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A b s t r a c t  

A great deal of work has been done demonstrat- 
ing the ability of machine learning algorithms to 
automatically extract linguistic knowledge from 
annotated corpora. Very little work has gone 
into quantifying the difference in ability at this 
task between a person and a machine. This pa- 
per is a first step in that direction. 

1 I n t r o d u c t i o n  

Machine learning has been very successful at 
solving many problems in the field of natural 
language processing. It has been amply demon- 
strated that a wide assortment of machine learn- 
ing algorithms are quite effective at extracting 
linguistic information from manually annotated 
corpora. 

Among the machine learning algorithms stud- 
ied, rule based systems have proven effective 
on many natural language processing tasks, 
including part-of-speech tagging (Brill, 1995; 
Ramshaw and Marcus, 1994), spelling correc- 
tion (Mangu and Brill, 1997), word-sense dis- 
ambiguation (Gale et al., 1992), message un- 
derstanding (Day et al., 1997), discourse tag- 
ging (Samuel et al., 1998), accent restoration 
(Yarowsky, 1994), prepositional-phrase attach- 
ment (Brill and Resnik, 1994) and base noun 
phrase identification (Ramshaw and Marcus, In 
Press; Cardie and Pierce, 1998; Veenstra, 1998; 
Argamon et al., 1998). Many of these rule based 
systems learn a short list of simple rules (typ- 
ically on the order of 50-300) which are easily 
understood by humans. 

Since these rule-based systems achieve good 
performance while learning a small list of sim- 
ple rules, it raises the question of whether peo- 
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ple could also derive an effective rule list man- 
ually from an annotated corpus. In this pa- 
per we explore how quickly and effectively rel- 
atively untrained people can extract linguistic 
generalities from a corpus as compared to a ma- 
chine. There are a number of reasons for doing 
this. We would like to understand the relative 
strengths and weaknesses of humans versus ma- 
chines in hopes of marrying their con~plemen- 
tary strengths to create even more accurate sys- 
tems. Also, since people can use their meta- 
knowledge to generalize from a small number of 
examples, it is possible that a person could de- 
rive effective linguistic knowledge from a much 
smaller training corpus than that needed by a 
machine. A person could also potentially learn 
more powerful representations than a machine, 
thereby achieving higher accuracy. 

In this paper we describe experiments we per- 
formed to ascertain how well humans, given 
an annotated training set, can generate rules 
for base noun phrase chunking. Much previous 
work has been done on this problem and many 
different methods have been used: Church's 
PARTS (1988) program uses a Markov model; 
Bourigault (1992) uses heuristics along with a 
grammar; Voutilainen's NPTool (1993) uses a 
lexicon combined with a constraint grammar; 
Juteson and Katz (1995) use repeated phrases; 
Veenstra (1998), Argamon, Dagan & Kry- 
molowski(1998) and Daelemaus, van den Bosch 
& Zavrel (1999) use memory-based systems; 
Ramshaw & Marcus (In Press) and Cardie & 
Pierce (1998) use rule-based systems. 

2 L e a r n i n g  B a s e  N o u n  P h r a s e s  by 
M a c h i n e  

We used the base noun phrase system of 
Ramshaw and Marcus (R&M) as the machine 
learning system with which to compare the hu- 



man learners. It is difficult to compare different 
machine learning approaches to base NP anno- 
tation, since different definitions of base NP are 
used in many of the papers, but the R&M sys- 
tem is the best of those that have been tested 
on the Penn Treebank. 1 

To train their system, R&M used a 200k-word 
chunk of the Penn Treebank Parsed Wall Street 
Journal (Marcus et al., 1993) tagged using a 
transformation-based tagger (Brill, 1995) and 
extracted base noun phrases from its parses by 
selecting noun phrases that contained no nested 
noun phrases and further processing the data 
with some heuristics (like treating the posses- 
sive marker as the first word of a new base 
noun phrase) to flatten the recursive struc- 
ture of the parse. They cast the problem as 
a transformation-based tagging problem, where 
each word is to be labelled with a chunk struc- 
ture tag from the set {I, O, B}, where words 
marked 'T' are inside some base NP chunk, 
those marked "O" are not part of any base NP, 
and those marked "B" denote the first word 
of a base NP which immediately succeeds an- 
other base NP. The training corpus is first run 
through a part-of-speech tagger. Then, as a 
baseline annotation, each word is labelled with 
the most common chunk structure tag for its 
part-of-speech tag. 

After the baseline is achieved, transforma- 
tion rules fitting a set of rule templates are 
then learned to improve the "tagging accuracy" 
of the training set. These templates take into 
consideration the word, part-of-speech tag and 
chunk structure tag of the current word and all 
words within a window of 3 to either side of it. 
Applying a rule to a word changes the chunk 
structure tag of a word and in effect alters the 
boundaries of the base NP chunks in the sen- 
tence. 

