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Abstract  

The problem of transforming a lattice into a 
non-deterministic finite state automaton is 
non-trivial. We present a transformation al- 
gorithm which tracks, for each node of an 
automaton under construction, the larcs 
which it reflects and the lattice nodes at their 
origins and extremities. An extension of the 
algorithm permits the inclusion of null, or 
epsilon, arcs in the output automaton. The 
algorithm has been successfully applied to 
lattices derived from dictionaries, i.e. very 
large corpora of strings. 

Introduct ion 

Linguistic data -- grammars, speech recognition 
results, etc. -- are sometimes represented as lat- 
tices, and sometimes as equivalent finite state 
automata. While the transformation of automata 
into lattices is straightforward, we know of no 
algorithm in the current literature for trans- 
forming a lattice into a non-deterministic finite 
state automaton. (See e.g. Hopcroft et al (1979), 
Aho et al (1982).) 

We describe such an algorithm here. Its main 
feature is the maintenance of complete records 
of the relationships between objects in the input 
lattice and their images on an automaton as these 
are added during transformation. An extension 
of the algorithm permits the inclusion of null, or 
epsilon, arcs in the output automaton. 

The method we present is somewhat complex, 
but we have thus far been unable to discover a 
simpler one. One suggestion illustrates the diffi- 
culties: this proposal was simply to slide lattice 
node labels leftward onto their incoming arcs, 
and then, starting with the final lattice node, to 
merge nodes with identical outgoing arc sets. 

This strategy does successfully transform many 
lattices, but fails on lattices like this one: 

Figure 1 

For this lattice, the sliding strategy fails to pro- 
duce either of the following acceptable solu- 
tions. To produce the epsilon arc of 2a or the 
bifurcation of Figure 2b, more elaborate meas- 
ures seem to be needed. 

a.  

a 

b. ~ F i g u r e  2 

a 

We present our datastructures in Section 1; our 
basic algorithm in Section 2; and the modifica- 
tions which enable inclusion of epsilon automa- 
ton arcs in Section 3. Before concluding, we 
provide an extended example of the algorithm 
in operation in Section 4. Complete pseudocode 
and source code (in Common Lisp) are available 
from the authors. 

1 Structures and terms 

We begin with datastructures and terminology. A 
lattice structure contains lists of lnodes (lattice 
nodes), lares (lattice arcs), and pointers to the 
lnitlal.lnode and flnal.inode. An lnode has a 
label and lists of Incoming.lares and outgo- 
lng.lares. It also has a list of a-ares (automaton 
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arcs) which reflect it A larc has an origin and 
extremity. Similarly, an automaton structure 
has anodes (automaton nodes), a-arcs, and 
pointers to the Initial.anode and final.anode. 
An anode has a label, a list of lares which it re- 
flects, and lists of Incoming.a-ares and outgo- 
lng.a-arcs  Finally, an a-arc has a pointer to its 
lnode, origin, extremity, and label. 

We said that an anode has a pointer to the list of  
lares which it reflects. However, as will be seen, 
we must also partition these lares according to 
their shared origins and extremities in the lattice. 
For this purpose, we include the field 
late.origin.groups in each anode. Its value is 
structured as follows: (((larc larc ...) lnode) 
((larc larc ...) lnode) ..) Each group (sublist) 
within larc.orlgln.groups consists of (1) a list of  
larcs sharing an origin and (2) that origin lnode 
itself. Likewise, the late.extremity.groups field 
partitions reflected larcs according to their 
shared extremities. 

During lattice-to-automaton transformation, it is 
sometimes necessary to propose the merging of  
several anodes. The merged anode contains the 
union of the larcs reflected by the mergees. 
When merging, however, we must avoid the gen- 
eration of strings not in the language of the in- 
put lattice, or parasites. An anode which would 
permit parasites is said to be ill-formed. An 
anode is ill-formed if any larc list in an origin 
group (that is, any list of reflected larcs sharing 
an origin) fails to intersect with the larc list of  
every extremity group (that is, with each list of  
reflected larcs sharing an extremity). Such an ill- 
formed anode would purport to be an image of  
lattice paths which do not in fact exist, thus giv- 
ing rise to parasites. 

2 T h e  bas ic  a l g o r i t h m  

We now describe our basic transformation pro- 
cedures. Modifications permitting the creation 
of epsilon arcs will be discussed below. 

