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Abstract

Transition-based approaches based on local
classification are attractive for dependency
parsing due to their simplicity and speed,
despite producing results slightly below the
state-of-the-art. In this paper, we propose a
new approach for approximate structured in-
ference for transition-based parsing that pro-
duces scores suitable for global scoring us-
ing local models. This is accomplished with
the introduction of error states in local train-
ing, which add information about incorrect
derivation paths typically left out completely
in locally-trained models. Using neural net-
works for our local classifiers, our approach
achieves 93.61% accuracy for transition-based
dependency parsing in English.

1 Introduction

Transition-based parsing approaches based on local
classification of parser actions (Nivre, 2008) remain
attractive due to their simplicity, despite producing
results slightly below the state-of-the-art. Although
the application of online structured prediction and
beam search has made transition-based parsing com-
petitive in accuracy (Zhang and Clark, 2008; Huang
et al., 2012) while retaining linear time complex-
ity, greedy inference with locally-trained classifiers
is still widely used, and techniques for improving
the performance of greedy parsing have been pro-
posed recently (Choi and Palmer, 2011; Goldberg
and Nivre, 2012; Goldberg and Nivre, 2013; Hon-
nibal et al., 2013). Recent work on the applica-
tion of neural network classification to drive greedy
transition-based dependency parsing has achieved
high accuracy (Chen and Manning, 2014), showing
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how effective locally-trained neural network mod-
els are at predicting parser actions, while providing
a straightforward way to improve parsing accuracy
using word embeddings pre-trained using a large set
of unlabeled data.

We propose a novel approach for approximate
structured inference for transition-based parsing that
uses locally-trained neural networks that, unlike pre-
vious local classification approaches, produce scores
suitable for global scoring. This is accomplished
with the introduction of error states in local training,
which add information about incorrect derivation
paths typically left out completely in locally-trained
models. Our approach produces high accuracy for
transition-based dependency parsing in English, sur-
passing parsers based on the structured perceptron
(Huang and Sagae, 2010; Zhang and Nivre, 2011)
by allowing seamless integration of pre-trained word
embeddings, while requiring nearly none of the fea-
ture engineering typically associated with parsing
with linear models. Trained without external re-
sources or pre-trained embeddings, our neural net-
work (NN) dependency parser outperforms the NN
transition-based dependency parser from Chen and
Manning (2014), which uses pre-trained word em-
beddings trained on external data and more features,
thanks to improved search. Our experiments show
that naive search produces very limited improve-
ments in accuracy compared to greedy inference,
while search in conjunction with error states that
mark incorrect derivations produces substantial ac-
curacy improvements.

2 Background: Transition-Based Parsing

Transition-based approaches are attractive in depen-
dency parsing for their algorithmic simplicity and
straightforward data-driven application. Using shift-
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reduce algorithms, such as those pioneered by Nivre
(2008), the task of finding a dependency structure
becomes that of predicting each action in the deriva-
tion of desired structure.

2.1 Arc-Standard Dependency Parsing

Our parsing models are based on a simple shift-
reduce algorithm for dependency parsing known
as the arc-standard dependency parsing algorithm
(Nivre, 2008). An arc-standard dependency parser
maintains one or more parser states T , each com-
posed of a stack S = [sm, ..., s1, s0] (where
the topmost item is s0) and input buffer W =
[w0, w1, ..., wn] (where the first element of the buffer
is w0). In its initial state T0, the stack is empty, and
the input buffer contains each token in the input sen-
tence with its part-of-speech tag. One of three ac-
tions can be applied to a parser state Ti to create a
new parser state Tj : shift, which takes the next word
in the input buffer (with its part-of-speech tag), and
places it as a tree with a single node on top of the
stack (i.e. input token w0 is consumed to create the
new stack item s0); reduce-right, which pops the top
two items on the stack, s0 and s1, and pushes onto
the stack a new subtree formed by attaching the root
node of s0 as a dependent of s1; and reduce-left,
which pops the top two items on the stack, s0 and
s1, and pushes onto the stack a new subtree formed
by attaching the root node of s1 as a dependent of s0.
An alternative formulation keeps only word indices
in the stack and input buffer, and includes an addi-
tional set of dependency arcs; the two formulations
are equivalent.

A greedy arc-standard parser keeps only one
parser state, choosing at each step one parser action
to apply to the current state, which is replaced once
application of the chosen action creates the next
state. Once the current state is a final state, parsing
terminates. A final state is one where the input buffer
is empty, and the stack contains only one element,
which is the dependency tree output. Given a way to
score parser actions instead of simply choosing one
action to apply, a state score can be defined on the
sequence of actions resulting in the state. Keeping
track of multiple states with scores resulting from
the application of different valid actions for a sin-
gle state creates an exponential search space. Beam
search can then be applied to search for a high scor-

ing state. With global estimation of parameters for
scoring parser actions, a beam search can produce
more accurate results than greedy parsing by mini-
mizing global loss (Zhang and Clark, 2008).

