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Abstract 
The dialogue strategies used by a spoken dialogue 
system strongly influence performance and user sat- 
isfaction. An ideal system would not use a single 
fixed strategy, but would adapt to the circumstances 
at hand. To do so, a system must be able to identify 
dialogue properties that suggest adaptation. This 
paper focuses on identifying situations where the 
speech recognizer is performing poorly. We adopt 
a machine learning approach to learn rules from 
a dialogue corpus for identifying these situations. 
Our results show a significant improvement over the 
baseline and illustrate that both lower-level acoustic 
features and higher-level dialogue features can af- 
fect the performance of the learning algorithm. 

1 Introduction 
Builders of spoken dialogue systems face a number 
of fundamental design choices that strongly influ- 
ence both performance and user satisfaction. Ex- 
amples include choices between user, system, or 
mixed initiative, and between explicit and implicit 
confirmation of user commands. An ideal system 
wouldn't make such choices a priori, but rather 
would adapt to the circumstances at hand. For in- 
stance, a system detecting that a user is repeatedly 
uncertain about what to say might move from user to 
system initiative, and a system detecting that speech 
recognition performance is poor might switch to 
a dialogUe strategy with more explicit prompting, 
an explicit confirmation mode, or keyboard input 
mode. Any of these adaptations might have been 
appropriate in dialogue D1 from the Annie sys- 
tem (Kamm et al., 1998), shown in Figure 1. 

In order to improve performance through such 
adaptation, a system must first be able to identify, in 
real time, salient properties of an ongoing dialogue 
that call for some useful change in system strategy. 
In other words, adaptive systems should try to auto- 
matically identify actionable properties of ongoing 

dialogues. 
Previous work has shown that speech recognition 

performance is an important predictor of user satis- 
faction, and that changes in dialogue behavior im- 
pact speech recognition performance (Walker et al., 
1998b; Litman et al., 1998; Kamm et al., 1998). 
Therefore, in this work, we focus on the task of au- 
tomatically detecting poor speech recognition per- 
formance in several spoken dialogue systems devel- 
oped at AT&T Labs. Rather than hand-crafting rules 
that classify speech recognition performance in an 
ongoing dialogue, we take a machine learning ap- 
proach. We begin with a collection of system logs 
from actual dialogues that were labeled by humans 
as having had "good" or "bad" speech recognition 
(the training set). We then apply standard machine 
learning algorithms to this training set in the hope 
of discovering, in a principled manner, classifiers 
that can automatically detect poor speech recogni- 
tion during novel dialogues. 

In order to train such classifiers, we must provide 
them with a number of "features" of dialogues de- 
rived from the system logs that might allow the sys- 
tem to automatically identify poor recognition per- 
formance. In addition to identifying features that 
provide the best quantitative solutions, we are also 
interested in comparing the performance of classi- 
fiers derived solely from acoustic features or from 
"high-level" dialogue features, and from combina- 
tions of these and other feature types. Note that we 
are free to invent as many features as we like, as 
long as they can be computed in real time from the 
raw system logs. 

Since the dialogue systems we examine use au- 
tomatic speech recognition (ASR), one obvious fea- 
ture available in the system log is a per-utterance 
score from the speech recognizer representing its 
"confidence" in its interpretation of the user's utter- 
ance (Zeljkovic, 1996). For dialogue D1, the recog- 
nizer's output and the associated confidence scores 
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Actual Dialogue 
AI: Annie here. 
U1: Hello Annie, could you give me the information on a meeting I have tomorrow? 
A2: What was that? 
U2: I need to find out uh, a meeting time and place. Kim sent me a message on it. 
A3: For all options say help me out. 
U3: Help me out. 
A4: Annie here. 
U4: Help. 
A5: Help. Say call or say send a message, followed by a label or a number. 

Or say get my messages... 
U5: Get messages. (user interrupts A5) 
A6: Speech and Image Processing Lab. 
U6: Help. 
A7: Help. Say the first and last name ... 
U7: Kim. 

