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Abstract
Linear models, which support efficient learn-
ing and inference, are the workhorses of statis-
tical machine translation; however, linear de-
cision rules are less attractive from a modeling
perspective. In this work, we introduce a tech-
nique for learning arbitrary, rule-local, non-
linear feature transforms that improve model
expressivity, but do not sacrifice the efficient
inference and learning associated with linear
models. To demonstrate the value of our tech-
nique, we discard the customary log transform
of lexical probabilities and drop the phrasal
translation probability in favor of raw counts.
We observe that our algorithm learns a vari-
ation of a log transform that leads to better
translation quality compared to the explicit log
transform. We conclude that non-linear re-
sponses play an important role in SMT, an ob-
servation that we hope will inform the efforts
of feature engineers.

1 Introduction

Linear models using log-transformed probabilities
as features have emerged as the dominant model
in MT systems. This practice can be traced back
to the IBM noisy channel models (Brown et al.,
1993), which decompose decoding into the product
of a translation model (TM) and a language model
(LM), motivated by Bayes’ Rule. When Och and
Ney (2002) introduced a log-linear model for trans-
lation (a linear sum of log-space features), they
noted that the noisy channel model was a special
case of their model using log probabilities. This

∗This work was conducted as part of the first author’s Ph.D.
work at Carnegie Mellon University.

same formulation persisted even after the introduc-
tion of MERT (Och, 2003), which optimizes a lin-
ear model; again, using two log probability fea-
tures (TM and LM) with equal weight recovered the
noisy channel model. Yet systems now use many
more features, some of which are not even probabil-
ities. We no longer believe that equal weights be-
tween the TM and LM provides optimal translation
quality; the probabilities in the TM do not obey the
chain rule nor Bayes’ rule, nullifying several the-
oretical mathematical justifications for multiplying
probabilities. The story of multiplying probabilities
may just amount to heavily penalizing small values.

The community has abandoned the original mo-
tivations for a linear interpolation of two log-
transformed features. Is there empirical evidence
that we should continue using this particular trans-
formation? Do we have any reason to believe it is
better than other non-linear transformations? To an-
swer these, we explore the issue of non-linearity in
models for MT. In the process, we will discuss the
impact of linearity on feature engineering and de-
velop a general mechanism for learning a class of
non-linear transformations of real-valued features.

Applying a non-linear transformation such as
log to features is one way of achieving a non-linear
response function, even if those features are aggre-
gated in a linear model. Alternatively, we could
achieve a non-linear response using a natively non-
linear model such as a SVM (Wang et al., 2007) or
RankBoost (Sokolov et al., 2012). However, MT
is a structured prediction problem, in which a full
hypothesis is composed of partial hypotheses. MT
decoders take advantage of the fact that the model

393

Transactions of the Association for Computational Linguistics, 2 (2014) 393–404. Action Editor: Robert C. Moore.
Submitted 2/2014; Revised 6/2014; Published 10/2014. c©2014 Association for Computational Linguistics.



score decomposes as a linear sum over both local
features and partial hypotheses to efficiently per-
form inference in these structured spaces (§2) – cur-
rently, there are no scalable solutions to integrating
the hypothesis-level non-linear feature transforms
typically associated with kernel methods while still
maintaining polynomial time search. Another alter-
native is incorporating a recurrent neural network
(Schwenk, 2012; Auli et al., 2013; Kalchbrenner
and Blunsom, 2013) or an additive neural network
(Liu et al., 2013a). While these models have shown
promise as methods of augmenting existing mod-
els, they have not yet offered a path for replacing
or transforming existing real-valued features.

In this article, we discuss background (§2), de-
scribe local discretization, our approach to learning
non-linear transformations of individual features,
compare it with globally non-linear models (§3),
present our experimental setup (§5), empirically ver-
ify the importance of non-linear feature transforma-
tions in MT and demonstrate that discretization can
be used to recover non-linear transformations (§6),
discuss related work (§7), and conclude (§8).