2.2 Local Classification

Initial data-driven transition-based dependency
parsing approaches employed locally-trained multi-
class models to choose a parser action based on the
parser state at each step in the derivation (Yamada
and Matsumoto, 2003; Nivre and Scholz, 2004). In
these models, classification is based on a set of fea-
tures extracted from the current state of the parser,
and creating training examples for the classifier
requires only running the transition-based algorithm
to reproduce the trees in a training treebank, while
recording the features and actions at each step. A
classifier is then trained with the actions as classes.

While this simple procedure has allowed for train-
ing of dependency parsers using off-the-shelf clas-
sifier implementations, the resulting parsers are re-
stricted to performing greedy search, considering
only one tree out of the exponentially many. Al-
though the distribution of class scores for each
parser state can be used to create a search space for
beam search, the locally normalized scores obtained
with these classifiers make searching a largely futile
endeavor, since action scores cannot be combined
meaningfully to score entire trees or entire deriva-
tions. For example, Zhao et al. (2013) use max-
imum entropy classification for local classification
of shift-reduce parsing actions with a dynamic pro-
gramming approach based on the work of Huang and
Sagae (2010). Despite using exact search, Zhao et
al. report an improvement of only 0.6% in unlabeled
dependency accuracy over greedy parsing, reaching
an accuracy of 90.7%, far below the 92.2% obtained
with a comparable structured perceptron parser with
beam search and very similar features (Huang et al.,
2012). Similarly, Johansson and Nugues (2006),
who used probability estimates from local SVM
classification to perform a beam search in transition-
based parsing, report some accuracy gains when us-
ing a beam of size 2, but no further gains with larger
beams. Because transition scores out of each state
are normalized locally, the quality of any particular
state is in no way captured by the scores that will
ultimately result in the overall score for the deriva-
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tion. In fact, from an incorrect parser state, more
incorrect transitions may follow, due to a version of
the label bias problem faced by MEMMs (Lafferty
et al., 2001; McCallum et al., 2000). In Section 3,
we will present our approach that significantly im-
proves search with locally normalized models.

2.3 Structured Perceptron

One effective way to create models that score parser
transitions globally and allow for effective search is
to use the structured perceptron (Collins, 2002). Un-
like with local classifiers, weight updates are based
on entire derivations, instead of individual states.
However, because exact inference is too costly for
transition-based parsing with a rich feature set, in
practice parsers use beam search to perform ap-
proximate inference, and care must be taken to en-
sure the validity of weight updates (Huang et al.,
2012). A widely used approach is to employ early
updates, which stop parsing and perform weight up-
dates once the desired structure is no longer in the
beam (Collins and Roark, 2004).

Transition-based dependency parsers based on the
structured perceptron have reached high accuracy
(Zhang and Nivre, 2011; Hatori et al., 2012), but
these parsers remain in general less accurate than
high-order graph-based parsers that model depen-
dency graphs directly, instead of derivations (Zhang
and McDonald, 2014; Martins et al., 2013). The
drawback of these more accurate parsers is that they
tend to be slower than transition-based parsers.

3 Parsing with Local Classifiers and Error
States

The standard way to train local classifiers to predict
actions for transition-based parsers is to run the pars-
ing algorithm using a gold-standard sequence of ac-
tions (i.e. a sequence of actions that generates the
gold-standard tree from a training set) and record the
features corresponding to each parser state, where a
parser state includes the parser’s stack, input buffer,
and set of dependencies created so far. The features
corresponding to a state are then associated with the
gold-standard action that should be taken from that
state, and this constitutes one training example for
the local action classifier. Sagae and Tsujii (2007)
propose using a maximum entropy classifier to pro-

duce conditional probabilities for each action given
the features of the state, and score each state using
the product of the probabilities of all actions taken
up to that state. However, they report that searching
through the resulting space for the highest scoring
parse does not consistently result in improved parser
accuracy over a greedy policy (i.e. pursue only the
highest scoring action at each state), suggesting that
this strategy for scoring states is a poor choice. This
is confirmed by Zhao et al. (2013), who report only a
small improvement over greedy search despite using
exact inference with this state scoring strategy.

Because action probabilities are conditioned on
the features of the current state alone and normalized
locally, there is no reason to expect that the prod-
uct of such probabilities along a derivation path up
to a state, whether or not it is a final state, should
reflect the overall quality of the state. Once an in-
correct action is classified as more probable than the
correct action in a given state Ti, the incorrect state
Tj resulting from the application of the incorrect ac-
tion will have higher score than the correct state Tk
resulting from the application of the correct action.
From that point, the action probabilities given state
Tj will sum to one, just as the action probabilities
given state Tk will sum to one, and there is no rea-
son to expect that the most probable action from Tj
should be less probable than the most probable ac-
tion from Tk. In other words, once an error occurs,
search is of little help in recovering from it, since
scores are based only on local decisions and not on
any notion of state quality, and the error occurred
precisely because an incorrect action was found to
be more probable locally.

