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Abstract

Due to the nature of complex NLP problems,
structured prediction algorithms have been
important modeling tools for a wide range of
tasks. While there exists evidence showing
that linear Structural Support Vector Machine
(SSVM) algorithm performs better than struc-
tured Perceptron, the SSVM algorithm is still
less frequently chosen in the NLP community
because of its relatively slow training speed.

In this paper, we propose a fast and easy-to-
implement dual coordinate descent algorithm
for SSVMs. Unlike algorithms such as Per-
ceptron and stochastic gradient descent, our
method keeps track of dual variables and up-
dates the weight vector more aggressively. As
a result, this training process is as efficient as
existing online learning methods, and yet de-
rives consistently better models, as evaluated
on four benchmark NLP datasets for part-of-
speech tagging, named-entity recognition and
dependency parsing.

1 Introduction

Complex natural language processing tasks are in-
herently structured. From sequence labeling prob-
lems like part-of-speech tagging and named entity
recognition to tree construction tasks like syntactic
parsing, strong dependencies exist among the la-
bels of individual components. By modeling such
relations in the output space, structured output pre-
diction algorithms have been shown to outperform
significantly simple binary or multi-class classi-
fiers (Lafferty et al., 2001; Collins, 2002; McDonald
et al., 2005).

Among the existing structured output prediction
algorithms, the linear Structural Support Vector
Machine (SSVM) algorithm (Tsochantaridis et al.,
2004; Joachims et al., 2009) has shown outstanding
performance in several NLP tasks, such as bilingual
word alignment (Moore et al., 2007), constituency
and dependency parsing (Taskar et al., 2004b; Koo
et al., 2007), sentence compression (Cohn and La-
pata, 2009) and document summarization (Li et al.,
2009). Nevertheless, as a learning method for NLP,
the SSVM algorithm has been less than popular al-
gorithms such as the structured Perceptron (Collins,
2002). This may be due to the fact that cur-
rent SSVM implementations often suffer from sev-
eral practical issues. First, state-of-the-art imple-
mentations of SSVM such as cutting plane meth-
ods (Joachims et al., 2009) are typically compli-
cated.1 Second, while methods like stochastic gradi-
ent descent are simple to implement, tuning learning
rates can be difficult. Finally, while SSVM mod-
els can achieve superior accuracy, this often requires
long training time.

In this paper, we propose a novel optimiza-
tion method for efficiently training linear SSVMs.
Our method not only is easy to implement, but
also has excellent training speed, competitive with
both structured Perceptron (Collins, 2002) and
MIRA (Crammer et al., 2005). When evaluated on
several NLP tasks, including POS tagging, NER and
dependency parsing, this optimization method also
outperforms other approaches in terms of prediction
accuracy. Our final algorithm is a dual coordinate

1Our algorithm is easy to implement mainly because we use
the square hinge loss function.
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descent (DCD) algorithm for solving a structured
output SVM problem with a 2-norm hinge loss func-
tion. The algorithm consists of two main compo-
nents. One component behaves analogously to on-
line learning methods and updates the weight vector
immediately after inference is performed. The other
component is similar to the cutting plane method
and updates the dual variables (and the weight vec-
tor) without running inference. Conceptually, this
hybrid approach operates at a balanced trade-off
point between inference and weight update, per-
forming better than with either component alone.

Our contributions in this work can be summarized
as follows. Firstly, our proposed algorithm shows
that even for structured output prediction, an SSVM
model can be trained as efficiently as a structured
Perceptron one. Secondly, we conducted a careful
experimental study on three NLP tasks using four
different benchmark datasets. When compared with
previous methods for training SSVMs (Joachims
et al., 2009), our method achieves similar perfor-
mance using less training time. When compared to
commonly used learning algorithms such as Percep-
tron and MIRA, the model trained by our algorithm
performs consistently better when given the same
amount of training time. We believe our method can
be a powerful tool for many different NLP tasks.

The rest of our paper is organized as follows.
We first describe our approach by formally defining
the problem and notation in Sec. 2, where we also
review some existing, closely-related structured-
output learning algorithms and optimization tech-
niques. We introduce the detailed algorithmic de-
sign in Sec. 3. The experimental comparisons of
variations of our approach and the existing methods
on several NLP benchmark tasks and datasets are re-
ported in Sec. 4. Finally, Sec. 5 concludes the paper.