ASR Interpretation ASR Confidence 

REJECT -4.84 

REJECT -4.20 

REJECT -6.35 

help - 1.74 

get me sips -3.33 

help - 1.78 

annie -3.81 

Figure 1: Example dialogue excerpt D1 with Annie. 

are in the last two columns of Figure 1. These con- 
fidence measures are based on the recognizer's lan- 
guage and acoustic models. The confidence scores 
are typically used by the system to decide whether 
it believes it has correctly understood the user's ut- 
terance. When the confidence score falls below a 
threshold defined for  each system, the utterance is 
considered a rejection (e.g., utterances U1, U2, and 
U3 in D1). Note that since our classification prob- 
lem is defined by speech recognition performance, 
it might be argued that this confidence feature (or 
features derived from it) suffices for accurate classi- 
fication. 

However, an examination of the transcript in D1 
suggests that other useful features might be derived 
from global or high-level properties of the dialogue 
history, such as features representing the system's 
repeated use of diagnostic error messages (utter- 
ances A2 and A3), or the user's repeated requests 
for help (utterances U4 and U6). 

Although the work presented here focuses ex- 
clusively on the problem of automatically detecting 
poor speech recognition, a solution to this problem 
clearly suggests system reaction, such as the strat- 
egy changes mentioned above. In this paper, we re- 
port on our initial experiments, with particular at- 
tention paid to the problem definition and method- 
ology, the best performance we obtain via a machine 
learning approach, and the performance differences 
between classifiers based on acoustic and higher- 
level dialogue features. 

2 Systems, Data, Methods 
The learning experiments that we describe here 
use the machine learning program RIPPER (Co- 
hen, 1996) to automatically induce a "poor speech 

recognition performance" classification model from 
a corpus of spoken dialogues. 1 RIPPER (like other 
learning programs, such as c5.0 and CART) takes 
as input the names of a set of classes to be learned, 
the names and possible values of a fixed set of fea- 
tures, training data specifying the class and feature 
values for each example in a training set, and out- 
puts a classification model for predicting the class 
of future examples from their feature representation. 
In RIPPER, the classification model is learned using 
greedy search guided by an information gain metric, 
and is expressed as an ordered set of if-then rules. 
We use RIPPER for our experiments because it sup- 
ports the use of "set-valued" features for represent- 
ing text, and because if-then rules are often easier 
for people to understand than decision trees (Quin- 
lan, 1993). Below we describe our corpus of dia- 
logues, the assignment of classes to each dialogue, 
the extraction of features from each dialogue, and 
our learning experiments. 

Corpus: Our corpus consists of a set of 544 di- 
alogues (over 40 hours of speech) between humans 
and one of three dialogue systems: ANNIE (Kamm 
et al., 1998), an agent for voice dialing and mes- 
saging; ELVIS (Walker et al., 1998b), an agent 
for accessing email; and TOOT (Litman and Pan, 
1999), an agent for accessing online train sched- 
ules. Each agent was implemented using a general- 
purpose platform for phone-based spoken dialogue 
systems (Kamm et al., 1997). The dialogues were 
obtained in controlled experiments designed to eval- 
uate dialogue strategies for each agent. The exper- 

~We also ran experiments using the machine learning pro- 
gram BOOSTEXTER (Schapire and Singer, To appear), with re- 
sults similar to those presented below. 
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iments required users to complete a set of applica- 
tion tasks in conversations with a particular version 
of the agent. The experiments resulted in both a dig- 
itized recording and an automatically produced sys- 
tem log for each dialogue. 

Class Assignment: Our corpus is used to con- 
struct the machine learning classes as follows. First, 
each utterance that was not rejected by automatic 
speech recognition (ASR) was manually labeled as 
to whether it had been semantically misrecognized 
or not. 2 This was done by listening to the record- 
ings while examining the corresponding system log. 
If the recognizer's output did not correctly capture 
the task-related information in the utterance, it was 
labeled as a misrecognition. For example, in Fig- 
ure 1 U4 and U6 would be labeled as correct recog- 
nitions, while U5 and U7 would be labeled as mis- 
recognitions. Note that our labeling is semantically 
based; if U5 had been recognized as "play mes- 
sages" (which invokes the same application com- 
mand as "get messages"), then U5 would have been 
labeled as a correct recognition. Although this la- 
beling needs to be done manually, the labeling is 
based on objective criteria. 