Lattice.to.automaton, our top-level procedure, 
initializes two global variables and creates and 
initializes the new automaton. The variables are 
*candidate.a-ares* (a-arcs created to represent 
the current lnode) and *unconneetable.a-arcs* 
(a-arcs which could not be connected when 
processing previous lnodes) During automaton 
initialization, an initial.anode is created and 
supplied with a full set of lares: all outgoing 
larcs of the initial lnode are included. We then 
visit ever)' lnode in the lattice in topological or- 

der, and for each lnode execute our central pro- 
cedure, handle.eurrent.lnode. 

handle.current.lnode: This procedure creates an 
a-arc to represent the current lnode and connects 
it (and any pending a-arcs previously uncon- 
nectable) to the automaton under construction. 
We proceed as follows: (1) If eurrent.lnode is 
the initial lattice node, do nothing and exit. (2) 
Otherwise, check whether any a-arcs remain on 
*unconnectable.a-arcs* from previous proc- 
essing If so, push them onto *candidate.a- 
arcs*. (3) Create a candidate automaton arc, or 
candidate.a-arc, and push it onto *candidate.a- 
arcs*. 1 (4) Loop until *candidate.a-arcs* is 
exhausted. On each loop, pop a candidate.a-arc 
and try to connect it to the automaton as follows: 
Seek potential connecting.anodes on the 
automaton If none are found, push candi- 
date.a-arc onto *unconnectable.a-arcs*,  oth- 
erwise, try to merge the set of connect- 
Ing.anodes. CWhether or not the merge succeeds, 
the result will be an updated set of connect- 
ing.anodes.) Finally, execute link.candidate 
(below) to connect candidate.a-arc to connect- 
lng.anodes, 

Two aspects of this procedure require clarifica- 
tion. 

First, what is the criterion for seeking potential 
connecing.anodes for candidate.a-arc? These 
are nodes already on the automaton whose re- 
flected larcs intersect with those of  the origin of  
candidate.a-arc. 

Second, what is the final criterion for the success 
or failure of an attempted merge among con- 
necting,anodes? The resulting anode must not 
be ill-formed in the sense already outlined 
above. A good merge indicates that the a-arcs 
leading to the merged anode compose a legiti- 
mate set of common prefixes for candidate.a- 
a r c .  

link.candidate: The final procedure to be ex- 
plained has the following purpose: Given a can- 
didate.a-arc and its connecting.anodes (the an- 
odes, already merged so far as possible, whose 

1 The new a-arc receives the label of the [node which it 
reflects. Its origin points to all of that [node' s incoming 
larcs, and its extremity points to all of its outgoing 
larcs. Larc.or igin.groups and lare.extremity.  
groups are computed for each new anode. None of the 
new automaton objects are entered on the automaton 
yet. 
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larcs intersect with the larcs of the a-arc origin), 
seek a final connecting.anode, an anode to 
which the candidate.a-arc can attach (see be- 
low). If there is no such anode, it will be neces- 
sary to split the candidate.a-are using the pro- 
cedure split.a-arc. If there is such an anode, a 
we connect to it, possibly after one or more ap- 
plications of split.anode to split the connect- 
ing.anode. 

A connecting.anode is one whose reflected larcs 
are a superset of those of the candidate .a-arCs 
origin This condition assures that all of the 
lnodes to be reflected as incoming a-arcs of the 
connectable anode have outgoing lares leading 
to the lnode to be reflected as candidate.a-arc. 

Before stepping through the link.candidate pro- 
cedure in detail, let us preview split.a-are and 
split.anode, the subprocedures which split can- 
didate.a-arc or connecting.anodes, and their 
significance. 

split.a-arc: This subroutine is needed when (1) 
the origin of candidate.a-arc contains both ini- 
tial and non-initial lares, or (2) no connect- 
ing.anode can be found whose larcs were a su- 
perset of the larcs of the origin of candidate.a- 
are. In either case, we must split the current 
candidate.a-are into several new candidate.a- 
arcs, each of which can eventually connect to a 
connecting.anode. In preparation, we sort the 
lares of the current candidate .a-ar t ' s  origin 
according to the connecting.anodes which con- 
tain them. Each grouping of lares then serves as 
the lares set of the origin of a new candidate.a- 
arc, now guaranteed to (eventually) connect. We 
create and return these candidate.a-arcs in a list, 
to be pushed onto *candidate.a-arcs*. The 
original candidate.a-are is discarded. 

split.anode. This subroutine splits connect- 
ing.anode when either (1) it contains both final 
and non-final lares or (2) the attempted con- 
nection between the origin of candidate.a-are 
and connecting.anode would give rise to an ill- 
formed anode. In case (1), we separate final 
from non-final lares, and establish a new splittee 
anode for each partition. The splittee containing 
only non-final larcs becomes the con- 
neclng.anode for further processing. In case (2), 
some larc origin groups in the attempted merge 
do not intersect with all larc extremity groups. 
We separate the larcs in the non-intersecting ori- 
gin groups from those in the intersecting origin 
groups and establish a splittee anode for each 
partition. The splittee with only intersecting ori- 

gin groups can now be connected to candi- 
date.a-arc with no further problems. 