2 Background and Related Work

We first introduce notations used throughout this pa-
per. An input example is denoted by x and an out-
put structure is denoted by y. The feature vector
Φ(x,y) is a function defined over an input-output
pair (x,y). We focus on linear models with predic-
tions made by solving the decoding problem:

arg max
y∈Y(xi)

wTΦ(xi,y). (1)

The set Y(xi) represents all possible (exponentially
many) structures that can be generated from the ex-
ample xi. Let yi be the true structured label of xi.
The difference between the feature vectors of the
correct label yi and y is denoted as Φyi,y(xi) ≡
Φ(xi,yi) − Φ(xi,y). We define ∆(yi,y) as a dis-
tance function between two structures.

2.1 Perceptron and MIRA
Structured Perceptron First introduced by
Collins (2002), the structured Perceptron algorithm
runs two steps iteratively: first, it finds the best
structured prediction y for an example with the
current weight vector using Eq. (1); then the
weight vector is updated according to the difference
between the feature vectors of the true label and
the prediction: w ← w + Φyi,y(xi). Inspired by
Freund and Schapire (1999), Collins (2002) also
proposed the averaged structured Perceptron, which
maintains an averaged weight vector throughout the
training procedure. This technique has been shown
to improve the generalization ability of the model.

MIRA The Margin Infused Relaxed Algo-
rithm (MIRA), which was introduced by Crammer
et al. (2005), explicitly uses the notion of margin to
update the weight vector. The MIRA updates the
weight vector by calculating the step size using

min
w

1

2
‖w −w0‖2

S.T. wTΦyi,y(xi) ≥ ∆(y,yi),∀y ∈ Hk,

where Hk is a set containing the best-k structures
according to the weight vector w0. MIRA is a
very popular method in the NLP community and has
been applied to NLP tasks like word segmentation
and part-of-speech tagging (Kruengkrai et al., 2009),
NER and chunking (Mejer and Crammer, 2010) and
dependency parsing (McDonald et al., 2005).

2.2 Structural SVM
Structural SVM (SSVM) is a maximum margin
model for the structured output prediction setting.
Training SSVM is equivalent to solving the follow-
ing global optimization problem:

min
w

‖w‖2
2

+ C
l∑

i=1

L(xi,yi,w), (2)
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where l is the number of labeled examples and

L(xi,yi,w) = `

(
max

y

[
∆(yi,y)−wTΦyxi,y(xi)

])

The typical choice of ` is `(a) = at. If t = 2 is used,
we refer to the SSVM defined in Eq. (2) as the L2-
Loss SSVM. If hinge loss (t = 1) is used in Eq. (2),
we refer to it as the L1-Loss SSVM. Note that the
function ∆ is not only necessary,2 but also enables
us to use more information on the differences be-
tween the structures in the training phase. For ex-
ample, using Hamming distance for sequence label-
ing is a reasonable choice, as the model can express
finer distinctions between structures yi and y.

When training an SSVM model, we often need to
solve the loss-augmented inference problem,

arg max
y∈Y(xi)

[
wTΦ(xi,y) + ∆(yi,y)

]
. (3)

Note that it is a different inference problem than the
decoding problem in Eq. (1).

Algorithms for training SSVM Cutting
plane (CP) methods (Tsochantaridis et al., 2004;
Joachims et al., 2009) have been the dominant
method for learning the L1-Loss SSVM. Eq. (2)
contains an exponential number of constraints.
The cutting plane (CP) methods iteratively select
a subset of active constraints for each example
then solve a sub-problem which contains active
constraints to improve the model. CP has proven
useful for solving SSVMs. For instance, Yu and
Joachims (2009) proposed using CP methods to
solve a 1-slack variable formulation, and showed
that solving for a 1-slack variable formulation
is much faster than solving the l-slack variable
one (Eq. (2)). Chang et al. (2010) also proposed
a variant of cutting plane method for solving the
L2-Loss SSVM. This method uses a dual coordinate
descent algorithm to solve the sub-problems. We
call their approach the CPD method.

Several other algorithms also aim at solv-
ing the L1-Loss SSVM. Stochastic gradient de-
scent (SGD) (Bottou, 2004; Shalev-Shwartz et al.,
2007) is a technique for optimizing general con-
vex functions and has been applied to solving the

2Without ∆(y,yi) in Eq. 2, the optimal w would be zero.