Our key contribution is a solution to this problem
by introducing a notion of state quality in local ac-
tion classification. This is done through the addi-
tion of a new error class to the local classification
model. Unlike the other classes, the error class does
not correspond to a parser action. In fact, the error
class is not used at all during parsing, and serves to
occupy probability mass, keeping it from the actual
parser actions. Intuitively, the probability of the er-
ror class given the current state can be thought of
as the probability that an error has occurred previ-
ously and the resulting state belongs to an incorrect
derivation path.
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3.1 Training Local Classifiers with Error
States

To train a local classifier with error states, the stan-
dard way of generating classifier training examples
is modified to include parser states that do not be-
long to the derivation of the gold-standard tree. It
is these incorrect parser states that are labeled error
states. Figure 1 illustrates the generation of train-
ing examples for a local action classifier with error
states, assuming unlabeled arc-standard dependency
parsing (Nivre, 2008), where the actions are shift,
reduce-right and reduce-left. From state 2, the stan-
dard way of training local classifiers would be sim-
ply to associate features from state 2 to a shift action,
generate state 3 (only), associate features from state
3 with a shift action, generate state 6, and continue in
this fashion along the derivation of the gold-standard
tree. To add error states, from state 2 we do not only
generate state 3, but also states 4 and 5, which result
from the application of incorrect actions. In addition
to associating features from state 3 with shift, we
associate features from state 4 with the error class,
and features from state 5 with the error class. The
desired effect is that any time the parser deviates
from a correct derivation, the error class should be-
come probable, while valid parser actions become
less probable. Although in principle any state out-
side of a gold-standard derivation is an error state,
we generate only error states resulting from the ap-
plication of a single incorrect action, which in prac-
tice increases the number of state-action pairs used
to train the classifier by approximately a factor of
three. We leave an investigation of how far into in-
correct derivations one should go to generate addi-
tional error states as future work.

3.2 Parsing with Error States

Once a local classifier has been trained with error
states, this classifier can be used in a transition-
based parser with no modifications; the error class
is simply thrown away during parsing. For example,
the type of beam search typically used in transition-
based parsing with the structured perceptron (Zhang
and Clark, 2008; Huang and Sagae, 2010) can be
used to pursue several derivations in parallel, and
global score of a derivation can be decomposed as
the sum of the scores of all actions in the deriva-
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Figure 1: Training of a local classifier for parser actions
with error states. In addition to collecting training exam-
ples for each of the three valid parser actions (represented
as Sh for shift, L for reduce-left, and R for reduce-right),
we collect also examples of an error class (Err), which
corresponds to the shaded states generated after taking an
incorrect action.

tion. Analogously, we score each derivation using
the product of the probabilities for all actions in the
derivation. Interestingly, local normalization of ac-
tion scores allows the use of best-first search (Sagae
and Tsujii, 2007), which has the potential to arrive
at high quality solutions without having to explore
as many states as a typical beam search, and even al-
lows efficient exact or nearly exact inference (Zhao
et al., 2013). Once actions are scored for the parser’s
current state using a classifier, the score of a new
state resulting from the application of a valid action
to the current state can be computed as the product
of the probabilities of all actions applied up to the
new state in its derivation path. In other words, the
score of each new state is the score of the current
state multiplied by the probability of the action ap-
plied to the current state to generate the new state.
New scored states resulting from the application of
each action to the current state are then placed in a
priority queue. The highest scoring item in the pri-
ority queue is chosen, and the state corresponding
to that item is then made the current state1. The lo-
cal classifier is then applied to the current state, and

1For efficiency, items inserted in the priority queue could be
simply state scores coupled with the corresponding action and
a pointer to the current state, since the new state only needs to
be generated once it becomes the current state, and often only a
fraction of priority queue items ever become current states.

186



0 1 2

4

3

Sh:1.0

Sh:0.3

P=1.0  
S=[] 
Q=[eat, pasta,  
      with, sauce]

P=1.0  
S=[eat] 
Q=[pasta, with,  
      sauce]

P=1.0  
S=[eat, pasta] 
Q=[with, sauce]

P=0.05  

R:0.05

L:0.6

P=0.6  
S=[eat] 
Q=[with, sauce]

P=0.3 
S=[eat, pasta, with] 
Q=[sauce]

Sh:1.0

Sh:0.8

R:0.05

L:0.05

5

P=0.015

P=0.015

Sh:0.8

R:0.05

P=0.24 
S=[eat, pasta,  
      with, sauce] 
Q=[]

…6
P=0.192

P=0.012

L:0.05

P=0.012

P=0.06 

Sh: 0.1

Figure 2: Exploration of parser state space using best-first search and error states. States are numbered according to
the order in which they become the parser’s current state. The local action classifier is trained with four classes: the
three valid actions (represented as Sh for shift, L for reduce-left, and R for reduce-right) and an error class. The error
class is not used by the parser and not shown in the diagram, but serves to reduce the total probability of valid parser
actions by occupying some probability mass in each state, creating a way to reflect the overall quality of individual
states.