Next, each dialogue was assigned a class of ei- 
ther good or bad, by thresholding on the percentage 
of user utterances that were labeled as ASR seman- 
tic misrecognitions. We use a threshold of 11% to 
balance the classes in our corpus, yielding 283 good 
and 261 bad dialogues. 3 Our classes thus reflect rel- 
ative goodness with respect to a corpus. Dialogue 
D1 in Figure 1 would be classified as "bad", be- 
cause U5 and U7 (29% of the user utterances) are 
misrecognized. 

Feature Extraction: Our corpus is used to con- 
struct the machine learning features as follows. 
Each dialogue is represented in terms of the 23 
primitive features in Figure 2. In RIPPER, fea- 
ture values are continuous (numeric), set-valued, or 
symbolic. Feature values were automatically com- 
puted from system logs, based on five types of 
knowledge sources: acoustic, dialogue efficiency, 
dialogue quality, experimental parameters, and lexi- 
cal. Previous work correlating misrecognition rate 
with acoustic information, as well as our own 

2These utterance labelings were produced during a previous 
set of experiments investigating the performance evaluation of 
spoken dialogue systems (Walker et al., 1997; Walker et al., 
1998a; Walker et al., 1998b; Kamm et al., 1998; Litman et al., 
1998; Litman and Pan, 1999). 

3This threshold is consistent with a threshold inferred from 
human judgements  (Litman, 1998). 

• Acoustic Features 

- m e a n  confidence, pmisrecs%l, pmisrecs%2, pmis- 
recs%3, pmisrecs%4 

• Dialogue Efficiency Features 

- elapsed time, system turns, user turns 

• Dialogue Quality Features 

- rejections, timeouts, helps, cancels, bargeins (raw) 

- rejection%, timeout%, help%, cancel%, bargein% (nor- 
malized) 

• Experimental  Parameters  Features 

- system, user, task, condition 

• Lexical Features 

- ASR text 

Figure 2: Features for spoken dialogues. 

hypotheses about the relevance of other types of 
knowledge, contributed to our features. 

The acoustic, dialogue efficiency, and dialogue 
quality features are all numeric-valued. The acous- 
tic features are computed from each utterance's 
confidence (log-likelihood) scores (Zeljkovic, 
1996). Mean confidence represents the average 
log-likelihood score for utterances not rejected dur- 
ing ASR. The four pmisrecs% (predicted percent- 
age of misrecognitions) features represent differ- 
ent (coarse) approximations to the distribution of 
log-likelihood scores in the dialogue. Each pmis- 
recs% feature uses a fixed threshold value to predict 
whether a non-rejected utterance is actually a mis- 
recognition, then computes the percentage of user 
utterances in the dialogue that correspond to these 
predictedmisrecognitions. (Recall that our dialogue 
classifications were determined by thresholding on 
the percentage of actual misrecognitions.) For in- 
stance, pmisrecs%1 predicts that if a non-rejected 
utterance has a confidence score below - 2  then it 
is a misrecognition. Thus in Figure 1, utterances U5 
and U7 would be predicted as misrecognitions using 
this threshold. The four thresholds used for the four 
pmisrecs% features are - 2 , - 3 , - 4 , - 5 ,  and were 
chosen by hand from the entire dataset to be infor- 
mative. 

The dialogue efficiency features measure how 
quickly the dialogue is concluded, and include 
elapsed time (the dialogue length in seconds), and 
system turns and user turns (the number of turns for 
each dialogue participant). 
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mean confidence pmisrecs%1 pmisrecs%2 pmisrecs%3 pmisrecs%4 elapsed time system turns user turns 
-2.7 29 29 0 0 300 7 7 
rejections timeouts helps cancels bargeins rejection% timeout% help% 
3 0 2 0 1 43 0 29 
cancel% bargein% system user task condition 
0 14 annie mike day 1 novices without tutorial 
ASR text 
REJECT REJECT REJECT help get me sips help annie 

Figure 3: Feature representation of dialogue D1. 