L1-Loss SSVM (Ratliff et al., 2007). Taskar et
al. (2004a) proposed a structured SMO algorithm.
Because the algorithm solves the dual formulation
of the L1-Loss SSVM, it requires picking a vio-
lation pair for each update. In contrast, because
each dual variable can be updated independently in
our DCD algorithm, the implementation is relatively
simple. The extragradient algorithm has also been
applied to solving the L1-Loss SSVM (Taskar et al.,
2005). Unlike our DCD algorithm, the extragradient
method requires the learning rate to be specified.

The connections between dual methods and the
online algorithms have been previously discussed.
Specifically, Shalev-Shwartz and Singer (2006) con-
nects the dual methods to a wide range of online
learning algorithms. In (Martins et al., 2010), the au-
thors apply similar techniques on L1-Loss SSVMs
and show that the proposed algorithm can be faster
than the SGD algorithm.

Exponentiated Gradient (EG) descent (Kivinen
and Warmuth, 1995; Collins et al., 2008) has re-
cently been applied to solving the L1-Loss SSVM.
Compared to other SSVM learners, EG requires
manual tuning of the step size. In addition, EG re-
quires solution of the sum-product inference prob-
lem, which can be more expensive than solving
Eq. (3) (Taskar et al., 2006). Very recently, Lacoste-
Julien et al. (2013) proposed a block-coordinate de-
scent algorithm for the L1-Loss SSVM based on the
Frank-Wolfe algorithm (FW-Struct), which has been
shown to outperform the EG algorithm significantly.
Similar to our DCD algorithm, FW calculates the
optimal learning rate when updating the dual vari-
ables.

The Sequential Dual Method (SDM) (Shevade et
al., 2011) is probably the most related to this paper.
SDM solves the L1-Loss SSVM problem using mul-
tiple updating policies, which is similar to our ap-
proach. However, there are several important differ-
ences in the detailed algorithmic design. As will be
clear in Sec. 3, our dual coordinate descent (DCD)
algorithm is very simple, while SDM (which is not
a DCD algorithm) uses a complicated procedure to
balance different update policies. By targeting the
L2-Loss SSVM formulation, our methods can up-
date the weight vector more efficiently, since there
are no equality constraints in the dual.
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3 Dual Coordinate Descent Algorithms for
Structural SVM

In this work, we focus on solving the dual of linear
L2-Loss SSVM, which can be written as follows:

min
αi,y≥0

1

2
‖
∑

i,y

αi,yΦyi,y(xi)‖2 (4)

+
1

4C

∑

i

(
∑

y∈Y(xi)

αi,y)2 −
∑

i,y

∆(y,yi)αi,y.

In the above equation, a dual variable αi,y is asso-
ciated with a structure y ∈ Y(xi). Therefore, the
total number of dual variables can be quite large: its
upper bound is lB, where B = maxi |Y(xi)|.

The connection between the dual variables and
the weight vector w at optimal solutions is through
the following equation:

w =
l∑

i=1

∑

y∈Y(xi)

αi,yΦyi,y(xi). (5)

Advantages of L2-Loss SSVM The use of the
2-norm hinge loss function eliminates the need of
equality constraints3; only non-negative constraints
(αi,y ≥ 0) remain. This is important because now
each dual variable can be updated without changing
values of the other dual variables. We can then up-
date one single dual variable at a time. As a result,
this dual formulation allows us to design a simple
and principled dual coordinate descent (DCD) opti-
mization method.

DCD algorithms consist of two iterative steps:

1. Pick a dual variable αi,y.

2. Update the dual variable and the weight vector.
Go to 1.

In the normal binary classification case, how to
select dual variables to solve is not an issue as
choosing them randomly works effectively in prac-
tice (Hsieh et al., 2008). However, this is not a prac-
tical scheme for training SSVM models given that
the number of dual variables in Eq. (4) can be very
large because of the exponentially many legitimate
output structures. To address this issue, we intro-
duce the concept of working set below.

3For L1-Loss SSVM, there are the equality constraints:∑
y∈Y(xi)

αi,y = C, ∀i.

Working Set The number of non-zero variables in
the optimal α can be small when solving Eq. (4).
Hence, it is often feasible to use a small working set
Wi for each example to keep track of the structures
for non-zero α’s. More formally,

Wi = {y | ∀y ∈ Y(xi), αi,y > 0}.

