
Learning Composition Models for Phrase Embeddings

Mo Yu
Machine Intelligence

& Translation Lab
Harbin Institute of Technology

Harbin, China
gflfof@gmail.com

Mark Dredze
Human Language Technology Center of Excellence

Center for Language and Speech Processing
Johns Hopkins University

Baltimore, MD, 21218
mdredze@cs.jhu.edu

Abstract

Lexical embeddings can serve as useful rep-
resentations for words for a variety of NLP
tasks, but learning embeddings for phrases can
be challenging. While separate embeddings
are learned for each word, this is infeasible
for every phrase. We construct phrase em-
beddings by learning how to compose word
embeddings using features that capture phrase
structure and context. We propose efficient
unsupervised and task-specific learning objec-
tives that scale our model to large datasets. We
demonstrate improvements on both language
modeling and several phrase semantic simi-
larity tasks with various phrase lengths. We
make the implementation of our model and the
datasets available for general use.

1 Introduction

Word embeddings learned by neural language mod-
els (Bengio et al., 2003; Collobert and Weston,
2008; Mikolov et al., 2013b) have been success-
fully applied to a range of tasks, including syn-
tax (Collobert and Weston, 2008; Turian et al.,
2010; Collobert, 2011) and semantics (Huang et al.,
2012; Socher et al., 2013b; Hermann et al., 2014).
However, phrases are critical for capturing lexical
meaning for many tasks. For example, Collobert
and Weston (2008) showed that word embeddings
yielded state-of-the-art systems on word-oriented
tasks (POS, NER) but performance on phrase ori-
ented tasks, such as SRL, lags behind.

We propose a new method for compositional se-
mantics that learns to compose word embeddings

into phrases. In contrast to a common approach
to phrase embeddings that uses pre-defined compo-
sition operators (Mitchell and Lapata, 2008), e.g.,
component-wise sum/multiplication, we learn com-
position functions that rely on phrase structure and
context. Other work on learning compositions relies
on matrices/tensors as transformations (Socher et
al., 2011; Socher et al., 2013a; Hermann and Blun-
som, 2013; Baroni and Zamparelli, 2010; Socher et
al., 2012; Grefenstette et al., 2013). However, this
work suffers from two primary disadvantages. First,
these methods have high computational complexity
for dense embeddings: O(d2) or O(d3) for compos-
ing every two components with d dimensions. The
high computational complexity restricts these meth-
ods to use very low-dimensional embeddings (25 or
50). While low-dimensional embeddings perform
well for syntax (Socher et al., 2013a) and sentiment
(Socher et al., 2013b) tasks, they do poorly on se-
mantic tasks. Second, because of the complexity,
they use supervised training with small task-specific
datasets. An exception is the unsupervised objec-
tive of recursive auto-encoders (Socher et al., 2011).
Yet this work cannot utilize contextual features of
phrases and still poses scaling challenges.

In this work we propose a novel compositional
transformation called the Feature-rich Composi-
tional Transformation (FCT) model. FCT produces
phrases from their word components. In contrast
to previous work, our approach to phrase composi-
tion can efficiently utilize high dimensional embed-
dings (e.g. d = 200) with an unsupervised objective,
both of which are critical to doing well on seman-
tics tasks. Our composition function is parameter-

227

Transactions of the Association for Computational Linguistics, vol. 3, pp. 227–242, 2015. Action Editor: Joakim Nivre.
Submission batch: 2/2015; Revision batch 4/2015; Published 5/2015.

c©2015 Association for Computational Linguistics. Distributed under a CC-BY-NC-SA 4.0 license.

ized to allow the inclusion of features based on the
phrase structure and contextual information, includ-
ing positional indicators of the word components.
The phrase composition is a weighted summation of
embeddings of component words, where the sum-
mation weights are defined by the features, which
allows for fast composition.

We discuss a range of training settings for FCT.
For tasks with labeled data, we utilize task-specific
training. We begin with embeddings trained on raw
text and then learn compositional phrase parameters
as well as fine-tune the embeddings for the specific
task’s objective. For tasks with unlabeled data (e.g.
most semantic tasks) we can train on a large corpus
of unlabeled data. For tasks with both labeled and
unlabeled data, we consider a joint training scheme.
Our model’s efficiency ensures we can incorporate
large amounts of unlabeled data, which helps miti-
gate over-fitting and increases vocabulary coverage.

We begin with a presentation of FCT (§2), includ-
ing our proposed features for the model. We then
present three training settings (§3) that cover lan-
guage modeling (unsupervised), task-specific train-
ing (supervised), and joint (semi-supervised) set-
tings. The remainder of the paper is devoted to eval-
uation of each of these settings.

2 Feature-rich Compositional
Transformations from Words to Phrases

We learn transformations for composing phrase em-
beddings from the component words based on ex-
tracted features from a phrase, where we assume
that the phrase boundaries are given. The result-
ing phrase embedding is based on a per-dimension
weighted average of the component phrases. Con-
sider the example of base noun phrases (NP), a com-
mon phrase type which we want to compose. Base
NPs often have flat structures – all words modify the
head noun – which means that our transformation
should favor the head noun in the composed phrase
embedding. For each of the N words wi in phrase p
we construct the embedding:

ep =
N∑

i

λi � ewi (1)

where ewi is the embedding for word i; and� refers
to point-wise product. λi is a weight vector that is

constructed based on the features of p and the model
parameters:

λij =
∑

k

αjkfk(wi, p) + bij (2)

where fk(wi, p) is a feature function that considers
word wi in phrase p and bij is a bias term. This
model is fast to train since it has only linear transfor-
mations: the only operations are vector summation
and inner product. Therefore, we learn the model
parameters α together with the embeddings. We call
this the Feature-rich Compositional Transformation
(FCT) model.

Consider some example phrases and associated
features. The phrase “the museum” should have an
embedding nearly identical to “museum” since “the”
has minimal impact the phrase’s meaning. This
can be captured through part-of-speech (POS) tags,
where a tag of DT on “the” will lead to λi ≈ ~0,
removing its impact on the phrase embedding. In
some cases, words will have specific behaviors. In
the phrase “historic museum”, the word “historic”
should impact the phrase embedding to be closer
to “landmark”. To capture this behavior we add
smoothed lexical features, where smoothing reduces
data sparsity effects. These features can be based on
word clusters, themselves induced from pre-trained
word embeddings.

Our feature templates are shown in Table 1.
Phrase boundaries, tags and heads are identified us-
ing existing parsers or from Annotated Gigaword
(Napoles et al., 2012) as described in Section 5. In
Eq. (1), we do not limit phrase structure though the
features in Table 1 tend to assume a flat structure.
However, with additional features the model could
handle longer phrases with hierarchical structures,
and adding these features does not change our model
or training objectives. Following the semantic tasks
used for evaluation we experimented with base NPs
(including both bigram NPs and longer ones). We
leave explorations of features for complex structures
to future work.