the process is repeated (without clearing the prior-
ity queue, which already contains items correspond-
ing to unexplored new states) until the current state
is a final state (a state corresponding to a complete
parse). This agenda-driven transition-based parsing
approach, where the agenda is a priority queue, is
optimal since all scores fall between 0 and 1, inclu-
sive, but in practice a priority queue with limited ca-
pacity can be used to improve efficiency by prevent-
ing unbounded exploration of the exponential search
space in cases where probabilities are nearly uni-
form. Figure 2 illustrates arc-standard dependency
parsing with error states and best-first search. From
states 0 and 1, the only possible action is shift. From
state 2, the most probably action according to the
model is reduce-left, which is not the correct action,
but has probability 0.6. The correct action, shift, has
probability 0.3. State 3 is then chosen as the cur-
rent state, but when the classifier is applied to state
3, the only valid action, shift, is assigned probabil-
ity 0.1. This is because the classifier assigns most
of the probability mass to the error class, which the
parser does not use. Because the state resulting from
a shift from state 3 would have low probability, due
to the low probability of shift, the search continues

from state 4, and the parser has recovered from the
classification error at state 2.

In the next section, we will present details of our
neural network local classifiers.

4 Neural Models for Transition Based
Parsing

We implement transition-based parsers with error
states following two search strategies: the step-
wise beam search normally used in transition-based
parsers with global models (Zhang and Clark, 2008;
Huang and Sagae, 2010) and best-first search (Sagae
and Tsujii, 2007; Zhao et al., 2013), described in
the previous section. The trainable components
of our transition-based parsers are the local classi-
fiers that predict the next action given features de-
rived from the current state. Following Chen and
Manning (2014), we train feed-forward neural net-
works (NNs) for local classification in our parsers.
The NN is trained on pairs of features and actions,
{fn, an}Nn=1, where fn is the feature vector extracted
from the parser state and an is the corresponding
correct action. For vanilla arc-standard parsing, an

is one of {shift, reduce-left, reduce-right}, and for
parsing with error states, an additional error action.
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Figure 3: Basic architecture of our NN models

While parsing, we extract feature vector f from the
current state and make a decision based on the out-
put distribution, P (a | f) computed by the NN.

We will now describe the basic architecture of our
NN classifier and the features that we use. We will
also describe how we pre-train embeddings from
unannotated data for our word features.

4.1 Neural Network Model

Figure 3 shows the basic architecture of our neural
network action prediction model for two input fea-
tures f = f1, f2, each of which is a one-hot vector
with dimension equal to the number of possible fea-
ture types. The neural network has two hidden layers
and the output softmax layer has the same number
of units as the number of parser actions, that is, ei-
ther 3 (without error states) or 4 (with error states).
D is the input embedding matrix that is shared by
all the input feature positions. Each feature posi-
tion fi has a corresponding position matrix Cfi . The
two hidden layers h1 and h2 comprise rectified lin-
ear units (Nair and Hinton, 2010) having the activa-
tion max(0, x) (Figure 4).

x

Figure 4: Activation function for a rectified linear unit.

The neural network computes the probability dis-
tribution over the parser actions, P (a | f), as fol-
lows:

The first hidden layer computes,

h1 = φ


∑

fi

CfiDfi + b1


 ,

where b1 is a vector of biases for h1 and φ is applied
elementwise.

The output of the second layer h2 is

h2 = φ (Mh1 + b2) ,

where M is a weight matrix between h1 and h2 and
b2 is a vector of biases for h2. The output softmax
layer computes the probability of an action as:

P (a | f) =
exp

(
vaD

′h2 + bTva

)
∑

a′ exp (va′D′h2 + bTva′)
,

where D′ is the matrix of output action embeddings,
b is a vector of action biases, and va is the one hot
representation of the action a. We learn models that
predict over two types of output distributions con-
ditioned on f: vanilla arc-standard models that pre-
dict over shift, reduce-left and reduce-right, and arc-
standard models with error states (Section 3) that
predict over shift, reduce-left, reduce-right and er-
ror.

4.2 Semi-supervised Learning: Pre-training
Word Embeddings

It is often the case that large amounts of domain-
specific unannotated data, i.e. raw text, is avail-
able in addition to annotated data. For both graph-
based and transition-based parsing, many feature
templates are defined on words from the input sen-
tence. Previous work has shown benefits of using
word representations learned from unannotated data.
Koo et al. (2008) achieve significant improvement
in dependency parsing on the Penn Treebank (PTB)
(From 92.02% to 93.16%) by using Brown clus-
ters (Brown et al., 1992) learned from the BLLIP
corpus (Charniak et al., 2000). Chen and Manning
(2014) also show 0.7% improvement on English de-
pendency parsing on PTB using pre-trained English
word embeddings from Collobert et al. (2011). We
also seek to benefit from pre-trained embeddings
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to initialize the input feature embeddings, D (Fig-
ure 3), in our neural network classifiers.