Intuitively, the working set Wi records the output
structures that are similar to the true structure yi.We
set all dual variables to be zero initially (therefore,
w = 0 as well), soWi = ∅ for all i. Then the algo-
rithm starts to build the working set in the training
procedure. After training, the weight vector is com-
puted using dual variables in the working set and
thus equivalent to

w =

l∑

i=1

∑

y∈Wi

αi,yΦyi,y(xi). (6)

Connections to Structured Perceptron The pro-
cess of updating a dual variable is in fact very simi-
lar to the update rule used in Perceptron and MIRA.
Take structured Perceptron for example, its weight
vector can be determined using the following equa-
tion:

wperc =

l∑

i=1

∑

y∈Γ(xi)

βi,yΦyi,y(xi), (7)

where Γ(xi) is the set containing all structures Per-
ceptron predicts for xi during training, and βi,y is
the number of times Perceptron predicts y for xi
during training. By comparing Eq. (6) and Eq. (7), it
is clear that SSVM is just a more principled way to
update the weight vector, as α’s are computed based
on the notion of margin.4

Updating Dual Variables and Weights After
picking a dual variable αi,ȳ, we first show how to
update it optimally. Recall that a dual variable αi,ȳ
is associated with the i-th example and a structure ȳ.
The optimal update size d for αi,ȳ can be calculated
analytically from the following optimization prob-

4Of course, Wi could be very different from Γ(xi), the con-
struction of the working sets will be discussed in Sec. 3.1.
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Algorithm 1 UPDATEWEIGHT(i,w):
Update the weight vector w and the dual variables
in the working set of the i-th example. C is the reg-
ularization parameter defined in Eq. (2).

1: Shuffle the elements inWi (but retain the newest
member of the working set to be updated first.
See Theorem 1 for the reasons.)

2: for ȳ ∈ Wi do

3: d← ∆(ȳ,yi)−wTΦyi,ȳ(xi)−
∑

y∈Wi
αi,y

2C

‖Φyi,ȳ(xi)‖2+ 1
2C

4: α′ ← max(αi,ȳ + d, 0)
5: w← w + (α′ − αi,ȳ)Φyi,ȳ(xi)
6: αi,ȳ ← α′

7: end for

lem (derived from Eq. (4)):

min
d≥−αi,ȳ

1

2
‖w + dΦyi,ȳ(x)‖2+

1

4C
(d+

∑

y∈Wi

αi,y)2 − d∆(yi, ȳ), (8)

where the w is defined in Eq. (6). Compared to
stochastic gradient descent, DCD algorithms keep
track of dual variables and do not need to tune the
learning rate.

Instead of updating one dual variable at a time,
our algorithm updates all dual variables once in the
working set. This step is important for the conver-
gence of the DCD algorithms.5 The exact update
algorithm is presented in Algorithm 1. Line 3 cal-
culates the optimal step size (the analytical solution
to the above optimization problem). Line 4 makes
sure that dual variables are non-negative. Lines 5
and 6 update the weight vectors and the dual vari-
ables. Note that every update ensures Eq. (4) to be
no greater than the original value.

3.1 Two DCD Optimization Algorithms
Now we are ready to present two novel DCD algo-
rithms for L2-Loss SSVM: DCD-Light and DCD-
SSVM.

3.1.1 DCD-Light
The basic idea of DCD-Light is just like online

learning algorithms. Instead of doing inference for
5Specifically, updating all of the structures in the working

set is a necessary condition for our algorithms to converge.

the whole batch of examples before updating the
weight vector in each iteration, as done in CPD and
1-slack variable formulation of SVM-Struct, DCD-
Light updates the model weights after solving the in-
ference problem for each individual example. Algo-
rithm 2 depicts the detailed steps. In Line 5, the loss-
augmented inference (Eq. (3)) is performed; then
the weight vector is updated in Line 9 – all of the
structures and dual variables in the working set are
used to update the weight vector. Note that there is
a δ parameter in Line 6 to control how precise we
would like to solve this SSVM problem. As sug-
gested in (Hsieh et al., 2008), we shuffle the exam-
ples in each iteration (Line 3) as it helps the algo-
rithm converge faster.

