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Abstract 

We present an architecture and an on-line learning 
algorithm and apply it to the problem of part-of- 
speech tagging. The architecture presented, SNOW, 
is a network of linear separators in the feature space, 
utilizing the Winnow update algorithm. 

Multiplicative weight-update algorithms such as 
Winnow have been shown to have exceptionally good 
behavior when applied to very high dimensional 
problems, and especially when the target concepts 
depend on only a small subset of the features in the 
feature space. In this paper we describe an architec- 
ture that utilizes this mistake-driven algorithm for 
multi-class prediction - selecting the part of speech 
of a word. The experimental analysis presented here 
provides more evidence to that these algorithms are 
suitable for natural language problems. 

The algorithm used is an on-line algorithm: every 
example is used by the algorithm only once, and is 
then discarded. This has significance in terms of ef- 
ficiency, as well as quick adaptation to new contexts. 

We present an extensive experimental study of our 
algorithm under various conditions; in particular, it 
is shown that the algorithm performs comparably to 
the best known algorithms for POS. 

1 I n t r o d u c t i o n  

Learning problems in the natural  language do- 
main often map  the text  to a space whose di- 
mensions are the measured features of the text ,  
e.g., its words. Two  characterist ic propert ies of  
this domain are tha t  its dimensionali ty i s  very 
high and tha t  bo th  the learned concepts and 
the instances reside very sparsely in the feature 
space. In this paper  we present a learning algo- 
r i thm and an architecture with properties suit- 
able for this domain.  

The SNOW algori thm presented here builds 
on recently introduced theories of multiplicative 
weight-updat ing learning algorithms for linear 
functions. Mult ipl icat ive weight-updat ing al- 
gori thms such as Winnow (Littlestone, 1988) 

and Weighted Majority (Littlestone and War- 
muth, 1994) have been studied extensively in 
the COLT literature. Theoretical analysis has 
shown that they have exceptionally good be- 
havior in the presence of irrelevant attributes, 
noise, and even a target function changing in 
time (Littlestone, 1988; Littlestone and War- 
muth , 1994; Herbster and Warmuth, 1995). 

Only recently have people started to test 
these claimed abilities in applications. We 
address these claims empirically by applying 
SNOW to one of the fundamental disambigua- 
tion problems in natural language: part-of 
speech tagging. 

Part of Speech tagging (POS) is the problem 
of assigning each word in a sentence the part of 
speech that it assumes in that sentence. The 
importance of the problem stems from the fact 
that POS is one of the first stages in the process 
performed by various natural language related 
processes such as speech, information extraction 
and others. 

The architecture presented here, SNOW, is 
a Sparse Network Of Linear separators which 
utilizes the Winnow learning algorithm. A tar- 
get node in the network corresponds to a can- 
didate in the disambiguation task; all subnet- 
works learn autonomously from the same data 
in an online fashion, and at run time, they com- 
pete for assigning the correct meaning. A sim- 
ilar architecture which includes an additional 
layer is described in (Golding and Roth, 1998). 

The POS problem suggests a special challenge 
to this approach. First, the problem is a multi- 
class prediction problem. Second, determining 
the POS of a word in a sentence may depend 
on the POS of its neighbors in the sentence, 
but these are not known with any certainty. In 
the SNOW architecture, we address these prob- 
lems by learning at the same time and from the 
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same input, a network of many classifiers. Each 
sub-network is devoted to a single POS tag and 
learns to separate its POS tag from all others. 
At run time, all classifiers are applied simulta- 
neously and compete for deciding the POS of 
this word. 

We present an extensive set of experiments 
in which we study some of the properties that  
SNOWexhibits on this problem, as well as com- 
pare it to other algorithms. In our first ex- 
periment, for example, we study the quality of 
the learned classifiers by, artificially, supplying 
each classifier with the correct POS tags of its 
neighbors. We show that  under these conditions 
our classifier is almost perfect. This observa- 
tion motivates an improvement in the algorithm 
which aims at trying to gradually improve the 
input supplied to the classifier. 