An example of a rule learned by the R&M sys- 
tem is: change a chunk structure tag of a word 
from I to B if  the word is a determiner, the next 
word ks a noun, and the two previous words both 
have chunk structure tags of I. In other words, 
a determiner in this context is likely to begin a 
noun phrase. The R&M system learns a total 

1We would like to thank Lance Ramshaw for pro- 
viding us with the base-NP-annotated training and test 
corpora that  were used in the R&M system, as well as 
the rules learned by this system. 

of 500 rules. 

3 M a n u a l  R u l e  Acquis i t ion  
R&M framed the base NP annotation problem 
as a word tagging problem. We chose instead 
to use regular expressions on words and part of 
speech tags to characterize the NPs, as well as 
the context surrounding the NPs, because this 
is both a more powerful representational lan- 
guage and more intuitive to a person. A person 
can more easily consider potential phrases as a 
sequence of words and tags, rather than looking 
at each individual word and deciding whether it 
is part of a phrase or not. The rule actions we 
allow are: 2 

Add Add a base NP (bracket a se- 
quence of words as a base NP) 

Kill Delete a base NP (remove a pair 
of parentheses) 

Transform Transform a base NP (move 
one or both parentheses to ex- 
tend/contract  a base NP) 

Merge Merge two base NPs 

As an example, we consider an actual rule 
from our experiments: 

Bracket all sequences of words of: one 
determiner (DT), zero or more adjec- 
tives (JJ, JJR, JJS), and one or more 
nouns (NN, NNP, NNS, NNPS), if 
they are followed by a verb (VB, VBD, 
VBG, VBN, VBP, VBZ). 

In our language, the rule is written thus: 3 

A 
(* .) 
({i} t=DT) (* t=JJ[RS]?) (+ t=NNP?S?) 
({i} t=VB [DGNPZ] ?) 

The first line denotes the action, in this case, 
Add a bracketing. The second line defines the 
context preceding the sequence we want to have 
bracketed - -  in this case, we do not care what 
this sequence is. The third line defines the se- 
quence which we want bracketed, and the last 

2The rule types we have chosen are similar to those 
used by Vilain and Day (1996) in transformation-based 
parsing, but  are more powerful. 

SA full description of the rule language can be found 
at http://nlp, cs. jhu. edu/,~baseNP/manual. 
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line defines the context following the bracketed 
sequence. 

Internally, the software then translates this 
rule into the more unwieldy Perl regular expres- 
sion: 

s( ( ( ['\s_] +__DT\s+) ( ['\s_] +__JJ [RS] \s+)* 

The actual system is located at 
h t t p : / / n l p ,  cs .  jhu .  edu /~basenp /chunking .  
A screenshot of this system is shown in figure 
4. The correct base NPs are enclosed in paren- 
theses and those annotated by the human's 
rules in brackets. 

( ['\s_] +__NNPFS?\s+) +) ( [" \s_] +__VB [DGNPZ] \s+)} 4 
{ ( $1 ) $5 ]'g 

The base NP annotation system created by 
the humans is essentially a transformation- 
based system with hand-written rules. The user 
manually creates an ordered list of rules. A 
rule list can be edited by adding a rule at any 
position, deleting a rule, or modifying a rule. 
The user begins with an empty rule list. Rules 
are derived by studying the training corpus 
and NPs that the rules have not yet bracketed, 
as well as NPs that the rules have incorrectly 
bracketed. Whenever the rule list is edited, the 
efficacy of the changes can be checked by run- 
ning the new rule list on the training set and 
seeing how the modified rule list compares to 
the unmodified list. Based on this feedback, 
the user decides whether, to accept or reject 
the changes that were made. One nice prop- 
erty of transformation-based learning is that in 
appending a rule to the end of a rule list, the 
user need not be concerned about how that rule 
may interact with other rules on the list. This 
is much easier than writing a CFG, for instance, 
where rules interact in a way that may not be 
readily apparent to a human rule writer. 

To make it easy for people to study the train- 
ing set, word sequences are presented in one of 
four colors indicating that  they: 

1. are not part of an NP either in the t ruth or 
in the output of the person's rule set 

2. consist of an NP both in the t ruth and in 
the output of the person's rule set (i.e. they 
constitute a base NP that the person's rules 
correctly annotated) 

3. consist of an NP in the t ruth but not in the 
output of the person's rule set (i.e. they 
constitute a recall error) 

4. consist of an NP in the output of the per- 
son's rule set but not in the t ruth (i.e. they 
constitute a precision error) 

E x p e r i m e n t a l  S e t - U p  a n d  R e s u l t s  

The experiment of writing rule lists for base NP 
annotation was assigned as a homework set to 
a group of 11 undergraduate and graduate stu- 
dents in an introductory natural language pro- 
cessing course. 4 

The corpus that  the students were given from 
which to derive and validate rules is a 25k word 
subset of the R&M training set, approximately 
! the size of the full R&M training set. The 8 
reason we used a downsized training set was 
that we believed humans could generalize better 
from less data, and we thought that it might be 
possible to meet or surpass R&M's results with 
a much smaller training set. 