The dialogue quality features attempt to capture 
aspects of the naturalness of the dialogue. Rejec- 
tions represents the number of times that the sys- 
tem plays special rejection prompts, e.g., utterances 
A2 and A3 in dialogue D1. This occurs whenever 
the ASR confidence score falls below a threshold 
associated with the ASR grammar for each system 
state (where the threshold was chosen by the system 
designer). The rejections feature differs from the 
pmisrecs% features in several ways. First, the pmis- 
recs% thresholds are used to determine misrecogni- 
tions rather than rejections. Second, the pmisrecs% 
thresholds are fixed across all dialogues and are not 
dependent on system state. Third, a system rejection 
event directly influences the dialogue via the rejec- 
tion prompt, while the pmisrecs% thresholds have 
no corresponding behavior. 

Timeouts represents the number of times that the 
system plays special timeout prompts because the 
user hasn't responded within a pre-specified time 
frame. Helps represents the number of times that the 
system responds to a user request with a (context- 
sensitive) help message. Cancels represents the 
number of user's requests to undo the system's pre- 
vious action. Bargeins represents the number of 
user attempts to interrupt the system while it is 
speaking. 4 In addition to raw counts, each feature 
is represented in normalized form by expressing the 
feature as a percentage. For example, rejection% 
represents the number of rejected user utterances di- 
vided by the total number of user utterances. 

In order to test the effect of having the maxi- 
mum amount of possibly relevant information avail- 
able, we also included a set of features describ- 
ing the experimental parameters for each dialogue 
(even though we don't expect rules incorporating 
such features to generalize). These features capture 
the conditions under which each dialogue was col- 

4Since the system automatically detects when a bargein oc- 
curs, this feature could have been automatically logged. How- 
ever, because our system did not log bargeins, we had to hand- 
label them. 

lected. The experimental parameters features each 
have a different set of user-defined symbolic values. 
For example, the value of the feature system is either 
"annie", "elvis", or "toot", and gives RIPPER the op- 
tion of producing rules that are system-dependent. 

The lexical feature ASR text is set-valued, and 
represents the transcript of  the user's utterances as 
output by the ASR component. 

Learning Experiments: The final input for 
learning is training data, i.e., a representation of a 
set of dialogues in terms of feature and class values. 
In order to induce classification rules from a variety 
of feature representations our training data is rep- 
resented differently in different experiments. Our 
learning experiments can be roughly categorized as 
follows. First, examples are represented using all of 
the features in Figure 2 (to evaluate the optimal level 
of performance). Figure 3 shows how Dialogue 
D1 from Figure 1 is represented using all 23 fea- 
tures. Next, examples are represented using only the 
features in a single knowledge source (to compara- 
tively evaluate the utility of each knowledge source 
for classification), as well as using features from 
two or more knowledge sources (to gain insight into 
the interactions between knowledge sources). Fi- 
nally, examples are represented using feature sets 
corresponding to hypotheses in the literature (to em- 
pirically test theoretically motivated proposals). 

The output of each machine learning experiment 
is a classification model learned from the training 
data. To evaluate these results, the error rates of the 
learned classification models are estimated using 
the resampling method of cross-validation (Weiss 
and Kulikowski, 1991). In 25-fold cross-validation, 
the total set of examples is randomly divided into 
25 disjoint test sets, and 25 runs of the learning pro- 
gram are performed. Thus, each run uses the exam- 
pies not in the test set for training and the remain- 
ing examples for testing. An estimated error rate is 
obtained by averaging the error rate on the testing 
portion of the data from each of the 25 runs. 
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Features Used Accuracy (Standard Error) 
BASELINE 52% 

REJECTION% 54.5 % (2.0) 
EFFICIENCY 61.0 % (2.2) 

EXP-PARAMS 65.5 % (2.2) 
DIALOGUE QUALITY (NORMALIZED) 65.9 % (1.9) 

MEAN CONFIDENCE 68.4 % (2.0) 
EFFICIENCY + NORMALIZED QUALITY 69.7 % (1.9) 

ASR TEXT 72.0 % (1.7) 
PMISRECS%3 72.6 % (2.0) 

EFFICIENCY + QUALITY + EXP-PARAMS 73.4 % (1.9) 
ALL FEATURES 77.4 % (2.2) 

Figure 4: Accuracy rates for dialogue classifiers using different feature sets, 25-fold cross-validation on 544 
dialogues. We use SMALL CAPS to indicate feature sets, and ITALICS to indicate primitive features listed in 
Figure 2. 