Following both Koo et al. (2008) and Chen and
Manning (2014), we learn word embeddings by
training a feed-forward neural network language
model on a concatenation of the BLLIP corpus and
sections 02–21 of the PTB corpus. We use the
NPLM toolkit (http://nlg.isi.edu/software/nplm/),
which implements noise contrastive estimation
training of a two-hidden layer feed-forward neu-
ral network language model with rectifier linear
units (Vaswani et al., 2013). We train a 7-gram neu-
ral language model with input word embedding di-
mension 64, 512 units in the first hidden layer, 512
units in the second hidden layer and output word-
embedding dimension of 512. The neural language
model is trained for 30 epochs using stochastic gra-
dient descent and an initial learning rate of 1.0. We
restrict the vocabulary to about 100k most-frequent
words, replacing all the other words with <unk>.
We use a validation set of about 250k n-grams and
extract the input word embeddings from the epoch
that achieves the lowest perplexity on the validation
set. To avoid over-fitting, in our dependency parsing
experiments, we only use pre-trained embeddings
for the words that occurred at least twice in sections
02–21 of the PTB corpus. Pre-trained embeddings
give us significant improvements over randomly ini-
tialized embeddings, as our results will show (sec-
tion 5).

4.3 Training

We train six different types of NN classifiers for
transition-based dependency parsing: one for each
search algorithm with error states, with and with-
out pre-trained word embeddings, in addition to two
models with no error states, as described below.

4.3.1 Vanilla Arc-standard Parsers
We train NN classifiers for arc-standard transition-
based parsers that compute probability distributions
over shift, reduce-left, and reduce-right, using the
14 kernel features described by Huang and Sagae
(2010), shown in Table 1. We trained models us-
ing both pre-trained (Section 4.2) and randomly ini-
tialized word embeddings. We denote these parsers
as Local–14–pre and Local–14–rand. These mod-
els allow us to compare the use of NN classification

Word features s0.w s1.w s2.w q0.w q1.w
POS tag features s0.t s1.t s2.t q0.t q1.t
Child features s0.lc.t s0.rc.t s1.lc.t s1.rc.t

Table 1: The 14 feature templates used in some of
our models. s and q indicate the stack and the input
buffer respectively, subscripts start at zero on the top
of the stack or in the front of the input buffer. Fi-
nally, lc and rc indicate the leftmost left child and
the rightmost right child, respectively.

without error states directly with the structured per-
ceptron, and examine the impact of pre-trained word
embeddings.

4.3.2 Error State Parsers
We also train NN classifiers that differ from the ones
above only in the use of error states: ErrSt–14–pre
(error states, pre-trained embeddings), and ErrSt–
14–rand (error states, randomly initialized embed-
dings). These allow us to examine the impact of
using error states, and give us a way to compare
our approach with NN and error states directly with
an existing structured perceptron arc-standard parser
(Huang and Sagae, 2010) using the same 14 kernel
features and the same search approach. The dif-
ferences in the two approaches are that Huang and
Sagae (2010) use the structured perceptron and an
extended set of features based on the kernel features,
and we use NN with error states and only the 14 ker-
nel features.

Additionally, we train two classifiers that use
a more expressive expanded set of 25 features,
which we use with best-first search (Sagae and
Tsujii, 2007; Zhao et al., 2013) with error states:
ErrSt–25–pre (expanded feature set, error states,
pre-trained embeddings), and ErrSt–25–rand (ex-
panded feature set, error states, randomly initial-
ized embeddings). The 25 feature templates used
by these classifiers are shown in Table 2. In con-
trast, Chen and Manning (2014) use 48 feature tem-
plates, including higher-order dependency informa-
tion than has been shown to improve parsing ac-
curacy significantly (Zhang and Nivre, 2011). It
is likely that our approach would benefit similarly
from the use of these features, but we leave the ad-
dition of features as future work.

Finally, for each of six types of classifiers above,
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Word s0.w s1.w s2.w q0.w q1.w q2.w q3.w
POS tag features s0.t s1.t s2.t q0.t q1.t q2.t q3.t
Word child features s0.lc.w s0.rc.w s1.lc.w s1.rc.w
POS child features s0.lc.t s0.rc.t s1.lc.t s1.rc.t
Previous action previous action
Distance dist(s0, s1) dist(q0, s0)

Table 2: The expanded set of 25 feature templates
used in some of our models. s and q indicate the
stack and the input buffer respectively, subscripts
start at zero on the top of the stack or in the front
of the input buffer. lc and rc indicate the leftmost
left child and the rightmost right child, respectively.
dist(a, b) is the signed distance between the root
of a and the root of b in the input sentence, and
previous action is the action that was applied to
generate the current state.

we train models using both Stanford dependen-
cies (de Marneffe and Manning, 2008) and Ya-
mada and Matsumoto (YM) dependencies (Yamada
and Matsumoto, 2003) extracted from the Penn
Treebank. We create {fntrain, antrain}Ntrain

n=1 pairs
on Wall Street Journal sections 02–21, and use
{fndev, andev}

Ndev
n=1 pairs from section 22 as a develop-

ment set, where Ntrain and Ndev are the number of
training and dev instances. We obtain part-of-speech
tags by training a CRF tagger on sections 02–21 with
4-way jackknifing, which achieves a tagging accu-
racy of 97.2% on section 23. We train our NN clas-
sifiers to maximize the log-likelihood of the correct
actions given features,

1

n

Ntrain∑

n=1

logP (antrain | fntrain).