Figure 1 shows the final precision, recall, F- 
measure and precision+recall numbers on the 
training and test corpora for the students. 
There was very little difference in performance 
on the training set compared to the test set. 
This indicates that people, unlike machines, 
seem immune to overtraining. The time the 
students spent on the problem ranged from less 
than 3 hours to almost 10 hours, with an av- 
erage of about 6 hours. While it was certainly 
the case that the students with the worst results 
spent the least amount of time on the prob- 
lem, it was not true that those with the best 
results spent the most time - -  indeed, the av- 
erage amount of time spent by the top three 
students was a little less than the overall aver- 
age - -  slightly over 5 hours. On average, peo- 
ple achieved 90% of their final performance after 
half of the total time they spent in rule writing. 

The number of rules in the final rule lists also 
varied, from as few as 16 rules to as many as 61 
rules, with an average of 35.6 rules. Again, the 
average number for the top three subjects was 
a little under the average for everybody: 30.3 
rules. 

4These 11 students were a subset of the entire class. 
Students were given an option of participating in this ex- 
periment or doing a much more challenging final project. 
Thus, as a population, they tended to be the less moti- 
vated students. 
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TRAINING SET (25K Words) 
Precision Recall 

87.8% 88.6% 
88.1% 88.2% 
88.6% 87.6% 
88.0% 87.2% 
86.2% 86.8% 
86.0% 87.1% 
84.9% 86.7% 
83.6% 86.0% 
83.9% 85.0% 
82.8% 84.5% 
84.8% 78.8% 

Student 1 
Student 2 
Student 3 
Student 4 
Student 5 
Student 6 
Student 7 
Student 8 
Student 9 
Student 10 
Student 11 

F-Measure P+n Precision 
2 

88.2 88.2 88.0% 
88.2 88.2 88.2% 
88.1 88.2 88.3% 
87.6 87.6 86.9% 
86.5 86.5 85.8% 
86.6 86.6 85.8% 
85.8 85.8 85.3% 
84.8 84.8 83.1% 
84.4 84.5 83.5% 
83.6 83.7 83.3% 
81.7 81.8 84.0% 

TEST SET 
Recall F-Measure 
88.8% 88.4 
87.9% 88.0 
87.8% 88.0 
85.9% 86.4 
85.8% 85.8 
87.1% 86.4 
87.3% 86.3 
85.7% 84.4 
84.8% 84.1 
84.4% 83.8 
77.4% 80.6 

2 
88.4 
88.1 
88.1 
86.4 
85.8 
86.5 
86.3 
84.4 
84.2 
83.8 
80.7 

Figure 1: P / R  results of test subjects on training and test corpora 

In the beginning, we believed that the stu- 
dents would be able to match or better the 
R&M system's results, which are shown in fig- 
ure 2. It can be seen that when the same train- 
ing corpus is used, the best students do achieve 
performances which are close to the R&M sys- 
tem's - -  on average, the top 3 students' per- 
formances come within 0.5% precision and 1.1% 
recall of the machine's. In the following section, 
we will examine the output of both the manual 
and automatic systems for differences. 

5 A n a l y s i s  

Before we started the analysis of the test set, 
we hypothesized that the manually derived sys- 
tems would have more difficulty with potential 
rifles that are effective, but fix only a very small 
number of mistakes in the training set. 

The distribution of noun phrase types, iden- 
tified by their part of speech sequence, roughly 
obeys Zipf's Law (Zipf, 1935): there is a large 
tail of noun phrase types that  occur very infre- 
quently in the corpus. Assuming there is not a 
rule that  can generalize across a large number 
of these low-frequency noun phrases, the only 
way noun phrases in the tail of the distribution 
can be learned is by learning low-count rules: in 
other words, rules that will only positively af- 
fect a small number of instances in the training 
corpus. 

Van der Dosch and Daelemans (1998) show 
that not ignoring the low count instances is of- 
ten crucial to performance in machine learning 
systems for natural language. Do the human- 
written rules suffer from failing to learn these 

infrequent phrases? 

To explore the hypothesis that a primary dif- 
ference between the accuracy of human and ma- 
chine is the machine's ability to capture the low 
frequency noun phrases, we observed how the 
accuracy of noun phrase annotation of both hu- 
man and machine derived rules is affected by 
the frequency of occurrence of the noun phrases 
in the training corpus. We reduced each base 
NP in the test set to its POS tag sequence as 
assigned by the POS tagger. For each POS tag 
sequence, we then counted the number of times 
it appeared in the training set and the recall 
achieved on the test set. 