3 Results 

Figure 4 summarizes our most interesting experi- 
mental results. For each feature set, we report accu- 
racy rates and standard errors resulting from cross- 
validation. 5 It is clear that performance depends on 
the features that the classifier has available. The 
BASELINE accuracy rate results from simply choos- 
ing the majority class, which in this case means pre- 
dicting that the dialogue is always "good". This 
leads to a 52% BASELINE accuracy. 

The REJECTION% accuracy rates arise from a 
classifier that has access to the percentage of dia- 
logue utterances in which the system played a re- 
jection message to the user. Previous research sug- 
gests that this acoustic feature predicts misrecogni- 
tions because users modify their pronunciation in 
response to system rejection messages in such a way 
as to lead to further misunderstandings (Shriberg et 
al., 1992; Levow, 1998). However, despite our ex- 
pectations, the REJECTION% accuracy rate is not 
better than the BASELINE at our desired level of sta- 
tistical significance. 

Using the EFFICIENCY features does improve the 
performance of the classifier significantly above the 
BASELINE (61%). These features, however, tend 
to reflect the particular experimental tasks that the 
users were doing. 

The EXP-PARAMS (experimental parameters) 
features are even more specific to this dialogue 
corpus than the efficiency features: these features 
consist of the name of the system, the experimen- 

5Accuracy rates are statistically significantly different when 
the accuracies plus or minus twice the standard error do not 
overlap (Cohen, 1995), p. 134. 

tal subject, the experimental task, and the experi- 
mental condition (dialogue strategy or user exper- 
tise). This information alone allows the classifier 
to substantially improve over the BASELINE clas- 
sifter, by identifying particular experimental condi- 
tions (mixed initiative dialogue strategy, or novice 
users without tutorial) or systems that were run with 
particularly hard tasks (TOOT) with bad dialogues, 
as in Figure 5. Since with the exception of the ex- 
perimental condition these features are specific to 
this corpus, we wouldn't expect them to generalize. 

if (condition = mixed) then bad 
if (system = toot) then bad 
if (condition = novices without tutorial) then bad 
default is good 

Figure 5: EXP-PARAMS rules. 

The normalized DIALOGUE QUALITY features 
result in a similar improvement in performance 
(65.9%). 6 However, unlike the efficiency and ex- 
perimental parameters features, the normalization 
of the dialogue quality features by dialogue length 
means that rules learned on the basis of these fea- 
tures are more likely to generalize. 

Adding the efficiency and normalized quality fea- 
ture sets together (EFFICIENCY + NORMALIZED 
QUALITY) results in a significant performance im- 
provement (69.7%) over EFFICIENCY alone. Fig- 
ure 6 shows that this results in a classifier with 
three rules: one based on quality alone (per- 
centage of cancellations), one based on efficiency 

6The normalized versions of the quality features did better 
than the raw versions. 
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alone (elapsed time), and one that consists of a 
boolean combination of efficiency and quality fea- 
tures (elapsed time and percentage of rejections). 
The learned ruleset says that if the percentage of 
cancellations is greater than 6%, classify the dia- 
logue as bad; if the elapsed time is greater than 282 
seconds, and the percentage of rejections is greater 
than 6%, classify it as bad; if the elapsed time is less 
than 90 seconds, classify it as badT; otherwise clas- 
sify it as good. When multiple rules are applicable, 
RIPPER resolves any potential conflict by using the 
class that comes first in the ordering; when no rules 
are applicable, the default is used. 

i f  (cancel% > 6) then bad 
if (elapsed time > 282 secs) A (rejection% > 6) then bad 
if (elapsed time < 90 secs) then bad 
default is good 

for the MEAN CONFIDENCE classifier (68.4%) is 
not statistically different than that for the PMIS- 
RECS%3 classifier. Furthermore, since the feature 
does not rely on picking an optimal threshold, it 
could be expected to better generalize to new dia- 
logue situations. 