2 Background and Definitions
2.1 Feature Locality & Structured Hypotheses
Decoding a given source sentence f can be ex-
pressed as search over target hypotheses e, each with
an associated complete derivation D. To find the
best-scoring hypothesis ê(f), a linear model applies
a set of weights w to a complete hypothesis’ feature
vector H:

ê(f) = arg max
e,D

|H|∑

i=0

wiHi(f , e, D) (1)

However, this hides many of the realities of perform-
ing inference in modern decoders. Traditional in-
ference would be intractable if every feature were
allowed access to the entire derivation D and its as-
sociated target hypothesis e. Decoders take advan-
tage of the fact that features decompose over par-
tial derivations d. For a complete derivation D, the
global features H(D) are an efficient summation
over local features h(d):

ê(f) = arg max
e,D

|H|∑

i=0

wi
∑

d∈D
hi(d)

︸ ︷︷ ︸
Hi(D)

(2)

This contrasts with non-local features such as the
language model (LM), which cannot be exactly cal-
culated given an arbitrary partial hypothesis, which
may lack both left and right context.1 Such features
require special handling including future cost esti-
mation. In this study, we limit ourselves to local
features, leaving the traditional non-local LM fea-
ture unchanged. In general, feature locality is rel-
ative to a particular structured hypothesis space,
and is unrelated to the structured features described
in Section 4.2.

2.2 Feature Non-Linearity and Separability
Unlike models that rely primarily on a large number
of sparse indicator features, state-of-the-art machine
translation systems rely heavily on a small number
of dense real-valued features. However, unlike indi-
cator features, real-valued features may benefit from
non-linear transformations to allow a linear model to
better fit the data.

Decoders use a linear model to rank hypotheses,
selecting the highest-ranked derivation. Since the
absolute score of the model is irrelevant, non-linear
responses are useful only in cases where they elicit
novel rankings. In this section, we will discuss these
cases in terms of separability. Here, we are sepa-
rating the correctly ranked pairs of hypotheses from
the incorrect in the implicit pairwise rankings de-
fined by the total ordering on hypotheses provided
by our model.

When the local feature vectors h of each oracle-
best2 hypothesis (or hypotheses) are distinct from
those of all other competing hypotheses, we say that
the inputs are oracle separable given the feature set.
If there exists a weight vector that distinguishes the
oracle-best ranking from all other rankings under a
linear model, we say that the inputs are linearly sep-
arable given the feature set. If the inputs are ora-
cle separable but not linearly separable, we say that
there are non-linearities that are unexplained by the
feature set. For example, this can happen if a feature
is positively related to quality in some regions but
negatively related in other regions.

As we add more sentences to our corpus, sepa-
rability becomes increasingly difficult. For a given

1This is especially problematic for chart-based decoders.
2We define the oracle-best hypothesis in terms of some ex-

ternal quality measure such as BLEU
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corpus, if all hypotheses are oracle separable, we
can always produce the oracle translation – assum-
ing an optimal (and potentially very complex) model
and weight vector. If our hypothesis space also con-
tains all reference translations, we can always re-
cover the reference. In practice, both of these condi-
tions are typically violated to a certain degree. How-
ever, if we modify our feature set such that some
lower-ranked higher-quality hypothesis can be sepa-
rated from all higher-ranked lower-quality hypothe-
ses, then we can improve translation quality. For
this reason, we believe that separability remains an
informative tool for thinking about modeling in MT.

Currently, non-linearities in novel real-valued fea-
tures are typically addressed via manual feature en-
gineering involving a good deal of trial and error
(Gimpel and Smith, 2009)3 or by manually discretiz-
ing features (e.g. indicator features for count=N ).
We will explore one technique for automatically
avoiding non-linearities in Section 3.

2.3 Learning with Large Feature Sets

While MERT has proven to be a strong baseline, it
does not scale to larger feature sets in terms of both
inefficiency and overfitting. While MIRA (Chiang
et al., 2008), Rampion (Gimpel and Smith, 2012),
and HOLS (Flanigan et al., 2013) have been shown
to be effective over larger feature sets, they are dif-
ficult to explicitly regularize – this will become im-
portant in Section 4.2. Therefore, we use the PRO
optimizer (Hopkins and May, 2011) as our baseline
learner since it has been shown to perform compa-
rably to MERT for a small number of features, and
to significantly outperform MERT for a large num-
ber of features (Hopkins and May, 2011; Ganitke-
vitch et al., 2012). Other very recent MT optimiz-
ers such as the linear structured SVM (Cherry and
Foster, 2012), AROW (Chiang, 2012) and regular-
ized MERT (Galley et al., 2013) are also compatible
with the discretization and structured regularization
techniques described in this article.4

3Gimpel et al. eventually used raw probabilities in their
model rather than log-probabilities.

4Since we dispense with nearly all of the original dense fea-
tures and our structured regularizer is scale sensitive, one would
need to use the `1-renormalized variant of regularized MERT.

3 Discretization and Feature Induction

In this section, we propose a feature induction tech-
nique based on discretization that produces a feature
set that is less prone to non-linearities (see §2.2).

