS
therefore , many people think that if this is the case , it will have a great impact on the
royal and japanese society .

Table 9: Comparison on Translation Examples. We italicize some translation errors and highlight the
correct ones in bold.

cantly improves translation performances across dif-
ferent language pairs. With better modeling of past
and future translations, our approach performs much
better than the standard attention-based NMT, re-
ducing the errors of under and over translations.
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Fonollosa. 2017. The TALP-UPC neural machine
translation system for German/Finnish-English using
the inverse direction model in rescoring. In Proceed-
ings of the Second Conference on Machine Transla-
tion, Volume 2: Shared Task Papers.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. arXiv:1410.5401.

Caglar Gulcehre, Sarath Chandar, Kyunghyun Cho,
and Yoshua Bengio. 2016. Dynamic neural tur-
ing machine with soft and hard addressing schemes.
arXiv:1607.00036.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In EMNLP 2013.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. ICLR 2014.

Jiwei Li, Will Monroe, and Daniel Jurafsky.
2017. Learning to decode for future success.
arXiv:1701.06549.

Yang Liu and Maosong Sun. 2015. Contrastive unsu-
pervised word alignment with non-local features. In
AAAI 2015.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In EMNLP 2015.

Fandong Meng, Zhengdong Lu, Hang Li, and Qun Liu.
2016. Interactive attention for neural machine transla-
tion. In COLING 2016.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016. Coverage embedding models for
neural machine translation. EMNLP 2016.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. ICLR 2013.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In EMNLP 2016.

Franz Josef Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Models.
Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In ACL 2002.

Ofir Press and Lior Wolf. 2017. Using the output embed-
ding to improve language models. In EACL 2017.

Scott Reed and Nando De Freitas. 2015. Neural
programmer-interpreters. Computer Science.

Matı̄ss Rikters, Chantal Amrhein, Maksym Del, and
Mark Fishel. 2017. C-3MA: Tartu-Riga-Zurich trans-
lation systems for WMT17.
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