The classifier trained on (noisy) ASR lexical out- 
put (ASR TEXT) has access only to the speech rec- 
ognizer's interpretation of the user's utterances. The 
ASR TEXT classifier achieves 72% accuracy, which 
is significantly better than the BASELINE, REJEC- 
TION% and EFFICIENCY classifiers. Figure 7 shows 
the rules learned from the lexical feature alone. The 
rules include lexical items that clearly indicate that 
a user is having trouble e.g. help and cancel. They 
also include lexical items that identify particular 
tasks for particular systems, e.g. the lexical item 

p-m identifies a task in TOOT. 

Figure 6: EFFICIENCY + N O R M A L I Z E D  QUALITY 

rules. 

We discussed our acoustic REJECTION% results 
above, based on using the rejection thresholds that 
each system was actually run with. However, a 
posthoc analysis of our experimental data showed 
that our systems could have rejected substantially 
more misrecognitions with a rejection threshold that 
was lower than the thresholds picked by the sys- 
tem designers. (Of course, changing the thresh- 
olds in this way would have also increased the num- 
ber of rejections of correct ASR outputs.) Re- 
call that the PMISRECS% experiments explored the 
use of different thresholds to predict misrecogni- 
tions. The best of these acoustic thresholds was 
PMISRECS%3, with accuracy 72.6%. This classi- 
fier learned that if the predicted percentage of mis- 
recognitions using the threshold for that feature was 
greater than 8%, then the dialogue was predicted to 
be bad, otherwise it was good. This classifier per- 
forms significantly better than the BASELINE, RE- 
JECTION% and EFFICIENCY classifiers. 

Similarly, MEAN CONFIDENCE is another 
acoustic feature, which averages confidence scores 
over all the non-rejected utterances in a dialogue. 
Since this feature is not tuned to the applications, 
we did not expect it to perform as well as the best 
PMISRECS% feature. However, the accuracy rate 

7This rule indicates dialogues too short for the user to have 
completed the task. Note that this role could not be applied 
to adapting the system's behavior during the course of the dia- 
logue. 

if (ASR text contains c a n c e l )  then bad 
if  (ASR text contains t h e )  A (ASR text contains g e t )  A (ASR text 
contains TIMEOUT) then bad 
if (ASR text contains t o d a y )  ^ (ASR text contains on) then bad 
if  (ASR text contains t h e )  A (ASR text contains p-m) then bad 
if (ASR text contains to )  then bad 
if  (ASR text contains h e l p )  ^ (ASR text contains t h e )  ^ (ASR text 
contains r e a d )  then bad 
if  (ASR text contains h e l p )  A (ASR text contains p r e v i o u s )  then 
bad 
if (ASR text contains a b o u t )  then bad 
if (ASR text contains change-s trategy) then bad 
default is good 

Figure 7: ASR TEXT rules. 

Note that the performance of many of the classi- 
fiers is statistically indistinguishable, e.g. the per- 
formance of the ASR TEXT classifier is virtually 
identical to the classifier PMISRECS%3 and the EF- 

FICIENCY + QUALITY + E X P - P A R A M S  classifier. 
The similarity between the accuracies for a range 
of classifiers suggests that the information provided 
by different feature sets is redundant. As discussed 
above, each system and experimental condition re- 
suited in dialogues that contained lexical items that 
were unique to it, making it possible to identify ex- 
perimental conditions from the lexical items alone. 
Figure 8 shows the rules that RIPPER learned when 
it had access to all the features except for the lexical 
and acoustic features. In this case, RIPPER learns 
some rules that are specific to the TOOT system. 