We define feature induction as a function Φ(y)
that takes the result of the feature function y =
h(x) ∈ R and returns a tuple 〈y′, j〉 where y′ ∈ R is
a transformed feature value and j is the transformed
feature index.5 Building on equation 2, we can apply
feature induction as follows:

ê(f) = arg max
e,D

∑

d∈D

|H|∑

i=0
〈y′,j〉=Φi(hi(d))

w′jy
′

︸ ︷︷ ︸
H′(f ,e,D)

(3)

At first glance, one might be tempted to sim-
ply choose some non-linear function for Φ (e.g.
log(x), exp(x), sin(x), xn). However, even if we
were to restrict ourselves to some “standard” set of
non-linear functions, many of these functions have
hyperparameters that are not directly tunable by con-
ventional optimizers (e.g.period and amplitude for
sin, n in xn).

Learning

H Learning w
Original Linear Model: w • H

H Feature 
Induction

w'

Induced Linear Model: w' • H'
H'

Figure 1: Top: A traditional learning procedure, assign-
ing a set of weights to a fixed feature set. Bottom: Dis-
cretization, our feature induction technique, expands the
feature set as part of learning, while still producing a lin-
ear model for inference, albeit with more features.

Discretization allows us to avoid many non-
linearities (§2.2) while preserving the fast inference
provided by feature locality (§2.1). We first dis-
cretize real-valued features into a set of indicator

5One could also imagine a feature transformation function
Φ that returns a vector of bins for a single value returned by a
feature function h or a transformation that has access to values
from multiple feature functions at once.
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features and then use a conventional optimizer to
learn a weight for each indicator feature (Figure 1).
This technique is sometimes referred to as binning
and is closely related to quantization. Effectively,
discretization allows us to re-shape a feature func-
tion (Figure 2). In fact, given an infinite number of
bins, we can perform any non-linear transformation
of the original function.

1.00.5
h0

1.00.5
h1 h2 h3 h4R

Figure 2: Left: A real-valued feature. Bold dots repre-
sent points where we could imagine bins being placed.
However, since we may only adjust w0, these “bins” will
be rigidly fixed along the feature function’s value. Right:
After discretizing the feature into 4 bins, we may now
adjust 4 weights independently, to achieve a non-linear
re-shaping of the function.

For indicator discretization, we define Φi in terms
of a binning function BINi(x) ∈ R→ N:

Φi(x) = 〈1, i _ BINi(x)〉 (4)

where the _ operator indicates concatenation of a
feature identifier with a bin identifier to form a new,
unique feature identifier.

3.1 Local Discretization
Unlike other approaches to non-linear learning in
MT, we perform non-linear transformation on par-
tial hypotheses as in equation 3 where discretiza-
tion is applied as Φi(hi(d)), which allows locally
non-linear transformations, instead of applying Φ to
complete hypotheses as in Φi(Hi(D)), which would
allow globally non-linear transformations. This en-
ables our transformed model to produce non-linear
responses with regard to the initial feature set H
while inference remains linear with regard to the
optimized parameters w′. Importantly, our trans-
formed feature set requires no additional non-local
information for inference.

By performing transformations within a local
context, we effectively reinterpret the feature set.
For example, the familiar target word count feature

found in many modern MT systems is often concep-
tualized as “what is the count of target words in the
complete hypothesis?” A hypothesis-level view of
discretization would view this as “Did this hypoth-
esis have 5 target words?”. Only one such feature
will fire for each hypothesis. However, local dis-
cretization reinterprets this feature as “How many
phrases in the complete hypothesis have 1 target
word?” Many such features are likely to fire for
each hypothesis. We provide a further example of
this technique in Figure 3.

hTM=0.1 hTM=0.2

hCount=2

hTM=0.113

hTM_0.1=1 hTM_0.2=1

hTM_0.1=1

hCount_2=1

el    gato    come       furtivamente

Figure 3: We perform discretization locally on each
grammar rule or phrase pair, operating on the local fea-
ture vectors h. In this example, the original real-valued
features are crossed out with a solid gray line and their
discretized indicator features are written above. When
forming a complete hypothesis from partial hypotheses,
we sum the counts of these indicator features to ob-
tain the complete feature vector H. In this example,
H = {HTM 0.1 : 2, HTM 0.2 : 1, HCount 2 : 1}

In terms of predictive power, this transformation
can provide the learned model with increased abil-
ity to discriminate between hypotheses. This is pri-
marily a result of moving to a higher-dimensional
feature space. As we introduce new parameters, we
expect that some hypotheses that were previously in-
distinguishable under H become separable under H′

(§2.2). We show specific examples comparing lin-
ear, locally non-linear, and globally non-linear mod-
els in Figures 4 - 6. As seen in these examples, lo-
cally non-linear models (Eq. 3, 4) are not an approx-
imation nor a subset of globally non-linear models,
but rather a different class of models.