We use mini-batch dropout training, computing gra-
dients using the back-propagation algorithm (Hinton
et al., 2012). We use the development set to tune the
learning rate, halving it if the perplexity on the de-
velopment set increases.

4.4 Model and Parser Selection
For each of our NN classifiers, there are a few tun-
able hyper-parameters: hidden layer size (h1), mini-
batch size, initial learning rate lr, dropout probabil-
ities for h1 and h2 (dh1 , and dh2) , and random ini-
tialization of parameters. We tuned each of these to
maximize classification accuracy of the most likely

action predicted by the classifier given the feature
vector. We calculated classification accuracy as

∑Ndev
n=1 δ(arg maxa P (a | fndev), andev)

Ndev
,

where δ(x, y) returns 1 if x equals y and 0 otherwise.
For each of the classifiers, we first tuned

lr, mini-batch size, h1 size, and dh1 and dh2

for accuracy. We tried lr = {1.0, 0.5, 0.25},
h1 = {512, 1024, 1536, 2048}, mini-batch size =
{128, 256, 512}, dh1 = {0.0, 0.1, 0.2}, and dh2 =
{0.0, 0.1, 0.2}. For all our randomly initialized
classifiers (Local–14–rand, ErrSt–14–rand, and
ErrSt–25–rand), we chose the model that achieved
the best classification accuracy on the development
set for parsing the test set. We also used the
same random seed to initialize our parameters. For
Local–14–pre, ErrSt–14–pre, and ErrSt–25–pre,
we trained models with different random initializa-
tions of the input embeddings (D in figure 3) that
were not pre-trained. For each random initializa-
tion, we chose the model with the best classifica-
tion accuracy on the development set. To pick the fi-
nal model for parsing on test, we selected the model
to maximize parsing accuracy on the development
set. We computed our parsing accuracies using the
eval07.pl script from the CoNLL 2007 shared task
on dependency parsing (Nivre et al., 2007), ignoring
punctuation as is standard in English dependency
parsing evaluation.

For both YM and Stanford dependencies, the
optimal values of h1 were 1536 for ErrSt–25–
pre and ErrSt–25–rand, and either 1536, or 2048
for Local–14–pre, Local–14–rand, ErrSt–14–pre,
and ErrSt–14–rand. For the best parser on Stanford
and YM dependencies, (ErrSt–25–pre), we used a
minibatch size of 256 and a initial learning rate of
0.25. For future work, we will explore a larger grid
of learning rate, minibatch sizes, and dropout values.

At parsing time, we pre-multiply the input em-
beddings, D and the position matrices, Cfi , which
speeds up computation significantly.

5 Results

In all experiments we use dependencies extracted
from the Penn Treebank (Marcus et al., 1993) fol-
lowing the standard splits (WSJ sections 02 to 21
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System UAS
Local–14–pre (beam 1) 91.73
Local–14–pre (beam 4) 92.00 (+0.27)

ErrSt–14–pre (beam 1) 91.77
ErrSt–14–pre (beam 4) 92.61 (+0.84)

ErrSt–25–pre 93.22

Table 3: Unlabeled accuracy scores (UAS) on the
development set with Stanford dependencies using
transition-based models trained with pre-trained em-
beddings. ErrSt–25–pre uses best-first search with
a priority queue of size limited to 100.

System UAS
Local–14–rand (beam 1) 90.96
Local–14–rand (beam 4) 91.21 (+0.25)

ErrSt–14–rand (beam 1) 90.83
ErrSt–14–rand (beam 4) 91.98 (+1.15)

ErrSt–25–rand 92.29

Table 4: Unlabeled accuracy scores (UAS) on the
development set with Stanford dependencies us-
ing models trained without pre-trained embeddings.
ErrSt–25–pre uses best-first search with a priority
queue of size limited to 100.

for training, 22 for development and 23 for testing),
and part-of-speech tags assigned automatically us-
ing four-way jackknifing. Tables 3 and 4 present
results obtained on the development set with our
models trained with and without pre-trained word
embeddings. Our baseline arc-standard parser us-
ing greedy search (Local–14–pre beam 1) is as ac-
curate as the best NN dependency parser of Chen
and Manning (2014), where both use pre-trained
embeddings. In both tables, we can see that in-
creasing the beam size from 1 (greedy parsing) to
4 gives only very modest improvements in accu-
racy when trained without error states (Local–14–
pre and Local–14–rand). As mentioned in sec-
tion 2.2, using beam search with vanilla arc-standard
parsing with locally normalized models does not
produce large improvements over greedy search due
to the label bias problem. For both pre-trained and
randomly initialized word embeddings, beam search
with models trained with error states improves ac-
curacy substantially (ErrSt–14–pre and ErrSt–14–
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Figure 5: Effect of beam size on accuracy, using Stanford
dependencies and models trained with pre-trained embed-
dings.
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Figure 6: Effect of beam size on accuracy, using Stanford
dependencies and models trained without pre-trained em-
beddings.

rand). Our best parsers use pre-trained embeddings,
best-first search, and a larger feature set (ErrSt–25–
pre). In Table 4, we isolate the efficacy of training
and search with error states. Even with randomly
initialized embeddings, we are able to outperform
Chen and Manning’s NN dependency parser initial-
ized with embeddings from external sources. Our
results show that using error states in parsing can
improve parsing accuracy independently of whether
beam search or best-first search is used. Figures 5
and 6 show comparisons of the effects of increasing
beam sizes in models trained with and without error
states.