FCT has two sets of parameters: one is the fea-
ture weights (α,b), the other is word embeddings
(ew). We could directly use the word embeddings
learned by neural language models. However, our
experiments show that those word embeddings are
often not suited for FCT. Therefore we propose to

228

Simple Features Compound Features
POS tags t(wi−1), t(wi), t(wi+1) < t(wk), t(wk+1) > k ∈ {i− 1, i}

Word clusters c(wi−1), c(wi), c(wi+1) < c(wk), c(wk+1) > k ∈ {i− 1, i}
wi−1, wi, wi+1 if wi is function word

Head word I[i = h] < t(wk), I[i = h] > k ∈ {i− 1, i, i+ 1}
< c(wk), I[i = h] > k ∈ {i− 1, i, i+ 1}

Distance from head Dis(h− i) < t(wk),Dis(h− i) > k ∈ {i− 1, i, i+ 1}
< c(wk),Dis(h− i) > k ∈ {i− 1, i, i+ 1}

Head tag/cluster t(wh), c(wh) if i 6= h < t(wh), t(wi) >,< c(wh), c(wi) > if i 6= h

Table 1: Feature templates for word wi in phrase p. t(w): POS tag; c(w): word cluster (when w is a function word,
i.e. a preposition word or conjunction word, there is no need to have smoothed version of the word features based on
clusters. Therefore we directly use the word forms as features as shown in line 3 of the table); h: position of head word
of the phrase p; Dis(i− j): distance between wi and wj (distance in tokens). < f1, f2 > refers to the conjunction (i.e.
Cartesian product) between two feature templates f1 and f2.

learn both the feature weights and the word embed-
dings with objectives in Section 3. Moreover, ex-
periments show that starting with the baseline word
embeddings leads to better learning results compar-
ing to random initializations. Therefore in the rest of
the paper, if not specifically mentioned, we always
initialize the embeddings of FCT with baseline word
embeddings learned by Mikolov et al. (2013b).

3 Training Objectives

The speed and flexibility of FCT enables a range
of training settings. We consider standard unsu-
pervised training (language modeling), task-specific
training and joint objectives.

3.1 Language Modeling
For unsupervised training on large scale raw texts
(language modeling) we train FCT so that phrase em-
beddings – as composed in Section 2 – predict con-
textual words, an extension of the skip-gram objec-
tive (Mikolov et al., 2013b) to phrases. For each
phrase pi = (wi1 , ..., win) ∈ P, wij ∈ V , where P
is the set of all phrases and V is the word vocabu-
lary. Here i is the index of a phrase in set P and ij
is the absolute index of the jth component word of
pi in the sentence. For predicting the c words to the
left and right the skip-gram objective becomes:

max
α,b,ew,e′w

1

|P|

|P|∑

i=1

 ∑

0<j≤c
logP

(
e′wi1−j

|epi
)

+
∑

0<j≤c
logP

(
e′win+j

|epi
)

 ,

where P (e′w|epi) =
exp

(
e′w

T epi

)

∑
w′∈V exp

(
e′w′

T epi

) , (3)

where α,b, ew are parameters (the word embed-
dings ew become parameters when fine-tuning is en-
abled) of FCT model defined in Section 2. As is com-
mon practice, when predicting the context words we
use a second set of embeddings e′w called output em-
beddings (Mikolov et al., 2013b). During training
FCT parameters (α,b) and word embeddings (ew
and e′w) are updated via back-propagation. epi is
the phrase embedding defined in Eq. (1). wi1−j is
the j-th word before phrase pi and win+j is the j-th
word after pi. We can use negative sampling based
Noise Contrastive Estimation (NCE) or hierarchical
softmax training (HS) in (Mikolov et al., 2013b) to
deal with the large output space. We refer to this
objective as the language modeling (LM) objective.

3.2 Task-specific Training

When we have a task for which we want to learn
embeddings, we can utilize task-specific training of
the model parameters. Consider the case where we
wish to use phrase embeddings produced by FCT in
a classification task, where the goal is to determine
whether a phrase ps is semantically similar to a can-
didate phrase (or word) pi. For a phrase ps and a set
of candidate phrases {pi, yi}N1 , yi = 1 indicates se-
mantic similarity of ps and pi and yi = 0 otherwise,

229

we use a classification objective:

max
α,b,ew

∑

ps

N∑

i=1

yi logP (yi = 1|ps, pi)

= max
α,b,ew

∑

ps

N∑

i=1

yi log
exp

(
eps

T epi
)

∑N
j exp

(
eps

T epj
) . (4)

where ep is the phrase embedding from Eq. (1).
When a candidate phrase pi is a single word, a lex-
ical embedding can be used directly to derive epi .
When N = 1 for each ps, i.e., we are working on
binary classification problems, the objective will re-
duce to logistic loss and a bias b will be added. For
very large sets, e.g., the whole vocabulary, we use
NCE to approximate the objective. We call Eq. (4)
the task-specific (TASK-SPEC) objective.

In addition to updating only the FCT parameters,
we can update the embeddings themselves to im-
prove the task-specific objective. We use the fine-
tuning strategy (Collobert and Weston, 2008; Socher
et al., 2013a) for learning task-specific word embed-
dings, first training FCT and the embeddings with
the LM objective and then fine-tuning the word em-
beddings using labeled data for the target task. We
refer to this process as “fine-tuning word emb” in
the experiment session. Note that fine tuning can
be also applied to baseline word embeddings trained
with the TASK-SPEC objective or the LM objective
above.

3.3 Joint Training
While labeled data is the most helpful for train-
ing FCT for a task, relying on labeled data alone
will yield limited improvements: labeled data has
low coverage of the vocabulary, which can lead to
over-fitting when we update FCT model parameters
Eq. (4) and fine-tune word embeddings. In particu-
lar, the effects of fine-tuning word embeddings are
usually limited in NLP applications. In contrast to
other applications, like vision, where a single input
can cover most or all of the model parameters, word
embeddings are unique to each word, so a word will
have its embedding updated only when the word ap-
pears in a training instance. As a result, only words
that appear in the labeled data will benefit from fine-
tuning and, by changing only part of the embedding
space, the performance may be worse overall.

Language modeling provides a method to update
all embeddings based on a large unlabeled corpus.
Therefore, we combine the language modeling ob-
ject (Eq. (3)) and the task-specific object (Eq. (4)) to
yield a joint objective. When a word’s embedding is
changed in a task-specific way, it will impact the rest
of the embedding space through the LM objective.
Thus, all words can benefit from the task-specific
training.

We call this the joint objective and call the re-
sulted model FCT-Joint (FCT-J for short), since it up-
dates the embeddings with both the LM and TASK-
SPEC objectives.

In addition to jointly training both objectives, we
can create a pipeline. First, we train FCT with the LM

objective. We then fine-tune all the parameters with
the TASK-SPEC objective. We call this FCT-Pipeline
(FCT-P for short).

3.4 Applications to Other Phrase Composition
Models

While our focus is the training of FCT, we note
that the above training objectives can be applied to
other composition models as well. As an example,
consider a recursive neural network (RNN) (Socher
et al., 2011; Socher et al., 2013a), which recur-
sively computes phrase embeddings based on the bi-
nary sub-tree associated with the phrase with matrix
transformations. For the bigram phrases considered
in the evaluation tasks, suppose we are given phrase
p = (w1, w2). The model then computes the phrase
embedding ep as:

ep = σ (W · [ew1 : ew2]) , (5)

where [ew1 : ew2] is the concatenation of two em-
bedding vectors. W is a matrix of parameters to
be learned, which can be further refined according
to the labels of the children. Back-propagation can
be used to update the parameter matrix W and the
word embeddings during training. It is possible to
train the RNN parameters W with our TASK-SPEC

or LM objective: given syntactic trees, we can use
RNN (instead of FCT) to compute phrase embeddings
ep, which can be used to compute the objective, and
then have W updated via back-propagation. The ex-
periments below show results for this method, which
we call RNN, with TASK-SPEC training. However,

230

while we can train RNNs using small amounts of la-
beled data, it is impractical to scale it to large cor-
pora (i.e. LM training). In contrast, FCT easily scales
to large corpora.