3.2 Binning Algorithm
To initialize the learning procedure, we construct
the binning function BIN used by the indicator di-
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3
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small
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kitten
h:2.0 = {H4:1}
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4
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lion
h:3.0 = {H6:1}
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3
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h1:1
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h1:1 = {H1:2}

S2
3

she
h2:1

said
h2:1 = {H2:2}

S1
4
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h2:1

kitten
h2:1 = {H2:2}

∗S2
4
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h3:1

lion
h3:1 = {H3:2}
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(S1
3 , S

2
3) {∆H:-2.0} ⊕

(S2
3 , S

1
3) {∆H:2.0} 	

(S2
4 , S

1
4) {∆H:-2.0} 	

(S1
4 , S

2
4) {∆H:2.0} ⊕

(S1
3 , S

2
3) {∆H2:1, ∆H4:-1} ⊕

(S2
3 , S

1
3) {∆H2:-1, ∆H4:1} 	

(S2
4 , S

1
4) {∆H4:1, ∆H6:-1} 	

(S1
4 , S

2
4) {∆H4:-1, ∆H6:1} ⊕

(S1
3 , S

2
3) {∆H1:2, ∆H2:-2} ⊕

(S2
3 , S

1
3) {∆H1:-2, ∆H2:2} 	

(S2
4 , S

1
4) {∆H2:2, ∆H3:-2} 	

(S1
4 , S

2
4) {∆H2:-2, ∆H3:2} ⊕

Pairwise
Ranking

ΔH
-2 0 2

⊖
⊕ ⊕

⊖

Inseparable

ΔH2-1 1

⊕-1

1

ΔH4
⊕

H6:1

H6:-1

⊖

⊖

Separable

ΔH1-1 1

⊕-1

1

ΔH2
⊕

H3:1

H3:-1

⊖

⊖

Separable

Figure 4: An example showing a collinearity over multiple input sentences S3, S4 in which the oracle-best hypothesis
is “trapped” along a line with other lower quality hypotheses in the linear model’s output space. Ranking shows how
the hypotheses would appear in a k-best list with each partial derivation having its partial feature vector h under it; the
complete feature vector H is shown to the right of each hypothesis and the oracle-best hypothesis is notated with a ∗.
Pairs explicates the implicit pairwise rankings. Pairwise Ranking graphs those pairs in order to visualize whether or
not the hypotheses are separable. (⊕ indicates that the pair of hypotheses is ranked correctly according to the extrinsic
metric and 	 indicates the pair is ranked incorrectly. In the pairwise ranking row, some ⊕ and 	 points are annotated
with their positions along the third axis H3 (omitted for clarity). Collinearity can also occur with a single input having
at least 3 hypotheses.

Linear Globally Non-Linear Locally Non-Linear

Ranking
∗S1

2
some
h:2.0

things
h:2.0 = {H:4.0}

S2
2

something
h:4.0 = {H:4.0}

∗S1
2

some
h:2.0

things
h:2.0 = {H4:1}

S2
2

something
h:4.0 = {H4:1}

∗S1
2

some
h2:1

things
h2:1 = {H2:2}

S2
2

something
h4:1 = {H4:1}

Pairs
(S1

2 , S
2
2) {∆H:0.0} ⊕

(S2
2 , S

1
2) {∆H:0.0} 	

(S1
2 , S

2
2) {∆H4:0} ⊕

(S2
2 , S

1
2) {∆H4:0} 	 (S1

2 , S
2
2) {∆H2:2, ∆H4:-1} ⊕

(S2
2 , S

1
2) {∆H2:-2, ∆H4:1} 	

Pairwise
Ranking

Inseparable Inseparable Separable

Figure 5: An example showing a trivial “collision” in which two hypotheses of differing quality receive the same
model score until local discretization is applied. The two hypotheses are indistinguishable under a linear model with
the feature set H , as shown by the zero-difference in the “pairs” row. While a globally non-linear transformation
does not yield any improvement, local discretization allows the hypotheses to be properly ranked due to the higher-
dimensional feature space H2, H4. See Figure 4 for an explanation of notation.
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Linear Locally Non-Linear

Ranking

∗hB:1.0 = {HB:1.0}
hA:1.0 hA:1.0 = {HA:2.0}

∗hA:1.0 hA:1.0 hB:1.0 = {HA:2.0, HB:1.0}
hA:0.0 = {}
∗ hB:-4.0 hB:1.0 hB:1.0 hB:1.0 = {HB:-1.0}
hA:1.0 = {HA:1.0}
∗hB:-4.0 hA:1.0 = {HA:1.0, HB:-4.0}
hB:1.0 hB:1.0 = {HB:2.0}