We additionally show that the benefits of using
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Figure 7: Unlabeled accuracy scores (UAS) obtained us-
ing maximum entropy models for local classification of
parser actions with and without error states using various
beam sizes.

error states are not limited to classification with
neural networks. Figure 7 shows the results ob-
tained on the development set with an arc-standard
beam-search parser using maximum entropy clas-
sification2 with L1 regularization and the full set
of features used by Huang and Sagae (2010), and
increasing beam sizes. The improvement obtained
from beam-search with baseline local classification
is limited as expected, while the improvement ob-
tained from beam-search with error states is sub-
stantially more pronounced. Although the accuracy
levels obtained with maximum entropy classification
are clearly lower than those obtained with our neural
network models, these results do confirm that error
states are effective with linear classification.

In Table 5, we compare our best parsers with and
without pre-trained word embeddings, ErrSt–25–
pre and ErrSt–25–rand, against other published re-
sults. On Stanford dependencies, our parser with
pre-trained embeddings performs comparably with
the state-of-the-art. By using search with error
states, we outperform a greedy NN parser (Chen and
Manning, 2014) by a wide margin. On YM depen-
dencies, our performance (ErrSt–25–pre) is com-
parable to that of a structured perceptron second-
order graph-based parser using carefully selected
features based on Brown clustering of the BLLIP

2We used Yoshimasa Tsuruoka’s maximum entropy library,
downloaded from http://www.logos.ic.i.u-tokyo.
ac.jp/˜tsuruoka/maxent/.

System wsj23-S wsj23-YM
ErrSt–25–rand 92.17 92.16
ErrSt–25–pre∗ 93.61 93.21
Chen & Manning∗ 91.8 –
Huang & Sagae – 92.1
Zhang & Nivre 93.5 92.9
Weiss et al.∗ 93.99 –
Zhang & McDonald 93.71 93.57
Martins et al. 92.82 93.07
Koo et al. (dep2c)∗ – 93.16

Table 5: Unlabeled accuracy scores (UAS) on Stan-
ford dependencies (S) and Yamada & Matsumoto
dependencies (YM) extracted from WSJ section
23 for our best transition-based parsers with error
states, with and without pre-trained word embed-
dings. For comparison, we also include results from
other transition-based approaches (Chen and Man-
ning, 2014; Huang and Sagae, 2010; Zhang and
Nivre, 2011; Weiss et al., 2015) and graph-based
approaches (Zhang and McDonald, 2014; Martins
et al., 2013; Koo et al., 2008). ∗These parsers use
large sets of unlabeled data.

corpus (Koo et al., 2008). Our randomly initial-
ized parser (no pre-trained embeddings), ErrSt–25–
rand performs at a similar level to a structured per-
ceptron transition-based parser (Huang and Sagae,
2010), but below that of parsers with finely tuned
higher-order rich feature sets (Zhang and Nivre,
2011). While we leave the use of Zhang and Nivre’s
rich feature set as future work, for a direct compar-
ison of NN models with error states and structured
perceptron for transition-based dependency parsing,
we additionally tested a parser (ErrSt–14–rand)
that uses the exact same beam search and kernel fea-
tures used by Huang and Sagae (2010). With NN
and error states, we obtained 91.84% accuracy, com-
pared to Huang and Sagae’s 92.1%. An advantage
of our approach is that we use the kernel features
only, which come from the 14 templates shown in
Table 1, while Huang and Sagae use additionally
an extended set of features composed of carefully
tuned concatenation templates involving the kernel
features. The parsing speed of our parser imple-
mentation using our best model, ErrSt–25–pre, is
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approximately 1,000 tokens (or 42 sentences) a sec-
ond. Of course, such a measurement of speed is de-
pendent on a variety of factors, such as hardware and
programming language of the specific implementa-
tion, among others, so this figure observed in our
experiments serves only as an illustrative sample.

6 Related Work

Our work builds on the transition-based parsing
work described in Section 2, where local classifiers
are trained to predict parser actions (Nivre, 2008),
but provides a way to go beyond deterministic pars-
ing. One way to create models capable of global
scoring, and therefore effective search, is to parse
with the structured perceptron (Zhang and Clark,
2008), which we also discuss in Section 2. Instead of
performing global weight updates, our approach re-
lies on local classifiers, but adds information about
incorrect derivation paths to approximate a notion
of global loss. This gives us a simple way to train
neural network models for predicting parser actions
locally but still perform effective search.