Remark (comparison between FCT and RNN):
Besides efficiency, our FCT is also expressive. A
common approach to composition, a weighted sum
of the embeddings (which we include in our experi-
ments as Weighted SUM), is a special case of FCT

with no non-lexical features, and a special case of
RNN if we restrict the W matrix of RNN to be di-
agonal. Therefore, RNN and FCT can be viewed
as two different ways of improving the expressive
strength of Weighted SUM. The RNNs increase
expressiveness by making the transformation a full
matrix (more complex but less efficient), which does
not introduce any interaction between one word and
its contexts.1 On the other hand, FCT can make the
transformation for one word depend on its context
words by extracting relevant features, while keeping
the model linear.

As supported by the experimental results, our
method for increasing expressiveness is more effec-
tive, because the contextual information is critical
for phrase compositions. By comparison, the ma-
trix transformations in RNNs may be unnecessarily
complicated and are not significantly more helpful
in modeling the target tasks and make the models
more likely to over-fit.

4 Parameter Estimation

Training of FCT can be easily accomplished by
stochastic gradient descent (SGD). While SGD is
fast, training with the LM or joint objectives re-
quires the learning algorithm to scale to large cor-
pora, which can be slow even for SGD.

Asynchronous SGD for FCT: We use the dis-
tributed asynchronous SGD-based algorithm from
Mikolov et al. (2013b). The shared embeddings are
updated by each thread based on training data within
the thread independently. With word embeddings,
the collision rate is low since it is unlikely that dif-
ferent threads will update the same word at the same

1As will be discussed in the related work session, there do
exist some more expressive extensions of RNN, which can ex-
ploit the interaction between a word and its contexts.

time. However, adding training of FCT to this setup
introduces a problem; the shared feature weights
α in the phrase composition models have a much
higher collision rate. To prevent conflicts, we mod-
ify asynchronous SGD so that only a single thread
updates both α and lexical embeddings simultane-
ously, while the remaining threads only update the
lexical embeddings. When training with the LM ob-
jective, only a single (arbitrarily chosen) thread can
update FCT feature weights; all other threads treat
them as fixed during back-propagation. While this
reduces the data available for training FCT parame-
ters to only that of a single thread, the small number
of parameters α means that even a single thread’s
data is sufficient for learning them.

We take a similar approach for updating the task-
specific (TASK-SPEC) part of the joint objective dur-
ing FCT-Joint training. We choose a single thread to
optimize the TASK-SPEC objective while all other
threads optimize the LM objective. This means that
αs are updated using the task-specific thread. Re-
stricting updates for both sets of parameters to a sin-
gle thread does not slow training since gradient com-
putation is very fast for the embeddings and αs.

For joint training, we can tradeoff between the
two objectives (TASK-SPEC and LM) by setting a
weight for each objective (e.g. c1 and c2.) How-
ever, under the multi-threaded setting we cannot do
this explicitly since the number of threads assigned
to each part of the objective influences how the terms
are weighted. Suppose that we assign n1 threads to
TASK-SPEC and n2 to LM. Since each thread takes
a similar amount of time, the actual weights will be
roughly c1 = c1

′ ∗ n1 and c2 = c2
′ ∗ n2. Therefore,

we first fix the numbers of threads and then tune c1′

and c2′. In all of our experiments that use distributed
training, we use 12 threads.

Training Details: Unless otherwise indicated we
use 200-dimensional embeddings, which achieved a
good balance between accuracy and efficiency. We
use L2 regularization on the weights α in FCT as
well as for the matrices W of RNN baselines in Sec-
tion 6. In all experiments, the learning rates, num-
bers of iterations and the weights of L2 regularizers
are tuned on development data.

We experiment with both negative sampling based
NCE training (Mikolov et al., 2013b) for training

231

PPDB XXL Total Pairs Training Pairs Vocab Size NYT Phrases Words Vocab Size
Train 120,552 24,300 5,954 Train 84,149,192 518,103,942 518,235
Dev 644 500 - Dev 30,000 - -
Test 645 500 - Test 30,000 - -

Table 2: Statistics of NYT and PPDB data. “Training pairs” are pairs of bigram phrase and word used in experiments.

word2vec embeddings, the LM objective, and the
TASK-SPEC objective; as well as use hierarchical
softmax training (HS) for language modeling exper-
iments. We use a window size c=5, the default of
word2vec. We remove types that occur less than
5 times (default setting of word2vec). The vo-
cabulary is the same for all evaluations. For NCE
training we sample 15 words as negative samples for
each training instance according to their frequencies
in raw texts. Following Mikolov et al. (2013b) if w
has frequency u(w) we set the sampling probability
of w to p(w) ∝ u(w)3/4. For HS training we build
a Hoffman tree based on word frequency.

Pre-trained Word Embeddings For methods that
require pre-trained lexical embeddings (FCT with
pre-training, SUM (Section 5), and the FCT and RNN
models in Section 6) we always use embeddings2

trained with the skip-gram model of word2vec.
The embeddings are trained with NCE estimation
using the same settings described above.

5 Experiments: Language Modeling

We begin with experiments on FCT for language
modeling tasks (Section 3.1). The resultant em-
beddings can then be used for pre-training in task-
specific settings (Section 6).

Data We use the 1994-97 subset from the New
York Times (NYT) portion of Gigaword v5.0
(Parker et al., 2011). Sentences are tokenized us-
ing OpenNLP.3 We removed words with frequencies
less than 5, yielding a vocabulary of 518,235 word
forms and 515,301,382 tokens for training word em-
beddings.

This dataset is used for both training baseline
word embeddings and evaluating our models trained
with the LM objective. When evaluating the LM
task we consider bigram NPs in isolation (see the

2We use “input embeddings” learned by word2vec.
3https://opennlp.apache.org/

“Phrases” column in Table 2). For FCT features
that require syntactic information, we extract the
NYT portion of Annotated Gigaword (Napoles et
al., 2012), which uses the Stanford parser’s anno-
tations. We use all bigram noun phrases (obtained
from the annotated data) as the input phrases for
Eq. (3). A subset from January 1998 of NYT data
is withheld for evaluation.

Baselines We include two baselines. The first is
to use each component word to predict the context
of the phrase with the skip gram model (Mikolov
et al., 2013a) and then average the scores to get
the probability (denoted as word2vec). The sec-
ond is to use SUM of the skip-gram embeddings to
predict the scores. Training the FCT models with
pre-trained word embeddings requires running the
skip-gram model on NYT data for 2 iterations: one
for word2vec training and one for learning FCT.
Therefore, we also run the word2vec model for
two epochs to provide embeddings for the baselines.