Finally, the last row of Figure 4 suggests that a 
classifier that has access to ALL FEATURES may do 
better (77.4% accuracy) than those classifiers that 
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if (cancel% > 4) ^ (system = toot) then bad 
if (system turns _> 26) ^ (rejection% _> 5 ) then bad 
i f  (condition = mixed) ^ (user turns > 12 ) then bad 
i f  (system = toot)/x (user turns > 14 ) then bad 
i f  (cancels > 1) A (timeout% _> 11 ) then bad 
if (elapsed time _< 87 secs) then bad 
default is good 

Figure 8: E F F I C I E N C Y  + Q U A L I T Y  + E X P - P A R A M S  

rules. 

have access to acoustic features only (72.6%) or to 
lexical features only (72%). Although these dif- 
ferences are not statistically significant, they show 
a trend (p < .08). This supports the conclusion 
that different feature sets provide redundant infor- 
mation, and could be substituted for each other to 
achieve the same performance. However, the ALL 
FEATURES classifier does perform significantly bet- 
ter than the EXP-PARAMS, DIALOGUE QUALITY 
(NORMALIZED), and MEAN CONFIDENCE clas- 
sifiers. Figure 9 shows the decision rules that the 
ALL FEATURES classifier learns. Interestingly, this 
classifier does not find the features based on experi- 
mental parameters to be good predictors when it has 
other features to choose from. Rather it combines 
features representing acoustic, efficiency, dialogue 
quality and lexical information. 

if  (mean confidence _< -2.2) ^ (pmisrecs%4 _> 6 ) then bad 
if  (pmisrecs%3 >_ 7 ) A (ASR text contains y e s )  A (mean confidence 
_< -1.9) then bad 
if (cancel% _> 4) then bad 
if (system turns _> 29 ) ^ (ASR text contains m e s s a g e )  then bad 
i f  (elapsed time <_ 90) then bad 
default is good 

Figure 9: ALL FEATURES rules. 

4 Discussion 

The experiments presented here establish several 
findings. First, it is possible to give an objective def- 
inition for poor speech recognition at the dialogue 
level, and to apply machine learning to build clas- 
sifiers detecting poor recognition solely from fea- 
tures of the system log. Second, with appropri- 
ate sets of features, these classifiers significantly 
outperform the baseline percentage of the majority 
class. Third, the comparable performance of clas- 
sifiers constructed from rather different feature sets 
(such as acoustic and lexical features) suggest that 
there is some redundancy between these feature sets 
(at least with respect to the task). Fourth, the fact 

that the best estimated accuracy was achieved using 
all of the features suggests that even problems that 
seem inherently acoustic may best be solved by ex- 
ploiting higher-level information. 

This work differs from previous work in focusing 
on behavior at the (sub)dialogue level, rather than 
on identifying single misrecognitions at the utter- 
ance level (Smith, 1998; Levow, 1998; van Zanten, 
1998). The rationale is that a single misrecognition 
may not warrant a global change in dialogue strat- 
egy, whereas a user's repeated problems communi- 
cating with the system might warrant such a change. 
While we are not aware of any other work that has 
applied machine learning to detecting patterns sug- 
gesting that the user is having problems over the 
course of a dialogue, (Levow, 1998) has applied 
machine learning to identifying single misrecogni- 
tions. We are currently extending our feature set 
to include acoustic-prosodic features such as those 
used by Levow, in order to predict misrecognitions 
at both the dialogue level as well as the utterance 
level. 

We are also interested in the extension and gen- 
eralization of our findings in a number of additional 
directions. In other experiments, we demonstrated 
the utility of allowing the user to dynamically adapt 
the system's dialogue strategy at any point(s) during 
a dialogue. Our results show that dynamic adapta- 
tion clearly improves system performance, with the 
level of improvement sometimes a function of the 
system's initial dialogue strategy (Litman and Pan, 
1999). Our next step is to incorporate classifiers 
such as those presented in this paper into a system 
in order to support dynamic adaptation according to 
recognition performance. Another area for future 
work would be to explore the utility of using alter- 
native methods for classifying dialogues as good or 
bad. For example, the user satisfaction measures we 
collected in a series of experiments using the PAR- 
ADISE evaluation framework (Walker et al., 1998c) 
could serve as the basis for such an alternative clas- 
sification scheme. More generally, in the same way 
that learning methods have found widespread use in 
speech processing and other fields where large cor- 
pora are available, we believe that the construction 
and analysis of spoken dialogue systems is a ripe 
domain for machine learning applications. 
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