∗hB1 :1 = {HB
1 :1}

hA1 :1 hA1 :1 = {HA
1 :2}

∗hA1 :1 hA1 :1 hB1 :1 = {HA
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1 :2}
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Ranking
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⊕
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6
ΔHB

⊖

⊖⊖
⊕

⊕

⊕
⊖

Inseparable

ΔHA-3 3

⊕

-3

3
ΔHB

⊖
⊖

⊖
⊕

⊕

⊕

⊖

1

1

HB:1-4

HB:-1-4

HB:1-4
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Separable

Figure 6: An example demonstrating a non-linear decision boundary induced by discretization. The non-linear nature
of the decision boundary can be seen clearly when the induced feature set HA

1 , H
B
1 , H

B
−4 (right) is considered in the

original feature space HA, HB (left). In the pairwise ranking row, two axes (HA
1 , H

B
1 ) are plotted while the third

axis HB
−4 is indicated only as stand-off annotations for clarity . Given a larger number of hypotheses, such situations

could also arise within a single sentence. See Figure 4 for an explanation of notation.

cretizer Φ. We have two desiderata: (1) any mono-
tonic transformation of a feature should not affect
the induced binning since we should not require
feature engineers to determine the optimal feature
transformation and (2) no bin’s data should be so
sparse that the optimizer cannot reliably estimate a
weight for each bin. Therefore, we construct bins
that are (i) populated uniformly subject to (ii) each
bin containing no more than one feature value. We
call this approach uniform population feature bin-
ning. While one could consider the predictive power
of the features when determining bin boundaries,
this would suggest that we should jointly optimize
and determine bin boundaries, which is beyond the
scope of this work. This problem has recently been
considered for NLP by Suzuki and Nagata (2013)
and for MT by Liu et al. (2013b), though the latter
involves decoding the entire training data.

Let X be the list of feature values to bin where
i indexes feature values xi ∈ X and their associ-

ated frequencies fi. We want each bin to have a
uniform size u. For the sake of simplifying our fi-
nal algorithm, we first create adjusted frequencies
f ′i so that very frequent feature values will not oc-
cupy more than 100% of a bin via the following al-
gorithm, which iterates over k:

uk =
1

|X |

|X |∑

i=1

fki (5)

fk+1
i = min(fki , u

k) (6)

which returns u′ = uk when fki < uk ∀i. Next,
we solve for a binning B of N bins where bj is the
population of each bin:

arg min
B

1

N

N∑

j=1

|bj − u′| (7)

We use Algorithm 1 to produce this binning. In our
experiments, we construct a translation model for
each sentence in our tuning corpus; we then add a
feature value instances to X for each rule instance.
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Algorithm 1 POPULATEBINSUNIFORMLY(X , N)

B Remaining values for bj , s.t. bk > 0 ∀k
def R(j) = |X | − (N − j − 1)
B Remaining frequency mass within ideal bound
def C(j) = j · u′ −∑j

k bk
i← 1 B Current feature value
for j ∈ [1, N ] do

while i ≤ R(j) and fi ≤ C(j) do
bj ← bj ∪ {xi}
i← i+ 1

end while
B Handle value that straddles ideal boundaries

by minimizing its violation of the ideal
if i ≤ R(j) and fi−C(j)

fi
< 0.5 then

bj ← bj ∪ {xi}
i← i+ 1

end if
end for
return B

4 Structured Regularization
Unfortunately, choosing the right number of bins
can have important effects on the model, including:
Fidelity. If we choose too few bins, we risk degrad-
ing the model’s performance by discarding impor-
tant distinctions encoded in fine differences between
the feature values. In the extreme, we could reduce
a real-valued feature to a single indicator feature.
Sparsity. If we choose too many bins, we risk mak-
ing each indicator feature too sparse, which is likely
to result in the optimizer overfitting such that we
generalize poorly to unseen data.

While one may be tempted to simply throw more
data or millions of sparse features at the problem, we
elect to more strategically use existing data, since (1)
large in-domain tuning data is not always available,
and (2) when it is available, it can add considerable
computational expense. In this section, we explore
methods for mitigating data sparsity by embedding
more knowledge into the learning procedure.

4.1 Overlapping Bins
One very simplistic way we could combat sparsity is
to extend the edges of each bin such that they cover
their neighbors’ values (see Equation 4):

Φ′i(x) = 〈1, i _ BINi(x)〉 if x ∈ ∪i+1
k=i−1BINk (8)

This way, each bin will have more data points to
estimate its weight, reducing data sparsity, and the
bins will mutually constrain each other, reducing the
ability to overfit. We include this technique as a con-
trastive baseline for structured regularization.