The plot of the test set recall vs. the number 
of appearances in the training set of each tag 
sequence for the machine and the mean of the 
top 3 students is shown in figure 3. For instance, 
for base NPs in the test set with tag sequences 
that appeared 5 times in the training corpus, 
the students achieved an average recall of 63.6% 
while the machine achieved a recall of 83.5%. 
For base NPs with tag sequences that appear 
less than 6 times in the training set, the machine 
outperforms the students by a recall of 62.8% 
vs. 54.8%. However, for the rest of the base 
NPs - -  those that  appear 6 or more times - -  
the performances of the machine and students 
are almost identical: 93.7% for the machine vs. 
93.5% for the 3 students, a difference that is not 
statistically significant. 

The recall graph clearly shows that for the 
top 3 students, performance is comparable to 
the machine's on all but the low frequency con- 
stituents. This can be explained by the human's 
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Recall F-Measure 
89.3% 89.0 
92.3% 92.0 

2 
89.0 
92.1 

0.9 

Figure 2: P / R  results of the R&M system on test corpus 

..." " " . . .  ° o . "  

0.8 

0.7~ 

0.6- 

0.5- 

0.4- 

0.3 
o 

Training set size(words) Precision 
25k 88.7% 

200k 91.8% 

Number of Appearances in Training Set 

• • 4- - • Machine 
Students 

Figure 3: Test Set Recall vs. Frequency of Appearances in Training Set. 

reluctance or inability to write a rule that  will 
only capture a small number of new base NPs in 
the training set. Whereas a machine can easily 
learn a few hundred rules, each of which makes 
a very small improvement to accuracy, this is a 
tedious task for a person, and a task which ap- 
parently none of our human subjects was willing 
or able to take on. 

There is one anomalous point in figure 3. For 
base NPs with POS tag sequences that  appear 
3 times in the training set, there is a large de- 
crease in recall for the machine, but a large 
increase in recall for the students. When we 
looked at the POS tag sequences in question and 
their corresponding base NPs, we found that 
this was caused by one single POS tag sequence 
- -  that of two successive numbers (CD). The 

69 

test set happened to include many sentences 
containing sequences of the type: 

. . . (  CD CD ) TO ( CD CD ) . . .  

as in: 

( International/NNP Paper/NNP ) 
fell/VBD ( 1/CD 3/CD ) to/TO ( 
51/CD ½/CD ) . . .  

while the training set had none. The machine 
ended up bracketing the entire sequence 

I/CD -~/CD to/T0 51/CD ½/CD 

as a base NP. None of the students, however, 
made this mistake. 



6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

In this paper  we have described research we un- 
dertook in an a t tempt  to ascertain how people 
can perform compared to a machine at learning 
linguistic information from an annotated cor- 
pus, and more important ly to begin to explore 
the differences in learning behavior between hu- 
man and machine. Although people did not 
match the performance of the machine-learned 
annotator,  it is interesting that  these "language 
novices", with almost no training, were able to 
come fairly close, learning a small number  of 
powerful rules in a short amount  of t ime on a 
small training set. This challenges the claim 
that  machine learning offers portability advan- 
tages over manual  rule writing, seeing that  rel- 
atively unmotivated people can near-match the 
best machine performance on this task in so lit- 
tle t ime at a labor cost of approximately US$40. 

We plan to take this work in a number of di- 
rections. First,  we will further explore whether 
people can meet or beat the machine's accuracy 
at this task. We have identified one major weak- 
ness of human  rule writers: capturing informa- 
tion about low frequency events. It is possible 
that  by providing the person with sufficiently 
powerful corpus analysis tools to aide in rule 
writing, we could overcome this problem. 

We ran all of our human experiments on a 
fixed training corpus size. It would be interest- 
ing to compare how human performance varies 
as a function of training corpus size with how 
machine performance varies. 

There are many ways to combine human 
corpus-based knowledge extraction with ma- 
chine learning. One possibility would be to com- 
bine the human and machine outputs.  Another 
would be to have the human start with the out- 
put  of the machine and then learn rules to cor- 
rect the machine's mistakes. We could also have 
a hybrid system where the person writes rules 
with the help of machine learning. For instance, 
the machine could propose a set of rules and 
the person could choose the best one. We hope 
that  by further studying both  human and ma- 
chine knowledge acquisition from corpora, we 
can devise learning strategies that  successfully 
combine the two approaches, and by doing so, 
further improve our ability to extract useful lin- 
guistic information from online resources. 
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Figure 4: Screenshot of base NP chunking system 
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