In either case, the original anode is discarded, 
and both splittees are (re)connected to the a-arcs 
of the automaton. (See available pseudocode for 
details.) 

We now describe link.candidate in detail. The 
procedure is as follows: Test whether connect- 
ing.anode contains both initial and non-initial 
larcs; if so, using split.a-arc, we split candi- 
date.a-arc, and push the splittees onto 
*candidate .a-arcs* Otherwise, seek a connect- 
ing.anode whose lares are a superset of the 
lares of the origin of  a - a r c  If there is none, 
then no connection is possible during the cur- 
rent procedure call. Split candidate.a-are, push 
all splittee a-arcs onto *candidate.a-ares*,  and 
exit. If there is a connecting.anode, then a con- 
nection can be made, possibly after one or more 
applications of split.anode. Check whether con- 
necting.anode contains both final and non-final 
larcs. If not, no splitting will be necessary, so 
connect candidate.a-arc to connecting.anode. 
But if so, split connecting.anode, separating final 
from non-final lares The splitting procedure 
returns the splittee anode having only non-final 
lares, and this anode becomes the connect- 
ing.anode Now attempt to connect candi- 
date.a-arc to connecting.anode. If the merged 
anode at the connection point would be ill- 
formed, then split connecting.anode (a second 
time, if necessary). In this case, split.anode re- 
turns a connectable anode as connecting.anode, 
and we connect candidate.a-are to it. 

A final detail in our description of lat- 
tice.to.automaton concerns the special handling 
of the flnal.lnode. For this last stage of the pro- 
cedure, the subroutine which makes a new can- 
didate.a-arc makes a dummy a-arc whose (real) 
origin is the final.anode. This anode is stocked 
with lares reflecting all of the final larcs. The 
dummy candidate.a-arc can then be processed 
as usual. When its origin has been connected to 
the automaton, it becomes the final.anode, with 
all final a-arcs as its incoming a-arcs, and the 
automaton is complete. 

3 Epsilon (null) transitions 

The basic algorithm described thus far does not 
permit the creation of epsilon transitions, and 
thus yields automata which are not minimal. 
However, epsilon arcs can be enabled by varying 
the current procedure split.a-arc, which breaks 
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an unconnectable candidate.a-are into several 
eventually connectable a-arcs and pushes them 
onto *candidate.a-arcs*. 

In the splitting procedure described thus far, the 
a-arc is split by dividing its origin; its label and 
extremity are duplicated. In the variant 
(proposed by the third author) which enables 
epsilon a-arcs, however, if the antecedence con- 
dition (below) is verified for a given splittee a- 
arc, then its label is instead 7. (epsilon); and its 
extremity instead contains the larcs of a sibling 
splittee's origin. This procedure insures that the 
sibling's origin will eventually connect with the 
epsilon a-arc's extremity. Splittee a-arcs with 
epsilon labels are placed at the top of the list 
pushed onto *candidate.a-ares* to ensure that 
they will be connected before sibling splittees. 

What is the antecedence condition? Recall that 
during the present tests for split.a-are, we parti- 
tion the a-arc's origin larcs. The antecedence 
condition obtains when one such larc partition is 
antecedent  to another partition. Partition PI is 
antecedent to P2 if every larc in P1 is antecedent 
to every larc in P2. And larcl is antecedent to 
larc2 if, moving leftward in the lattice from 
larc2, one can arrive at an lnode where larcl is 
an outgoing larc. 

A final detail: the revised procedure can create 
duplicate epsilon a-arcs. We eliminate such re- 
dundancy at connection time: duplicate epsilon 
a-arcs are discarded, thus aborting the connec- 
tion procedure. 

4 Extended e x a m p l e  

We now step through an extended example 
showing the complete procedure in action. Sev- 
eral epsilon arcs will be formed. 

We show anodes containing numbers indicating 
their reflected lares We show lare.origin. 
groups on the left side of anodes when relevant, 
and larc.extremity.groups on the right. 

Consider the lattice of Arabic forms shown in 
Figure 3. After initializing a new automaton, we 
proceed as follows: 

• Visit lnode W, constructing this candi- 
date.a-arc: 

®w+ 
The a-arc is connected to the initial anode. 

Visit lnode F, constructing this 
date.a-are: 

candi- 

The only connecting.anode is that con- 
taining the label of the initial lnode, > 
After connection, we obtain: 

W 1 

Visit lnode L, constructing 
date.a-are: 

this ¢andi- 

Anodes 1 and 2 in the automaton are con- 
necting.anodes. We try to merge them, 
and get: 

The tentative merged anode is well-formed, and 
the merge is completed. Thus, before connec- 
tion, the automaton appears as follows. (For 
graphic economy, we show two a-arcs with 
common terminals as a single a-arc with two 
labels.) 
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I ® 
Now, in link.candidate, we split candidate.a-arc 
so as to separate inital larcs from other larcs. The 
split yields two candidate.a-ares: the first con- 
tains arc 9, since it departs from the origin 
lnode; and the second contains the other arcs. 