4.2 Linear Neighbor Regularization

Regularization has long been used to discourage op-
timization solutions that give too much weight to
any one feature. This encodes our prior knowl-
edge that such solutions are unlikely to generalize.
Regularization terms such as the `p norm are fre-
quently used in gradient-based optimizers including
our baseline implementation of PRO.

Unregularized discretization is potentially brittle
with regard to the number of bins chosen. Primar-
ily, it suffers from sparsity. At the same time, we
note that we know much more about discretized
features than initial features since we control how
they are formed. These features make up a struc-
tured feature space. With these things in mind, we
propose linear neighbor regularization, a structured
regularizer that embeds a small amount of knowl-
edge into the objective function: that the indicator
features resulting from the discretization of a sin-
gle real-valued feature are spatially related. We ex-
pect similar weights to be given to the indicator fea-
tures that represent neighboring values of the origi-
nal real-valued feature such that the resulting trans-
formation appears somewhat smooth.

To incorporate this knowledge of nearby bins, the
linear neighbor regularizerRLNR penalizes each fea-
ture’s weight by the squared amount it differs from
its neighbors’ midpoint:

RLNR(w, j) =

(
1

2
(wj−1 + wj+1)− wj

)2

(9)

RLNR(w) = β

|h|−1∑

j=2

RLNR(w, j) (10)

This is a special case of the feature network reg-
ularizer of Sandler (2010). Unlike traditional regu-
larizers, we do not hope to reduce the active feature
count. With the PRO loss l and a `2 regularizater
R2, our final loss function internal to each iteration
of PRO is:

L(w) = l(x,y;w) +R2(w) +RLNR(w) (11)
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4.3 Monotone Neighbor Regularization

However, as β → ∞, the linear neighbor regular-
izer RLNR forces a linear arrangement of weights –
this violates our premise that we should be agnos-
tic to non-linear transformations. We now describe a
structured regularizerRMNR whose limiting solution
is any monotone arrangement of weights. We aug-
ment RLNR with a smooth damping term D(w, j),
which has the shape of a bathtub curve with steep-
ness γ:

D(w, j) = tanh2γ
1
2(wj−1 + wj+1)− wj

1
2(wj−1 − wj+1)

(12)

RMNR(w) = β

|h|−1∑

j=2

D(w, j)RLNR(w, j) (13)

D is nearly zero whilewj ∈ [wj−1, wj+1] and nearly
one otherwise. Briefly, the numerator measures how
far wj is from the midpoint of wj−1 and wj+1 while
the denominator scales that distance by the radius
from the midpoint to the neighboring weight.

5 Experimental Setup6

Formalism: In our experiments, we use a hierarchi-
cal phrase-based translation model (Chiang, 2007).
A corpus of parallel sentences is first word-aligned,
and then phrase translations are extracted heuristi-
cally. In addition, hierarchical grammar rules are
extracted where phrases are nested. In general, our
choice of formalism is rather unimportant – our
techniques should apply to most common phrase-
based and chart-based paradigms including Hiero
and syntactic systems.
Decoder: For decoding, we will use cdec (Dyer et
al., 2010), a multi-pass decoder that supports syn-
tactic translation models and sparse features.
Optimizer: Optimization is performed using PRO
(Hopkins and May, 2011) as implemented by the
cdec decoder. We run PRO for 30 iterations as sug-
gested by Hopkins and May (2011). The PRO opti-
mizer internally uses a L-BFGS optimizer with the
default `2 regularization implemented in cdec. Any
additional regularization is explicitly noted.
Baseline Features: We use the baseline features
produced by Lopez’ suffix array grammar extrac-
tor (Lopez, 2008), which is distributed with cdec.

6All code at http://github.com/jhclark/cdec

Bidirectional lexical log-probabilities, the coher-
ent phrasal translation log-probability, target word
count, glue rule count, source OOV count, tar-
get OOV count, and target language model log-
probability. Note that these features may be sim-
plified or removed as specified in each experimental
condition.

Zh→En Ar→En Cz→En
Train 303K 5.4M 1M
WeightTune 1664 1797 3000
HyperTune 1085 1056 2000
Test 1357 1313 2000

Table 1: Corpus statistics: number of parallel sentences.