5.1 Results
We evaluate the perplexity of language models
that include lexical embeddings and our composed
phrase embeddings from FCT using the LM objec-
tive. We use the perplexity computation method of
Mikolov et al. (2013a) suitable for skip-gram mod-
els. The FCT models are trained by the HS strategy,
which can output the exact probability efficiently
and was shown by Yu and Dredze (2014) to obtain
better performance on language modeling. Since in
Section 6.1 we use FCT models trained by NCE, we
also include the results of models trained by NCE.
Note that scores obtained from a model trained with
HS or NCE are not comparable. While the model
trained by HS is efficient to evaluate perplexities,
NCE training requires summation over all words in
the vocabulary in the denominator of the softmax to
compute perplexity, an impracticality for large vo-
cabulary. Therefore, we report NCE loss with a fixed
set of samples for NCE trained models.

232

Perplexity (HS training) NCE loss (NCE training)
Model Subset Train Dev Test Subset Train Dev Test
SUM (2 epochs) 7.620 7.577 7.500 2.312 2.226 2.061
word2vec (2 epochs) 7.103 7.074 7.052 2.274 2.195 2.025
FCT (random init, 2 epochs) 6.753 6.628 6.713 1.879 1.722 1.659
FCT (with pre-training, 1 epochs) 6.641 6.540 6.552 1.816 1.691 1.620

Table 3: Language model perplexity and NCE loss on a subset of train, dev, and test NYT data.

‖λ1‖ � ‖λ2‖ ‖λ1‖ ≈ ‖λ2‖ ‖λ1‖ � ‖λ2‖
Model biological north-eastern dead medicinal new an

diversity part body products trial extension

FCT

sensitivity northeastern remains drugs proceeding signed
natural sprawling grave uses cross-examination terminated
abilities preserve skeleton chemicals defendant temporary
species area full

SUM

destruction portion unconscious marijuana new an
racial result dying packaging judge renewal

genetic integral flesh substances courtroom another
cultural chunk signing

Table 4: Differences in the nearest neighbors from the two phrase embedding models.

Table 3 shows results for the NYT training data
(subset of the full training data containing 30,000
phrases with their contexts from July 1994), de-
velopment and test data. Language models with
FCT performed much better than the SUM and
word2vec baselines, under both NCE and HS
training. Note that FCT with pre-training makes a
single pass over the whole NYT corpus and then
a pass over only the bigram NPs, and the random
initialization model makes a pass over the bigrams
twice. This is less data compared to two passes over
the full data (baselines), which indicates that FCT

better captures the context distributions of phrases.

Qualitative Analysis Table 4 shows words and
their most similar phrases (nearest neighbors) com-
puted by FCT and SUM. We show three types of
phrases: one where the two words in a phrase con-
tribute equally to the phrase embedding, where the
first word dominates the second in the phrase em-
bedding, and vice versa. We measure the effect of
each word by computing the total magnitude of the
λ vector for each word in the phrase. For example,
for the phrase “an extension”, the embedding for the
second word dominates the resulting phrase embed-
ding (‖λ1‖ � ‖λ2‖) as learned by FCT. The table
highlights the differences between the methods by
showing the most relevant phrases not selected as
most relevant by the other method. It is clear that
words selected using FCT are more semantically re-

lated than those of the baseline.

6 Experiments: Task-specific Training:
Phrase Similarity

Data We consider several phrase similarity
datasets for evaluating task-specific training. Table
5 summarizes these datasets and shows examples of
inputs and outputs for each task.

PPDB The Paraphrase Database (PPDB)4 (Gan-
itkevitch et al., 2013) contains tens of millions of
automatically extracted paraphrase pairs, including
words and phrases. We extract all paraphrases con-
taining a bigram noun phrase and a noun word from
PPDB. Since articles usually have little contribu-
tions to the phrase meaning, we removed the easy
cases of all pairs in which the phrase is composed
of an article and a noun.Next, we removed duplicate
pairs: if <A,B> occurred in PPDB, we removed re-
lations of <B,A>. PPDB is organized into 6 parts,
ranging from S (small) to XXXL. Division into these
sets is based on an automatically derived accuracy
metric. We extracted paraphrases from the XXL set.
The most accurate (i.e. first) 1,000 pairs are used for
evaluation and divided into a dev set (500 pairs) and
test set (500 pairs); the remaining pairs were used
for training. Our PPDB task is an extension of mea-
suring PPDB semantic similarity between words (Yu

4http://www.cis.upenn.edu/˜ccb/ppdb/

233

Data Set Input Output
(1)PPDB medicinal products drugs
(2)SemEval2013 <small spot, flect> True

<male kangaroo, point> False
(3)Turney2012 monosyllabic word monosyllable, hyalinization, fund, gittern, killer
(4)PPDB (ngram) contribution of the european union eu contribution

Table 5: Examples of phrase similarity tasks. (1) PPDB is a ranking task, in which an input bigram and a output
noun are given, and the goal is to rank the output word over other words in the vocabulary. (2) SemEval2013 is a
binary classification task: determine whether an input pair of a bigram and a word form a paraphrase (True) or not
(False). (3) Turney2012 is a multi-class classification task: determine the word most similar to the input phrase (in
bold) from the five output candidates. For the 10-choice task, the goal is to select the most similar pair between the
combination of one bigram phrase, i.e., the input phrase or the swapped input (“word monosyllabic” for this example),
and the five output candidates. The correct answer in this case should still be the pair of original input phrase and the
original correct output candidate (in bold). (4) PPDB (ngram) is similar to PPDB, but in which both inputs and outputs
becomes noun phrases with arbitrary lengths.

and Dredze, 2014) to that between phrases. Data de-
tails appear in Table 2.

Phrase Similarity Datasets We use a variety of
human annotated datasets to evaluate phrase se-
mantic similarity: the SemEval2013 shared task
(Korkontzelos et al., 2013), and the noun-modifier
problem (Turney2012) in Turney (2012). Both
tasks provide evaluation data and training data. Se-
mEval2013 Task 5(a) is a classification task to de-
termine if a word phrase pair are semantically simi-
lar. Turney2012 is a task to select the closest match-
ing candidate word for a given phrase from candi-
date words. The original task contained seven can-
didates, two of which are component words of the
input phrase (seven-choice task). Followup work has
since removed the components words from the can-
didates (five-choice task). Turney (2012) also pro-
pose a 10-choice task based on this same dataset.
In this task, the input bigram noun phrase will have
its component words swapped. Then all the pairs of
swapped phrase and a candidate word will be treated
as a negative example. Therefore, each input phrase
will correspond to 10 test examples where only one
of them is the positive one.

Longer Phrases: PPDB (ngram-to-ngram) To
show the generality of our approach we evaluate our
method on phrases longer than bigrams. We extract
arbitrary length noun phrase pairs from PPDB. We
only include phrase pairs that differ by more than
one word; otherwise the task would reduce to eval-
uating unigram similarity. Similar to the bigram-to-

unigram task, we used the XXL set and removed du-
plicate pairs. We used the most accurate pairs for
development (2,821 pairs) and test (2,920 pairs); the
remaining 148,838 pairs were used for training.