DCD-Light has several noticeable differences
when compared to the most popular online learn-
ing method, averaged Perceptron. First, DCD-Light
performs the loss-augmented inference (Eq. (3)) at
Line 5 instead of the argmax inference (Eq. (1)).
Second, the algorithm updates the weight vector
with all structures in the working set. Finally, DCD-
light does not average the weight vectors.

3.1.2 DCD-SSVM
Observing that DCD-Light does not fully utilize

the saved dual variables in the working set, we pro-
pose a hybrid approach called DCD-SSVM, which
combines ideas from DCD-Light and cutting plane
methods. In short, after running the updates on a
batch of examples, we refine the model by solving
the dual variables further in the current working sets.
The key advantage of keeping track of these dual
variables is that it allows us to update the saved dual
variables without performing any inference, which
is often an expensive step in structured prediction
algorithms.

DCD-SSVM is summarized in Algorithm 3.
Lines 10 to 16 are from DCD-Light. In Lines 3 to
8, we grab the idea from cutting plane methods by
updating the weight vector using the saved dual vari-
ables in the working sets without any inference (note
that Lines 3 to 8 do not have any effect at the first
iteration). By revisiting the dual variables, we can
derive a better intermediate model, resulting in run-
ning the inference procedure less frequently. Similar
to DCD-Light, we also shuffle the examples in each
iteration.
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Algorithm 2 DCD-Light: The lightweight dual co-
ordinate descent algorithm for optimizing Eq. (4).

1: w← 0,Wi ← ∅,∀i
2: for t = 1 . . . T do
3: Shuffle the order of the training examples
4: for i = 1 . . . l do
5: ȳ← arg maxy wTΦ(xi,y) + ∆(y,yi)

6: if ∆(ȳ,yi)−wTΦyi,ȳ(xi)−
∑

y∈Wi

αi,y

2C ≥ δ
then

7: Wi ←Wi ∪ {ȳ}
8: end if
9: UPDATEWEIGHT(i,w) {Algo. 1}

10: end for
11: end for

DCD algorithms are similar to column generation
algorithms for linear programming (Desrosiers and
Lübbecke, 2005), where the master problem is to
solve the dual problem that focuses on the variables
in the working sets, and the subproblem is to find
new variables for the working sets. In Sec. 4, we
will demonstrate the importance of balancing these
two problems by comparing DCD-SSVM and DCD-
Light.

3.2 Convergence Analysis

We now present the theoretic analysis of both DCD-
Light and DCD-SSVM, and address two main top-
ics: (1) whether the working sets will grow expo-
nentially and (2) the convergence rate. Due to the
lack of space, we show only the main theorems.

Leveraging Theorem 5 in (Joachims et al., 2009),
we can prove that the DCD algorithms only add a
limited number of variables in the working sets, and
have the following theorem.

Theorem 1. The number of times that DCD-Light
or DCD-SSVM adds structures into working sets is

bounded by O
(

2(R2+ 1
2C

)lC∆2

δ2

)
, where R2 is de-

fined as maxi,ȳ ‖Φyi,ȳ(xi)‖2, and ∆ is the upper
bound of ∆(yi, y

′), ∀yi, y′ ∈ Y(xi).

We discuss next the convergence rates of our
DCD algorithms under two different conditions –
when the working sets are fixed and the general case.
If the working sets are fixed in DCD algorithms,
they become cyclic dual coordinate descent meth-

Algorithm 3 DCD-SSVM: a hybrid dual coor-
dinate descent algorithm that combines ideas from
DCD-Light and cutting plane algorithms.

1: w← 0,Wi ← ∅,∀i
2: for t = 1 . . . T do
3: for j = 1 . . . r do
4: Shuffle the order of the training examples
5: for i = 1 . . . l do
6: UPDATEWEIGHT(i,w) {Algo. 1}
7: end for
8: end for
9: Shuffle the order of the training examples

10: for i = 1 . . . l do
11: ȳ← arg maxy wTΦ(xi,y) + ∆(y,yi)

12: if ∆(ȳ,yi)−wTΦyi,ȳ(xi)−
∑

y∈Wi

αi,y

2C ≥ δ
then

13: Wi ←Wi ∪ {ȳ}
14: end if
15: UPDATEWEIGHT(i,w) {Algo. 1}
16: end for
17: end for

ods. In this case, we denote the minimization prob-
lem Eq. (4) as F (α). For fixed working sets {Wi},
we denote FS(α) as the minimization problem that
focuses on the dual variables in the working set only.
By applying the results from (Luo and Tseng, 1993;
Wang and Lin, 2013) to L2-Loss SSVM, we have
the following theorem.