Chinese Resources: For the Chinese→English ex-
periments, including the completed work presented
in this proposal, we train on the Foreign Broadcast
Information Service (FBIS) corpus of approximately
300,000 sentence pairs with about 9.4 million En-
glish words. We tune weights on the NIST MT 2006
dataset, tune hyperparameters on NIST MT05, and
test on NIST MT 2008.
Arabic Resources: We build an Arabic→English
system, training on the large NIST MT 2009 con-
strained training corpus of approximately 5 mil-
lion sentence pairs with about 181 million English
words. We tune weights on the NIST MT 2006
dataset, tune hyperparameters on NIST MT 2005,
and test on NIST MT 2008.
Czech resources: We also construct a
Czech→English system based on the CzEng
1.0 data (Bojar et al., 2012). First, we lowercased
and performed sentence-level deduplication of the
data.7 Then, we uniformly sampled a training set of
1M sentences (sections 1 – 97) along with a weight-
tuning set (section 98), hyperparameter-tuning
(section 99), and test set (section 99) from the
paraweb domain contained of CzEng.8 Sentences
less than 5 words were discarded due to noise.
Evaluation: We quantify increases in translation
quality using case-insensitive BLEU (Papineni et al.,
2002). We control for test set variation and opti-
mizer instability by averaging over multiple opti-
mizer replicas (Clark et al., 2011).9

7CzEng is distributed deduplicated at the document level,
leading to very high sentence-level overlap.

8The section splits recommended by Bojar et al. (2012).
9MultEval 0.5.1: github.com/jhclark/multeval
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Bits 4 8 12
Features 101 1302 12,910
Test BLEU 36.4 36.6 36.8

Table 2: Translation quality for Cz→En system with
varying bits for discretization. For all other experiments,
we tune the number of bits on held-out data.

Condition Zh→En Ar→En Cz→En
P 20.8? (-2.7) 44.3? (-3.6) 36.5? (-1.1)

log P 23.5† 47.9† 37.6†

Disc P 23.4† (-0.1) 47.2† (-0.7) 36.8? (-0.8)

Over. P 20.7? (-2.8) 44.6? (-3.3) 36.6? (-1.0)

LNR P 23.1?† (-0.4) 48.0† (+0.1) 37.3 (-0.3)

MNR P 23.8† (+0.3) 48.7?† (+0.8) 37.6† (±)

MNR C 23.6† (±) 48.7?† (+0.8) 37.4† (-0.2)

Table 3: Top: Translation quality for systems with and
without the typical log transform. Bottom: Transla-
tion quality for systems using discretization and struc-
tured regularization with probabilities P or counts C as
the input of discretization. MNR P consistently recovers
or outperforms a state-of-the-art system, but without any
assumptions about how to transform the initial features.
All scores are averaged over 3 end-to-end optimizer repli-
cations. ? denotes significantly different than log probs
(row2) with p(CHANCE) < 0.01 under Clark et al. (2011)
and † is likewise used with regard to P (row 1).

6 Results

6.1 Does Non-Linearity Matter?

In our first set of experiments, we seek to answer
“Does non-linearity matter?” by starting with our
baseline system of 7 typical features (the log Prob-
ability system) and we then remove the log trans-
form from all of the log probability features in our
grammar (the Probs. system). The results are shown
in Table 3 (rows 1, 2). If a naı̈ve feature engi-
neer were to remove the non-linear log transform,
the systems would degrade between 1.1 BLEU and
3.6 BLEU. From this, we conclude that non-linearity
does affect translation quality. This is a potential pit-
fall for any real-valued feature including probability
features, count features, similarity measures, etc.

6.2 Learning Non-Linear Transformations

Next, we evaluate the effects of discretization
(Disc), overlapping bins (Over.), linear neighbor
regularization (LNR), and monotone neighbor reg-
ularization (MNR) on three language pairs: a small

Zh→En system, a large Ar→En system and a large
Cz→En system. In the first row of Table 3, we use
raw probabilities rather than log probabilities for
pcoherent(t|s), plex(t|s), and plex(s|t). In rows 3 –
7, all translation model features (without the log-
transformed features) are then discretized into indi-
cator features.10 The number of bins and the struc-
tured regularization strength were tuned on the hy-
perparameter tuning set.

Discretization alone does not consistently recover
the performance of the log transformed features
(row 3). The naı̈ve overlap strategy in fact degrades
performance (row 4). Linear neighbor regularization
(row 5) behaves more consistently than discretiza-
tion alone, but is consistently outperformed by the
monotone neighbor regularizer (row 6), which is
able to meet or significantly exceed the performance
of the log transformed system. Importantly, this
is done without any knowledge of the correct non-
linear transformation. In the final row, we go a
step further by removing pcoherent(t|s) altogether and
replacing it with simple count features: c(s) and
c(s, t), with slight to no degradation in quality.11 We
take this as evidence that a feature engineer develop-
ing a new real-valued feature may find discretization
and monotone neighbor regularization useful.