As before, we rely on negative sampling to effi-
ciently compute the objective during training. For
each source/target n-gram pair, we sample negative
noun phrases as outputs. Both the target phrase and
the negative phrases are transformed to their phrase
embeddings with the current parameters. We then
compute inner products between embedding of the
source phrase and these output embeddings, and up-
date the parameters according to the NCE objective.
We use the same feature templates as in Table 1.

Notice that the XXL set contains several subsets
(e.g., M, L ,XL) ranked by accuracy. In the experi-
ments we also investigate their performance on dev
data. Unless otherwise specified, the full set is se-
lected (performs best on dev set) for training.

Baselines We compare to the common and ef-
fective point-wise addition (SUM) method (Mitchell
and Lapata, 2010).5 We additionally include
Weighted SUM, which learns overall dimension
specific weights from task-specific training, the
equivalent of FCT with αjk=0 and bij learned from
data. Furthermore, we compare to dataset specific

5Mitchell and Lapata (2010) also show success with point-
wise product (MULTI) for VSMs. However, MULTI is ill-suited
to word embeddings and gave poor results in all our experi-
ments. Mikolov et al. (2013b) show that sum of embeddings is
related to product of context distributions because of the loga-
rithmic computation in the output layer.

234

baselines: we re-implemented the recursive neural
network model (RNN) (Socher et al., 2013a) and
the Dual VSM algorithm in Turney (2012)6 so that
they can be trained on our dataset. We also include
results for fine-tuning word embeddings in SUM
and Weighted SUM with TASK-SPEC objectives,
which demonstrate improvements over the corre-
sponding methods without fine-tuning. As before,
word embeddings are pre-trained with word2vec.
RNNs serve as another way to model the com-

positionally of bigrams. We run an RNN on bi-
grams and associated sub-trees, the same setting FCT

uses, and are trained on our TASK-SPEC objectives
with the technique described in Section 3.4. As in
Socher et al. (2013a), we refine the matrix W in
Eq. (5) according to the POS tags of the component
words.7 For example, for a bigram NP like new/ADJ
trial/NN, we use a matrix WADJ−NN to transform
the two word embeddings to the phrase embedding.
In the experiments we have 60 different matrices in
total for bigram NPs. The number is larger than that
in Socher et al. (2013a) due to incorrect tags in au-
tomatic parses.

Since the RNN model has time complexity O(n2),
we compare RNNs with different sized embeddings.
The first one uses embeddings with 50 dimensions,
which has the same size as the embeddings used in
Socher et al. (2013a), and has similar complexity
to our model with 200 dimension embeddings. The
second model uses the same 200 dimension embed-
dings as our model but is significantly more compu-
tationally expensive.

For all models, we normalize the embeddings so
that the L-2 norm equals 1, which is important in
measuring semantic similarity via inner product.

6.1 Results: Bigram Phrases
PPDB Our first task is to measure phrase simi-
larity on PPDB. Training uses the TASK-SPEC ob-

6We did not include results for a holistic model as in Turney
(2012), since most of the phrases (especially for those in PPDB)
in our experiments are common phrases, making the vocabulary
too large to train. One solution would be to only train holistic
embeddings for phrases in the test data, but examination of a
test set before training is not a realistic assumption.

7We do not compare the performance between using a single
matrix and several matrices since, as discussed in Socher et al.
(2013a), W s refined with POS tags work much better than using
a single W . That also supports the argument in this paper, that it
is important to determine the transformation with more features.

10^3 10^4 10^5

34

36

38

40

42

44

46

48

50

52

54

Vocabulary Sizes

M
R

R
 o

n
 T

e
s
t
S

e
t(

%
)

SUM
RNN50

RNN200
FCT

(a) MRR of models with fixed word embeddings

10^3 10^4 10^5
35

40

45

50

55

60

65

70

Vocabulary Sizes
M

R
R

 o
n
 T

e
s
t
S

e
t(

%
)

SUM
RNN50
RNN200

FCT
FCT−pipeline
FCT−joint

(b) MRR of models with fine-tuning

Figure 1: Performance on PPDB task (test set).

jective (Eq. (4) with NCE training) where data are
phrase-word pairs < A,B >. The goal is to select
B from a set of candidates given A, where pair sim-
ilarity is measured using inner product. We use can-
didate sets of size 1k/10k/100k from the most fre-
quent N words in NYT and report mean reciprocal
rank (MRR).

We report results with the baseline methods (SUM,
Weighted SUM, RNN). For FCT we report training
with the TASK-SPEC objective, the joint-objective
(FCT-J) and the pipeline approach (FCT-P). To en-
sure that the TASK-SPEC objective has a stronger in-
fluence in FCT-Joint, we weighted each training in-
stance of LM by 0.01, which is equivalent to setting
the learning rate of the LM objective equal to η/100
and that of the TASK-SPEC objective as η. Train-
ing makes the same number of passes with the same
learning rate as training with the TASK-SPEC objec-
tive only. For each method we report results with
and without fine-tuning the word embeddings on the
labeled data. We run FCT on the PPDB training data
for 5 epochs with learning rate η = 0.05, which are
both selected from development set.

Fig. 1 shows the overall MRR results on differ-

235

Fine-tuning MRR
Model Objective Word Emb @ 10k
SUM - - 41.19
SUM TASK-SPEC Y 45.01
WSum TASK-SPEC Y 45.43
RNN 50 TASK-SPEC N 37.81
RNN 50 TASK-SPEC Y 39.25
RNN 200 TASK-SPEC N 41.13
RNN 200 TASK-SPEC Y 40.50
FCT TASK-SPEC N 41.96
FCT TASK-SPEC Y 46.99
FCT LM Y 42.63
FCT-P TASK-SPEC+LM Y 49.44
FCT-J TASK-SPEC+LM joint 51.65

Table 6: Performance on the PPDB task (test data).

ent candidate vocabulary sizes (1k, 10k and 100k),
and Table 6 highlights the results on the vocabulary
using the top 10k words. Overall, FCT with TASK-
SPEC training improves over all the baseline meth-
ods in each setting. Fine-tuning word embeddings
improves all methods except RNN (d=200). We
note that the RNN performs poorly, possibly because
it uses a complex transformation from word em-
bedding to phrase embeddings, making the learned
transformation difficult to generalize well to new
phrases and words when the task-specific labeled
data is small. As a result, there is no guarantee
of comparability between new pairs of phrases and
word embeddings. The phrase embeddings may end
up in a different part of the subspace from the word
embeddings.

Comparing to SUM and Weighted SUM, FCT

is capable of using features providing critical con-
textual information, which is the source of FCT’s
improvement. Additionally, since the RNNs also
used POS tags and parsing information yet achieved
lower scores than FCT, our results show that FCT

more effectively uses these features. To better
show this advantage, we train FCT models with only
POS tag features, which achieve 46.37/41.20 on
MRR@10k with/without fine-tuning word embed-
dings, still better than RNNs. See Section 6.3 for a
full ablation study of features in Table 1.

Semi-supervised Results: Table 6 also high-
lighted the improvement from semi-supervised
learning. First, the fully unsupervised method (LM)

improves over SUM, showing that improvements in
language modeling carry over to semantic similar-
ity tasks. This correlation between the LM ob-
jective and the target task ensures the success of
semi-supervised training. As a result, both semi-
supervised methods, FCT-J and FCT-P improves over
the supervised methods; and FCT-J achieves the
best results of all methods, including FCT-P. This
demonstrates the effectiveness of including large
amounts of unlabeled data while learning with a
TASK-SPEC objective. We believe that by adding
the LM objective, we can propagate the semantic in-
formation of embeddings to the words that do not
appear in the labeled data (see the differences be-
tween vocabulary sizes in Table 2).