@ L ©  
® L ©  

Following our basic procedure, the connection 
of these two arcs would give the following 
automaton: 

However, the augmented procedure will instead 
create one epsilon and one labeled transition. 
Why? Our split separated larc 9 and larcs (3, 13) 
in the candidate.a-are.  But larc 9 is antecedent 
to larcs 3 and 13. So the splittee candidate.a-are 
whose origin contains larc 9 becomes an epsilon 
a-arc, which connects to the automaton at the 
initial anode. The sibling splittee --  the a-arc 
whose origin contains (3, 13) --  is processed as 
usual. Because the epsilon a-arc's extremity was 
given the lares of this sibling's origin, connec- 
tion of the sibling will bring about a merge be- 
tween that extremity and anode 1. The result is 
as follows: 

0 2 ~  ~ '_  .~ 
2 L© 

• Visit lnode S, constructing this candidate.a- 
are: 

@s@ 
Anode 1 is the tentative connection point for the 
candidate.a-are,  since its larc set has the inter- 
section (4, 14) ~qth that of eandidate .a-are 's  
origin. 

Once again, we split candidate.a-are,  since it 
contains larc 10, one of the lares of the initial 
node. But larc l0 is an antecedent of arcs 4 and 
14. We thus create an epsilon a-arc with larc 10 
in its origin which would connect to the initial 
anode. Its extremity will contain larcs 4 and 14, 
and would again merge with anode 1 during the 
connection of the sibling splittee. However, the 
epsilon a-arc is recognized as redundant, and 
eliminated at connection time. The sibling a-arc 
labeled S connects, to anode 1, giving 

Visit lnode A, constructing this candidate.a- 
a r e  

Q 
The two connecting.anodes for the candidate.a- 
a rc  are 2 and 3. Their merge succeeds, yielding: 

We now split the candidate.a-are,  since it finds 
no anode containing a superset of its origin's 
lares: larcs (12, 19, 21) do not appear in the 
merged connecting.anode. Three splittee candi- 
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date automaton arcs are produced, with three 
larc sets in their origins: (5, 18), (12, 19), and 
(21). But larcs 12 and 19 are antecedents of  
larcs 5 and 18. Thus one of the splittees will be- 
come an epsilon a-arc which will, after all sib- 
lings have been connected, span from anode 1 to 
anode 2. And since (21) is also antecedent to (5, 
18) a second sibling will become an epsilon a- 
arc from the initial anode to anode 2. The third 
sibling splittee connects to the same anode, giv- 
ing Figure 4. 

Visit lnode N, constructing this candidate.a- 
a r e :  

The connecting.anode is anode 2. Once again, a 
split is required, since this anode does not con- 
rain arcs 11, 16, and 22. Again, three candi- 
date.a-ares are composed, with larc sets (6, 17), 
(11, 16) and (22). But the last two sets are ante- 
cedent to the first set. Two epsilon arcs would 
thus be created, but both already exist. After 
connection of the third sibling splittee, the 
automaton of Figure 5 is obtained. 

• Visit lnode K, constructing this candidate.a- 
arc: 

We find and successfully merge connect- 
ing.anodes (3 and 4). For reasons already dis- 
cussed, the candidate.a-arc is split into two sib- 
lings. The first, with an origin containing larcs 
(15, 16), will require our first application of  
split.anode to divide anode 1. The division is 
necessary because the connecting merge would 
be ill-formed, and connection would create the 
parasite path KTB. The split creates anode 4 (not 
shown) as the extremity of a new pair of a-arcs 
W, F - -  a second a-arc pair departing the initial 
anode with this same label set. 

The second splittee larc contains in its origin 
state lares 7 and 8. It connects to both anode 3 
and anode 4, which successfully merge, giving 

the automaton of Figure 6. 

Visit lnode T, constructing this candidate.a- 
are: 

The arc connects to the automaton at anode 5. 

Visit lnode B, making this candidate.a-arc: 

The arc connects to anode 6, giving the final 
automaton of Figure 7. 

C o n c l u s i o n  and P l a n s  

The algorithm for transforming lattices into 
non-deterministic finite state automata which we 
have presented here has been successfully ap- 
plied to lattices derived from dictionaries, i.e. 
very large corpora of strings (Meddeb- 
Hamrouni (1996), pages 205-217). 

Applications of the algorithm to the parsing of  
speech recognition results are also planned: lat- 
tices of phones or words produced by speech 
recognizers can be converted into initialized 
charts suitable for chart parsing. 
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