Theorem 2. For any given non-empty working sets
{Wi}, if the DCD algorithms do not extend the
working sets (i.e., line 6-8 in Algorithm 2 are not ex-
ecuted), then the DCD algorithms will obtain the ε-
optimal solution for FS(α) in O(log(1

ε )) iterations.

Based on Theorem 1 and Theorem 2, we have the
following theorem.

Theorem 3. DCD-SSVM obtains an ε-optimal solu-
tion in O( 1

ε2
log(1

ε )) iterations.

To the best of our knowledge, this is the first con-
vergence analysis result for L2-Loss SSVM. Com-
pared to other theoretic analysis results for L1-Loss
SSVM, a tighter bound might exist given a better
theoretic analysis. We leave this for future work.6

6Noticeably, the use of working sets complicates the theo-
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Figure 1: We plot the testing performance (top row) and the primal objective function (bottom row) versus training
time for three optimization methods for learning the L2-Loss SSVM. In general, DCD-SSVM is the best algorithm for
both the objective function and the testing performance.

4 Experiments

In order to verify the effectiveness of the proposed
algorithm, we conduct a set of experiments on dif-
ferent optimization and learning algorithms. Before
going to the experimental results, we first introduce
the tasks and settings used in the experiments.

4.1 Tasks and Data
We evaluated our method and existing structured
output learning approaches on named entity recog-
nition (NER), part-of-speech tagging (POS) and de-
pendency parsing (DP) on four benchmark datasets.

NER-MUC7 MUC-7 data contains a subset of
North American News Text Corpora annotated with
many types of entities. We followed the settings
in (Ratinov and Roth, 2009) and consider three main
entities categories: PER, LOC and ORG. We evalu-
ated the results using phrase-level F1.

retic analysis significantly. Also note that Theorem 2 shows
that if we put all possible structures in the working sets (i.e.,
F (α) = FS(α)), then the DCD algorithms can obtain ε-optimal
solution in O(log( 1

ε
)) iterations.

NER-CoNLL This is the English dataset from the
CoNLL 2003 shared task (T. K. Sang and De Meul-
der, 2003). The data set labels sentences from the
Reuters Corpus, Volume 1 (Lewis et al., 2004) with
four different entity types: PER, LOC, ORG and
MISC. We evaluated the results using phrase-level
F1.

POS-WSJ The standard set for evaluating the per-
formance of a part-of-speech tagger. The training,
development and test sets consist of sections 0-18,
19-21 and 22-24 of the Penn Treebank data (Marcus
et al., 1993), respectively. We evaluated the results
by token-level accuracy.

DP-WSJ We took sections 02-21 of Penn Tree-
bank as the training set, section 00 as the develop-
ment set and section 23 as the test set. We imple-
ment a simple version of hash kernel to speed up of
training procedure for this task (Bohnet, 2010). We
reported the unlabeled attachment accuracy for this
task (McDonald et al., 2005).
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Figure 2: Comparisons between the testing performance of DCD-SSVM, FW-Struct and SVM-Struct. Note that
DCD-SSVM often obtain a better model with much less training time when comparing to SVM-Struct.

4.2 Features and Inference Algorithms

For the sequence labeling tasks, NER and POS,
we followed the discriminative HMM settings used
in (Joachims et al., 2009) and defined the features as

Φ(x,y) =
N∑

i=l




Φemi(xi, yi)
[yi = 1][yi−1 = 1]
[yi = 1][yi−1 = 2]

. . .
[yi = k][yi−1 = k]



,

where Φemi is the feature vector dedicated to the i-th
token (or, the emission features), N represents the
number of tokens in this sequence, yi represents the
i-th token in the sequence y, [yi = 1] is the indictor
variable and k is the number of tags.

The inference problems are solved by the Viterbi
algorithm. The emission features used in both POS
and NER are the standard ones, including word fea-
tures, word-shape features, etc. For NER, we used
additional simple gazetteer features7 and word clus-
ter features (Turian et al., 2010)

For dependency parsing, we followed the setting
described in (McDonald et al., 2005) and used sim-
ilar features. The decoding algorithm is the first-
order Eisner’s algorithm (Eisner, 1997).