The improvement of FCT-J over FCT-P also in-
dicates that the joint training strategy can be more
effective than the traditional pipeline-based pre-
training. As discussed in Section 3.3, the pipeline
method, although commonly used in deep learning
literatures, does not suit NLP applications well be-
cause of the sparsity in word embeddings. There-
fore, our results suggest an alternative solution to a
wide range of NLP problems where labeled data has
low coverage of the vocabulary. For future work, we
will further investigate the idea of joint training on
more tasks and compare with the pipeline method.

Results on SemEval2013 and Turney2012 We
evaluate the same methods on SemEval2013 and
the Turney2012 5- and 10-choice tasks, which
both provide training and test splits. The same base-
lines in the PPDB experiments, as well as the Dual
Space method of Turney (2012) and the recursive
auto-encoder (RAE) from Socher et al. (2011) are
used for comparison. Since the tasks did not provide
any development data, we used cross-validation (5
folds) for tuning the parameters, and finally set the
training epochs to be 20 and η = 0.01. For joint
training, the weight of the LM objective is weighted
by 0.005 (i.e. with a learning rate equal to 0.005η)
since the training sets for these two tasks are much
smaller. For convenience, we also include results
for Dual Space as reported in Turney (2012), though
they are not comparable here since Turney (2012)
used a much larger training set.

Table 7 shows similar trends as PPDB. One dif-
ference here is that RNNs do better with 200 dimen-

236

Fine-tuning SemEval2013 Turney2012
Model Objective Word Emb Test Acc (5) Acc (10) MRR @ 10k
SUM - - 65.46 39.58 19.79 12.00
SUM TASK-SPEC Y 67.93 48.15 24.07 14.32
Weighted Sum TASK-SPEC Y 69.51 52.55 26.16 14.74
RNN (d=50) TASK-SPEC N 67.20 39.64 25.35 1.39
RNN (d=50) TASK-SPEC Y 70.36 41.96 27.20 1.46
RNN (d=200) TASK-SPEC N 71.50 40.95 27.20 3.89
RNN (d=200) TASK-SPEC Y 72.22 42.84 29.98 4.03
Dual Space1 - - 52.47 27.55 16.36 2.22
Dual Space2 - - - 58.3 41.5 -
RAE auto-encoder - 51.75 22.99 14.81 0.16
FCT TASK-SPEC N 68.84 41.90 33.80 8.50
FCT TASK-SPEC Y 70.36 52.31 38.66 13.19
FCT LM - 67.22 42.59 27.55 14.07
FCT-P TASK-SPEC+LM Y 70.64 53.09 39.12 14.17
FCT-J TASK-SPEC+LM joint 70.65 53.31 39.12 14.25

Table 7: Performance on SemEval2013 and Turney2012 semantic similarity tasks. Dual Space1: Our reimple-
mentation of the method in (Turney, 2012). Dual Space2: The result reported in Turney (2012). RAE is the recursive
auto-encoder in (Socher et al., 2011), which is trained with the reconstruction-based objective of auto-encoder.

sional embeddings on SemEval2013, though at a
dimensionality with similar computational complex-
ity to FCT (d = 50), FCT improves. Additionally, on
the 10-choice task of Turney2012, both the FCT

and the RNN models, either with or without fine-
tuning word embeddings, significantly outperform
SUM, showing that both models capture the word or-
der information. Fine tuning gives smaller gains on
RNNs likely because the limited number of training
examples is insufficient for the complex RNN model.
The LM objective leads to improvements on all three
tasks, while RAE does not perform significantly bet-
ter than random guessing. These results are perhaps
attributable to the lack of assumptions in the objec-
tive about the relations between word embeddings
and phrase embeddings, making the learned phrase
embeddings not comparable to word embeddings.

6.2 Dimensionality and Complexity

A benefit of FCT is that it is computationally effi-
cient, allowing it to easily scale to embeddings of
200 dimensions. By contrast, RNN models typi-
cally use smaller sized embeddings (d = 25 proved
best in Socher et al., 2013a) and cannot scale up
to large datasets when larger dimensionality embed-
dings are used. For example, when training on the
PPDB data, the FCT with d = 200 processes 2.33
instances per ms, while the RNN with the same di-

mensionality processes 0.31 instance/ms. Training
an RNN with d = 50 is of comparable speed to FCT

with d = 200. Figure 2 (a-b) shows the MRR on
PPDB for 1k and 10k candidate sets for both the
SUM baseline and FCT with a TASK-SPEC objective
and full features, as compared to RNNs with differ-
ent sized embeddings. Both FCT and RNN use fine-
tuned embeddings. With a small number of embed-
ding dimensions, RNNs achieve better results. How-
ever, FCT can scale to much higher dimensionality
embeddings, which easily surpasses the results of
RNNs. This is especially important when learning
a large number of embeddings: the 25-dimensional
space may not be sufficient to capture the semantic
diversity, as evidenced by the poor performance of
RNNs with lower dimensionality.

Similar trends observed on the PPDB data
also appear on the tasks of Turney2012 and
SemEval2013. Figure 2 (c-f) shows the perfor-
mances on these two tasks. On the Turney2012
task, the FCT even outperforms the RNN model us-
ing embeddings with the same dimensionality. One
possible reason is due to overfitting of the more com-
plex RNN models on these small training sets. Fig-
ure 2(d) shows that the performances of FCT on the
10-choice task are less affected by the dimensions
of embeddings. That is because the composition
models can well handle the word order information,

237

0 50 100 150 200 250 300 350 400 450 500
34

36

38

40

42

44

46

48

50

52

rnn25

rnn50

rnn200

dimension of embeddings

M
R

R
(%

)

SUM
FCT

(a) MRR@1k on PPDB dev set

0 50 100 150 200 250 300 350 400 450 500
22

24

26

28

30

32

34

36

38

dimension of embeddings

M
R

R
(%

)

rnn25

rnn50

rnn200

SUM

FCT

(b) MRR@10k on PPDB dev set

0 50 100 150 200 250 300 350 400 450 500
30

35

40

45

50

55

rnn25

rnn50

rnn200

dimension of embeddings

A
C

C
(%

)

SUM
FCT

(c) accuracy on the 5-choice task in
Turney2012

0 50 100 150 200 250 300 350 400 450 500
15

20

25

30

35

40

45

rnn25

rnn50

rnn200

dimension of embeddings

A
C

C
(%

)

SUM
FCT

(d) accuracy on the 10-choice task in
Turney2012

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

dimension of embeddings

M
R

R
(%

)

rnn50

rnn200

SUM
FCT

(e) MRR@10k on Turney2012

0 50 100 150 200 250 300 350 400 450 500
62

63

64

65

66

67

68

69

70

71

72

rnn25

rnn50

rnn200

dimension of embeddings

A
C

C
(%

)

SUM
FCT

(f) accuracy on the SemEval2013

Figure 2: Effects of embedding dimension on the semantic similarity tasks. The notations “RNN< d >” in the figures
stand for the RNN models trained with d-dimensional embeddings.

which is critical to solving the 10-choice task, with-
out relying on too much semantic information from
word embeddings themselves. Figure 2(e) shows
that when the dimensionality of embeddings is lower
than 100, both FCT and RNN do worse than the base-
line. This is likely because in the case of low dimen-
sionality, updating embeddings is likely to change
the whole structure of embeddings of training words,
making both the fine-tuned word embeddings and
the learned phrase embeddings incomparable to the
other words. The performance of RNN with 25-
dimension embeddings is too low so it is omitted.