Our use of error states is conceptually related
to the correctness probability estimate proposed
by Yazdani and Henderson (2015), which is used
only with each shift action of an arc-eager transition-
based parsing model. This correctness probability
creates a measure of quality of derivations at the
point of each shift, which allows a combination of
local action scores and the correctness probability
to be used with beam search. The beam is then de-
termined only at each shift, while search paths pro-
duced by other actions are extended exhaustively.
Our error states, in contrast, adjust the scores of ev-
ery action, making the use of best-first search natu-
ral.

Non-deterministic oracles for transition-based de-
pendency parsing (Goldberg and Nivre, 2012; Gold-
berg and Nivre, 2013) are also designed to improve
the performance of parsers that use local classifica-
tion of actions by adding to the amount of infor-
mation used to train the local classifiers. However,
non-deterministic oracles aim to allow a determin-
istic parser to recover from incorrect actions by in-
cluding information in the training of the local clas-
sifiers based on the notion that there may be several
correct actions at a given point, as long as a desired

tree remains reachable. In contrast, our local classi-
fier, or oracle, is trained to encode a notion of state
quality or approximate global loss that is specifi-
cally designed for search. In fact, when used with
greedy search, our error states have no positive ef-
fect on parsing. This suggests that a combination of
the benefits of non-deterministic oracles and error
states may be possible.

Our training of local classifiers with error states
shares with SEARN (Daumé III et al., 2009) and
DAGGER (Ross et al., 2010) the idea of creating
a notion of global loss in local scores, but SEARN

and DAGGER learn to estimate the quality of search
states by iteratively training policies using the entire
training set, while we train only one policy, but us-
ing explicit information about states outside of the
optimal path.

Choi and Palmer (2011) show that the idea of iter-
atively refining policies in a very similar way as pro-
posed in SEARN and DAGGER can in fact be applied
to transition-based dependency parsing to improve
accuracy of deterministic parsing. By creating train-
ing examples for local classifiers based on parser
states that are likely to occur at run time, but would
not be generated with the gold-standard derivation,
local classification models can be trained to be more
robust in recovery from past errors. A key difference
is that this provides a way for the parser to do better
assuming that a mistake has already been made and
is irrevocable, while our error states are designed to
improve search, lowering the score of undesirable
paths so a different path is chosen.

Our greedy neural network parser is similar
to Chen and Manning (2014), who are the first to
show the benefits of using feed-forward neural net-
work classifiers in greedy transition-based depen-
dency parsing. Unlike us, they use a single hidden
layer of cube activation functions, and more fea-
tures. We follow the neural network architecture
of Vaswani et al. (2013), using two hidden layers
of rectified linear units. Chen and Manning (2014)
use Adagrad (Duchi et al., 2011) and dropout for
optimization, while we use stochastic gradient de-
scent with dropout. Recent work by Weiss et al.
(2015) produces the highest published accuracy for
English dependency parsing with very similar neu-
ral network architectures and similar pre-training of
word embeddings. The accuracy of the greedy ver-

193



sion of their parser is substantially higher than that
of our greedy parser, due at least in part to the use
of more features. A more interesting difference be-
tween their approach and ours is in the way struc-
tured prediction is performed. While Weiss et al.
add a structured perceptron layer to a network pre-
trained locally, we train only locally, but using error
states. Both approaches are effective in producing
improvements over the respective greedy baselines,
and a direct comparison using the same greedy base-
line is left for future work.

7 Conclusion

We presented a new approach for approximate struc-
tured inference for transition-based parsing that al-
lows us to obtain high parsing accuracy using neural
networks. Using error states, we improved search
by producing scores suitable for global scoring us-
ing only local models, and showed that our ap-
proach is competitive with the structured percep-
tron in transition-based parsing. Additionally, our
approach provides a straightforward way to take
advantage of word embeddings in transition-based
parsing, which produce high accuracy for transition-
based dependency parsing in English, rivaling that
of higher-order graph-based parsers. Source code,
models and word embeddings for our transition-
based dependency parser with error states are avail-
able at http://github.com/sagae/nndep.

Our approach for using error states to improve
search is quite general, and could be applied to other
structured problems that can be approximated us-
ing local models, such as sequence labeling and
transition-based parsing with recurrent neural net-
works.

An area of future work is the application of error
state training in problems where the local classifier
has a high number of classes, as is often the case
in labeled dependency parsing. A straightforward
application of our approach roughly multiplies the
number of training examples for the local classifier
by the number of possible classes. For example, in
labeled dependency parsing, where dependency la-
bels are typically concatenated to actions, the num-
ber of classes is often greater than 30, which would
increase the number of training examples more than
30-fold. Preventing such an increase in the number

of training examples may be possible by factoring
the problem in such a way that structure-building
decisions are treated separately from labeling de-
cisions (in labeled dependency parsing this would
amount to training an arc labeling classifier sepa-
rately), or perhaps more generally, by sampling from
the possible error states.
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