4.3 Algorithms and Implementation Detail

For all SSVM algorithms (including SGD), C was
chosen among the set {0.01, 0.05, 0.1, 0.5, 1, 5} ac-
cording to the accuracy/F1 on the development set.
For each task, the same features were used by all

7Adding Wikipedia gazetteers would likely increase the per-
formance significantly (Ratinov and Roth, 2009).

algorithms. For NER-MUC7, NER-CoNLL and
POS-WSJ, we ran the online algorithms and DCD-
SSVM for 25 iterations. For DP-WSJ, we only let
the algorithms run for 10 iterations as the inference
procedure is very expensive computationally. The
algorithms in the experiments are:

DCD Our dual coordinate descent method on the
L2-Loss SSVM. For DCD-SSVM, r is set to be 5.
For both DCD-Light and DCD-SSVM , we follow
the suggestion in (Joachims et al., 2009): if the value
of a dual variable becomes zero, its corresponding
structure will be removed from the working set to
improve the speed.

SVM-Struct We used the latest (v3.10) of SVM-
HMM.8 This version uses the cutting plane method
on a 1-slack variable formulation (Joachims et al.,
2009) for the L1-Loss SSVM. SVM-Struct was im-
plemented in C and all the other algorithms are im-
plemented in C#. We did not apply SVM-Struct to
DP-WSJ because there is no native implementation.

Perceptron This refers to the averaged structured
Perceptron method introduced by Collins (2002). To
speed up the convergence rate, we shuffle the train-
ing examples at each iteration.

MIRA Margin Infused Relaxed Algorithm
(MIRA) (Crammer et al., 2005) is the online
learning algorithm that explicitly uses the notion
of margin to update the weight vector. We use
1-best MIRA in our experiments. To increase

8http://www.cs.cornell.edu/People/tj/
svm_light/svm_hmm.html
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the convergence speed, we shuffle the training
examples at each iteration. Following (McDonald et
al., 2005), we did not tune the C parameter for the
MIRA algorithm.

SGD Stochastic gradient descent (SGD) (Bottou,
2004) is a technique for optimizing general convex
functions. In this paper, we use SGD as an alterna-
tive baseline for optimizing the L1-Loss SSVM ob-
jective function (Eq. (2) with higne loss).9 When us-
ing SGD, the learning rate must be carefully tuned.
Following (Bottou, 2004), the learning rate is ob-
tained by

η0

(1.0 + (η0T/C))0.75
,

where C is the regularization parameter, T is the
number of updates so far and η0 is the initial step
size. The parameter η0 was selected among the set
{2−1, 2−2, 2−3, 2−4, 2−5} by running the SGD al-
gorithm on a set of 1000 randomly sampled exam-
ples, and then choosing the η0 with lowest primal
objective function on these examples.

FW-Struct FW-Struct represents the Frank-Wolfe
algorithm for the L1-Loss SSVM (Lacoste-Julien et
al., 2013).

In order to improve the training speed, we cached
all the feature vectors generated by the gold la-
beled data once computed. This applied to all al-
gorithms except SVM-Struct, which has its own
caching mechanism. We report the performance
of the averaged weight vectors for Perceptron and
MIRA.

4.4 Results

We present the experimental results below on com-
paring different dual coordinate descent methods,
as well as comparing our main algorithm, DCD-
SSVM, with other structured learning approaches.

4.4.1 Comparisons of DCD Methods
We compared three DCD methods: DCD-Light,

DCD-SSVM and CPD. CPD is a cutting plane
method proposed by Chang et al. (2010), which uses

9To compare with SGD using its best setting, we report only
the results of SGD on the L1-Loss SSVM as we found tuning
the step size for the L2-Loss SSVM is more difficult.

a dual coordinate descent algorithm to solve the in-
ternal sub-problems. We specifically included CPD
as it also targets at the L2-Loss SSVM.

Because different optimization strategies will
reach the same objective values eventually, compar-
ing them on prediction accuracy of the final models
is not meaningful. Instead, here we compare how
fast each algorithm converges as shown in Figure 1.
Each marker on the line in this figure represents one
iteration of the corresponding algorithm. Generally
speaking, CPD improves the model very slowly in
the early stages, but much faster after several iter-
ations. In comparison, DCD-Light often behaves
much better initially, and DCD-SSVM is generally
the most efficient algorithm here.