6.3 Experiments on Longer Phrases
So far our experiments have focused on bigram
phrases. We now show that FCT improves for longer
n-gram phrases (Table 8). Without fine-tuning, FCT

performs significantly better than the other models,
showing that the model can better capture the con-
text and annotation information related to phrase se-
mantics with the help of rich features. With different
amounts of training data, we found that WSum and
FCT both perform better when trained on the PPDB-

Train Fine-tuning MRR
Model Set Word Emb @10k @ 100k
SUM - N 46.53 16.62
WSum L N 51.10 18.92
FCT L N 68.91 29.04
SUM XXL Y 74.30 29.14
WSum XXL Y 75.37 31.13
FCT XXL Y 79.68 36.00

Table 8: Results on PPDB ngram-to-ngram task.

L set, a more accurate subset of XXL with 24,279
phrase pairs. This can be viewed as a low resource
setting, where there is limited data for fine-tuning
word embeddings.

With fine-tuning of word embeddings, FCT still
significantly beats the other models. All three
methods get their best results on the full XXL set,
likely because it contains more phrase pairs to al-
leviate over fitting caused by fine-tuning word em-
beddings. Notice that fine-tuning greatly helps all
the methods, including SUM, indicating that this
ngram-to-ngram task is still largely dominated

238

Feature Set MRR @ 10k
FCT 79.68
-clus 76.82
-POS 77.67
-Compound 79.40
-Head 77.50
-Distance 78.86
WSum 75.37
SUM 74.30

Table 9: Ablation study on dev set of the PPDB
ngram-to-ngram task (MRR @ 10k).

by the quality of single word semantics. Therefore,
we expect larger gains from FCT on tasks where sin-
gle word embeddings are less important, such as re-
lation extraction (long distance dependencies) and
question understanding (intentions are largely de-
pendent on interrogatives).

Finally, we demonstrate the efficacy of different
features in FCT (Table 1) with an ablation study (Ta-
ble 9). Word cluster features contribute most, be-
cause the point-wise product between word embed-
ding and its context word cluster representation is
actually an approximation of the word-word inter-
action, which is believed important for phrase com-
positions. Head features, though few, also make a
big difference, reflecting the importance of syntactic
information. Compound features do not have much
of an impact, possibly because the simpler features
capture enough information.

7 Related Work

Compositional semantic models aim to build distri-
butional representations of a phrase from its compo-
nent word representations. A traditional approach
for composition is to form a point-wise combina-
tion of single word representations with composi-
tional operators either pre-defined (e.g. element-
wise sum/multiplication) or learned from data (Le
and Mikolov, 2014). However, these approaches
ignore the inner structure of phrases, e.g. the or-
der of words in a phrase and its syntactic tree, and
the point-wise operations are usually less expressive.
One solution is to apply a matrix transformation
(possibly followed by a non-linear transformation)
to the concatenation of component word represen-
tations (Zanzotto et al., 2010). For longer phrases,

matrix multiplication can be applied recursively ac-
cording to the associated syntactic trees (Socher et
al., 2010). However, because the input of the model
is the concatenation of word representations, ma-
trix transformations cannot capture interactions be-
tween a word and its contexts, or between compo-
nent words.

There are three ways to restore these interac-
tions: The first is to use word-specific/tensor trans-
formations to force the interactions between com-
ponent words in a phrase. In these methods, word-
specific transformations, which are usually matri-
ces, are learned for a subset of words according to
their syntactic properties (e.g. POS tags) (Baroni
and Zamparelli, 2010; Socher et al., 2012; Grefen-
stette et al., 2013; Erk, 2013). Composition between
a word in this subset and another word becomes the
multiplication between the matrix associated with
one word and the embedding of the other, produc-
ing a new embedding for the phrase. Using one
tensor (not word-specific) to compose two embed-
ding vectors (has not been tested on phrase similar-
ity tasks) (Bordes et al., 2014; Socher et al., 2013b)
is a special case of this approach, where a “word-
specific transformation matrix” is derived by multi-
plying the tensor and the word embedding. Addi-
tionally, word-specific matrices can only capture the
interaction between a word and one of its context
words; others have considered extensions to multi-
ple words (Grefenstette et al., 2013; Dinu and Ba-
roni, 2014). The primary drawback of these ap-
proaches is the high computational complexity, lim-
iting their usefulness for semantics (Section 6.2.)

A second approach draws on the concept of con-
textualization (Erk and Padó, 2008; Dinu and Lap-
ata, 2010; Thater et al., 2011), which sums embed-
dings of multiple words in a linear combination. For
example, Cheung and Penn (2013) apply contextu-
alization to word compositions in a generative event
extraction model. However, this is an indirect way
to capture interactions (the transformations are still
unaware of interactions between components), and
thus has not been a popular choice for composition.

The third approach is to refine word-independent
compositional transformations with annotation fea-
tures. FCT falls under this approach. The primary
advantage is that composition can rely on richer lin-
guistic features from the context. While the em-

239

beddings of component words still cannot interact,
they can interact with other information (i.e. fea-
tures) of their context words, and even the global
features. Recent research has created novel features
based on combining word embeddings and contex-
tual information (Nguyen and Grishman, 2014; Roth
and Woodsend, 2014; Kiros et al., 2014; Yu et al.,
2014; Yu et al., 2015). Yu et al. (2015) further pro-
posed converting the contextual features into a hid-
den layer called feature embeddings, which is sim-
ilar to the α matrix in this paper. Examples of ap-
plications to phrase semantics include Socher et al.
(2013a) and Hermann and Blunsom (2013), who en-
hanced RNNs by refining the transformation matri-
ces with phrase types and CCG super tags. How-
ever, these models are only able to use limited infor-
mation (usually one property for each compositional
transformation), whereas FCT exploits multiple fea-
tures.

Finally, our work is related to recent work on
low-rank tensor approximations. When we use the
phrase embedding ep in Eq. (1) to predict a label
y, the score of y given phrase p will be s(y, p) =
UTy ep =

∑N
i U

T
y (λi � ewi) in log-linear models,

where Uy is the parameter vector for y. This is
equivalent to using a parameter tensor T to evaluate
the score with s′(y, p) =

∑N
i T ×1 y×2 f(wi, p)×

ewi , while forcing the tensor to have a low-rank form
as T ≈ U⊗ α⊗ ew. Here×k indicates tensor mul-
tiplication of the kth view, and ⊗ indicates matrix
outer product (Kolda and Bader, 2009). From this
point of view, our work is closely related to the dis-
criminative training methods for low-rank tensors in
NLP (Cao and Khudanpur, 2014; Lei et al., 2014),
while it can handle more complex ngram-to-ngram
tasks, where the label y also has its embedding com-
posed from basic word embeddings. Therefore our
model can capture the above work as special cases.
Moreover, we have a different method of decompos-
ing the inputs, which results in views of lexical parts
and non-lexical features. As we show in this paper,
this input decomposition allows us to benefit from
pre-trained word embeddings and feature weights.