We also observe that different data sets benefit
from non-linear feature transformation in to differ-
ent degrees (Table 3, rows 1, 2). We noticed that dis-
cretization with monotone neighbor regularization is
able to improve over a log transform (rows 2, 6) in
proportion to the improvement of a log transform
over probability-based features (rows 1, 2).

To provide insight into how translation quality can
be affected by the number of bits for discretization,
we offer Table 2.

In Figure 7, we present the weights learned by the
Ar→En system for probability-based features. We
see that even without a bias toward a log transform,
a log-like shape still emerges for many SMT fea-
tures based only on the criteria of optimizing BLEU
and a preference for monotonicity. However, the op-
timizer chooses some important variations on the log
curve, especially for low probabilities, that lead to

10We also keep a real-valued copy of the word penalty to help
normalize the language model.

11These features can single-out rules with c(s) =
1, c(s, t) = 1, subsuming separate low-count features
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improvements in translation quality.
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Figure 7: Plots of weights learned for the discretized
pcoherent(e|f) (top) and c(f) (bottom) for the Ar→En sys-
tem with 4 bits and monotone neighbor regularization.
p(e|f) > 0.11 is omitted for exposition as values were
constant after this point. The gray line fits a log curve to
the weights. The system learns a shape that deviates from
the log in several regions. Each non-monotonic segment
represents the learner choosing to better fit the data while
paying a strong regularization penalty.

7 Related Work

Previous work on feature discretization in machine
learning has focused on the conversion of real-
valued features into discrete values for learners that
are either incapable of handling real-valued inputs
or perform suboptimally given real-valued inputs
(Dougherty et al., 1995; Kotsiantis and Kanellopou-
los, 2006). Decision trees and random forests have
been successfully used in language modeling (Je-
linek et al., 1994; Xu and Jelinek, 2004) and parsing
(Charniak, 2010; Magerman, 1995).

Kernel methods such as support vector machines
(SVMs) are often considered when non-linear inter-
actions between features are desired since they al-
low for easy usage of non-linear kernels. Wu et al.
(2004) showed improvements using non-linear ker-
nel PCA for word sense disambiguation. Taskar
et al. (2003) describes a method for incorporating
kernels into structured Markov networks. Tsochan-
taridis et al. (2004) then proposed a structured SVM
for grammar learning, named-entity recognition,
text classification, and sequence alignment. This
was followed by a structured SVM with inexact in-
ference (Finley and Joachims, 2008) and the latent
structured SVM (Yu and Joachims, 2009). Even
within kernel methods, learning non-linear map-
pings with kernels remains an open area of research;

For example, Cortes et al. (2009) investigated learn-
ing non-linear combinations of kernels. In MT,
Giménez and Màrquez (2007) used a SVM to an-
notate a phrase table with binary features indicating
whether or not a phrase translation was appropriate
in context. Nguyen et al. (2007) also applied non-
linear features for SMT n-best reranking.

Toutanova and Ahn (2013) use a form of regres-
sion decision trees to induce locally non-linear fea-
tures in a n-best reranking framework. He and Deng
(2012) directly optimize the lexical and phrasal fea-
tures using expected BLEU. Nelakanti et al. (2013)
use tree-structured `p regularizers to train language
models and improve perplexity over Kneser-Ney.

Learning parameters under weak order restric-
tions has also been studied for regression. Isotonic
regression (Barlow et al., 1972; Robertson et al.,
1988; Silvapulle and Sen, 2005) fits a curve to a set
of data points such that each point in the fitted curve
is greater than or equal to the previous point in the
curve. Nearly isotonic regression allows violations
in monotonicity (Tibshirani et al., 2011).

8 Conclusion

In the absence of highly refined knowledge about
a feature, discretization with structured regulariza-
tion enables higher quality impact of new feature
sets that contain non-linearities. In our experiments,
we observed that discretization out-performed naı̈ve
features lacking a good non-linear transformation by
up to 4.4 BLEU and that it can outperform a baseline
by up to 0.8 BLEU while dropping the log transform
of the lexical probabilities and removing the phrasal
probabilities in favor of counts. Looking beyond this
basic feature set, non-linear transformations could
be the difference between showing quality improve-
ments or not for novel features. As researchers in-
clude more real-valued features including counts,
similarity measures, and separately-trained models
with millions of features, we suspect this will be-
come an increasingly relevant issue. We conclude
that non-linear responses play an important role in
SMT, even for a commonly-used feature set, an ob-
servation that we hope will inform feature engineers.
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