The reason behind the slow performance of CPD
is clear. During early rounds of the algorithm,
the weight vector is far from optimal, so it spends
too much time using “bad” weight vectors to find
the most violated structures. On the other hand,
DCD-Light updates the weight vector more fre-
quently, so it behaves much better in general. DCD-
SSVM spends more time on updating models during
each batch, but keeps the same amount of time doing
inference as DCD-Light. As a result, it finds a better
trade-off between inference and learning.

4.4.2 DCD-SSVM, SVM-Struct and FW-Struct
Joachims et al. (2009) proposed a 1-slack vari-

able method for the L1-Loss SSVM. They showed
that solving a 1-slack variable formulation is an
order-of-magnitude faster than solving the original
formulation (l-slack variables formulation). Nev-
ertheless, from Figure 2, we can see the clear ad-
vantage of DCD-SSVM over SVM-Struct. Al-
though using 1-slack variable has improved the
learning speed, SVM-Struct still converges slower
than DCD-SSVM. In addition, the performance of
models trained by SVM-Struct in the early stage is
quite unstable, which makes early stopping an in-
effective strategy in practice when training time is
limited.

We also compared our algorithms to FW-Struct.
Our results agree with (Lacoste-Julien et al., 2013),
which shows that the FW-Struct outperforms the
SVM-Struct. In our experiments, we found that our
DCD algorithms were competitive, sometimes con-
verged faster than the FW-Struct.
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Figure 3: Comparisons between DCD-SSVM and popular online learning algorithms. Note that the results diverge
when comparing Perceptron and MIRA. In general, DCD-SSVM is the most stable algorithm.

Task/Data DCD Percep MIRA SGD
NER-MUC7 79.4 78.5 78.8 77.8
NER-CoNLL 85.6 85.3 85.1 84.2

POS-WSJ 97.1 96.9 96.9 96.9
DP-WSJ 90.8 90.3 90.2 90.9

Table 1: Performance of online learning algorithms and
the DCD-SSVM algorithm on the testing sets. NER is
measured by F1 while others by accuracy.

4.4.3 DCD-SSVM, MIRA, Perceptron and
SGD

As in binary classification, large-margin methods
like SVMs often perform better than algorithms like
Perceptron and SGD (Hsieh et al., 2008; Shalev-
Shwartz and Zhang, 2013), here we observe similar
behaviors in the structured output domain. Table 1
shows the final test accuracy numbers or F1 scores of
models trained by algorithms including Perceptron,
MIRA and SGD, compared to those of the SSVM
models trained by DCD-SSVM. Among the bench-
mark datasets and tasks we have experimented with,
DCD-SSVM derived the most accurate models, ex-
cept for DP-WSJ when compared to SGD.

Perhaps a more interesting comparison is on
the training speed, which can be observed in Fig-
ure 3. Compared to other online algorithms, DCD-
SSVM can take advantage of cached dual variables
and structures. We show that the training speed of
DCD-SSVM can be competitive to that of the on-
line learning algorithms, unlike SVM-Struct. Note
that SGD is not very stable for NER-MUC7, even
though we tuned the step size very carefully.

5 Conclusion

In this paper, we present a novel approach for learn-
ing the L2-Loss SSVM model. By combining the
ideas of dual coordinate descent and cutting plane
methods, the hybrid approach, DCD-SSVM outper-
forms other SSVM training methods both in terms
of objective value reduction and testing error rate
reduction. As demonstrated in our experiments
on several NLP tasks, our approach also tends to
learn more accurate models than commonly used
structured learning algorithms, including structured
Perceptron, MIRA and SGD. Perhaps more inter-
estingly, our SSVM learning method is very effi-
cient: the model training time is competitive to on-
line learning algorithms such as structured Percep-
tron and MIRA. These unique qualities make DCD-
SSVM an excellent choice for solving a variety of
complex NLP problems.

In the future, we would like to compare our algo-
rithm to other structured prediction approaches, such
as conditional random fields (Lafferty et al., 2001)
and exponential gradient descent methods (Collins
et al., 2008). Expediting the learning process fur-
ther by leveraging approximate inference is also an
interesting direction to investigate.
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