8 Conclusion

We have presented FCT, a new composition model
for deriving phrase embeddings from word embed-

dings. Compared to existing phrase composition
models, FCT is very efficient and can utilize high di-
mensional word embeddings, which are crucial for
semantic similarity tasks. We have demonstrated
how FCT can be utilized in a language modeling set-
ting, as well as tuned with task-specific data. Fine-
tuning embeddings on task-specific data can further
improve FCT, but combining both LM and TASK-
SPEC objectives yields the best results. We have
demonstrated improvements on both language mod-
eling and several semantic similarity tasks. Our im-
plementation and datasets are publicly available.8

While our results demonstrate improvements for
longer phrases, we still only focus on flat phrase
structures. In future work we plan to FCT with the
idea of recursively building representations. This
would allow the utilization of hierarchical structure
while restricting compositions to a small number of
components.

Acknowledgments

We thank Matthew R. Gormley for his input and
anonymous reviewers for their comments. Mo Yu
is supported by the China Scholarship Council and
by NSFC 61173073.

References
Marco Baroni and Roberto Zamparelli. 2010. Nouns

are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1183–1193.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Re-
search (JMLR), 3:1137–1155.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2014. A semantic matching energy
function for learning with multi-relational data. Ma-
chine Learning, 94(2):233–259.

Yuan Cao and Sanjeev Khudanpur. 2014. Online learn-
ing in tensor space. In Association for Computational
Linguistics (ACL), pages 666–675.

Jackie Chi Kit Cheung and Gerald Penn. 2013. Prob-
abilistic domain modelling with contextualized distri-
butional semantic vectors. In Association for Compu-
tational Linguistics (ACL), pages 392–401.

8https://github.com/Gorov/FCT_PhraseSim_TACL

240

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In International
Conference on Machine Learning (ICML), pages 160–
167.

Ronan Collobert. 2011. Deep learning for efficient dis-
criminative parsing. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pages
224–232.

Georgiana Dinu and Marco Baroni. 2014. How to make
words with vectors: Phrase generation in distributional
semantics. In Association for Computational Linguis-
tics (ACL), pages 624–633.

Georgiana Dinu and Mirella Lapata. 2010. Measuring
distributional similarity in context. In Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
1162–1172.

Katrin Erk and Sebastian Padó. 2008. A structured
vector space model for word meaning in context. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 897–906.

Katrin Erk. 2013. Towards a semantics for distributional
representations. In International Conference on Com-
putational Semantics (IWCS 2013), pages 95–106.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In North American Chapter of the Associ-
ation for Computational Linguistics (NAACL), pages
758–764.

Edward Grefenstette, Georgiana Dinu, Yao-Zhong
Zhang, Mehrnoosh Sadrzadeh, and Marco Baroni.
2013. Multi-step regression learning for composi-
tional distributional semantics. arXiv:1301.6939.

Karl Moritz Hermann and Phil Blunsom. 2013. The role
of syntax in vector space models of compositional se-
mantics. In Association for Computational Linguistics
(ACL), pages 894–904.

Karl Moritz Hermann, Dipanjan Das, Jason Weston, and
Kuzman Ganchev. 2014. Semantic frame identifi-
cation with distributed word representations. In As-
sociation for Computational Linguistics (ACL), pages
1448–1458.

Eric H Huang, Richard Socher, Christopher D Manning,
and Andrew Y Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes.
In Association for Computational Linguistics (ACL),
pages 873–882.

Ryan Kiros, Richard Zemel, and Ruslan R Salakhutdinov.
2014. A multiplicative model for learning distributed
text-based attribute representations. In Advances in
Neural Information Processing Systems (NIPS), pages
2348–2356.

Tamara G Kolda and Brett W Bader. 2009. Ten-
sor decompositions and applications. SIAM review,
51(3):455–500.

Ioannis Korkontzelos, Torsten Zesch, Fabio Massimo
Zanzotto, and Chris Biemann. 2013. Semeval-2013
task 5: Evaluating phrasal semantics. In Joint Con-
ference on Lexical and Computational Semantics (*
SEM), pages 39–47.

Quoc V Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. arXiv preprint
arXiv:1405.4053.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scoring
dependency structures. In Association for Computa-
tional Linguistics (ACL), pages 1381–1391.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013b. Distributed representations
of words and phrases and their compositionality. arXiv
preprint arXiv:1310.4546.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Association for
Computational Linguistics (ACL), pages 236–244.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive science,
34(8):1388–1429.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In ACL Joint
Workshop on Automatic Knowledge Base Construction
and Web-scale Knowledge Extraction, pages 95–100.

Thien Huu Nguyen and Ralph Grishman. 2014. Employ-
ing word representations and regularization for domain
adaptation of relation extraction. In Association for
Computational Linguistics (ACL), pages 68–74.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword fifth edition,
june. Linguistic Data Consortium, LDC2011T07.

Michael Roth and Kristian Woodsend. 2014. Compo-
sition of word representations improves semantic role
labelling. In Empirical Methods in Natural Language
Processing (EMNLP), pages 407–413.

Richard Socher, Christopher D Manning, and Andrew Y
Ng. 2010. Learning continuous phrase representa-
tions and syntactic parsing with recursive neural net-
works. In NIPS Workshop on Deep Learning and Un-
supervised Feature Learning, pages 1–9.

Richard Socher, Jeffrey Pennington, Eric H Huang, An-
drew Y Ng, and Christopher D Manning. 2011. Semi-
supervised recursive autoencoders for predicting sen-
timent distributions. In Empirical Methods in Natural
Language Processing (EMNLP), pages 151–161.

241

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 1201–1211.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013a. Parsing with compositional
vector grammars. In Association for Computational
Linguistics (ACL), pages 455–465.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christo-
pher Potts. 2013b. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1631–1642.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2011. Word meaning in context: A simple and ef-
fective vector model. In International Joint Con-
ference on Natural Language Processing (IJCNLP),
pages 1134–1143.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Association for Compu-
tational Linguistics (ACL), pages 384–394.

Peter D Turney. 2012. Domain and function: A
dual-space model of semantic relations and compo-
sitions. Journal of Artificial Intelligence Research
(JAIR), 44:533–585.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Association for
Computational Linguistics (ACL), pages 545–550.

Mo Yu, Matthew Gormley, and Mark Dredze. 2014.
Factor-based compositional embedding models. In
NIPS Workshop on Learning Semantics.

Mo Yu, Matthew R. Gormley, and Mark Dredze. 2015.
Combining word embeddings and feature embeddings
for fine-grained relation extraction. In North American
Chapter of the Association for Computational Linguis-
tics (NAACL).

Fabio Massimo Zanzotto, Ioannis Korkontzelos,
Francesca Fallucchi, and Suresh Manandhar. 2010.
Estimating linear models for compositional distri-
butional semantics. In International Conference
on Computational Linguistics (COLING), pages
1263–1271.

242