We then perform a preliminary study of learn- 
ing the POS tagger in an unsupervised fashion. 
We show that  we can reduce the requirements 
from the training corpus to some degree, but do 
not get good results, so far, when it is trained 
in a completely unsupervised fashion. 

Unlike most of the algorithms tried on this 
and other disambiguation tasks, SNOW is an 
online learning algorithm. That is, during 
training, every example is used once to update 
the learned hypothesis, and is then discarded. 
While on-line learning algorithms may be at dis- 
advantage because they see each example only 
once, the algorithms are able to adapt to testing 
examples by receiving feedback after prediction. 
We evaluate this claim for the POS task, and 
discover that indeed, allowing feedback while 
testing, significantly improves the performance 
of SNOWon this task. 

Finally, we compare our approach to a state- 
of-the-art tagger, based on Brill's transforma- 
tion based approach; we show that SNOW- 
based taggers already achieve results that  are 
comparable to it, and outperform it, when we 
allow online update. 

Our work also raises a few methodological 
questions with regard to the way we measure 
the performance of algorithms for solving this 
problem, and improvements that can be made 
by better defining the goals of the tagger. 

The paper is organized as follows. We start 
by presenting the SNOW approach. We then 
describe our test task, POS tagging, and the 

way we model it, and in Section 5 we describe 
our experimental studies. We conclude by dis- 
cussing the significance of the approach to fu- 
ture research on natural language inferences. 

In the discussion below, s is an input example, 
zi's denote the features of the example, and c, t 
refer to parts of speech from a set C of possible 
POS tags. 

2 T h e  S N O W  A p p r o a c h  

The SNOW (Sparse Network Of Linear sepa- 
rators) architecture is a network of threshold 
gates. Nodes in the first layer of the network 
represent the input features; target nodes (i.e., 
the correct values of the classifier) are repre- 
sented by nodes in the second layer. Links from 
the first to the second layer have weights; each 
target node is thus defined as a (linear) function 
of the lower level nodes. 

For example, in POS, target nodes corre- 
spond to different part-of-speech tags. Each tar- 
get node can be thought of as an autonomous 
network, although they all feed from the same 
input. The network is sparse in that  a target 
node need not be connected to all nodes in the 
input layer. For example, it is not connected 
to input nodes (features) that were never active 
with it in the same sentence, or it may decide, 
during training, to disconnect itself from some 
of the irrelevant input nodes, if they were not 
active often enough. 

Learning in SNOW proceeds in an on- 
line fashion. Every example is treated au- 
tonomously by each target subnetworks. It is 
viewed as a positive example by a few of these 
and a negative example by the others. In the 
applications described in this paper, every la- 
beled example is treated as positive by the tar- 
get node corresponding to its label, and as neg- 
ative by all others. Thus, every example is 
used once by all the nodes to refine their def- 
inition in terms of the others and is then dis- 
carded. At prediction time, given an input sen- 
tence s = (Zl, z2 , . . . zm) ,  (i.e., activating a sub- 
set of the input nodes) the information propa- 
gates through all the competing subnetworks; 
and the one which produces the highest activ- 
ity gets to determine the prediction. 

A local learning algorithm, Littlestone's Win- 
now algorithm (Littlestone, 1988), is used at 
each target node to learn its dependence on 
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other nodes. Winnow has three parameters: a 

threshold 0, and two update  parameters,  a pro- 
m o t i o n  parameter  c~ > 1 and a demot ion  pa- 
rameter  0 < /3 < 1. Let ~ 4 =  { ix , . . . , im}  be 
the set of active features that  are linked to (a 
specific) target node. 

The algorithm predicts 1 (positive) iff 
~']ie~4wi > 0, where wl is the weight on the 
edge connecting the i th feature to the target 
node. The algorithm updates its current hy- 
pothesis (i.e., weights) only when a mistake 
is made. If the algorithm predicts 0 and the 
received label is 1 the update is (promotion) 
Vi E .A, wi +-- ~ • wi .  If the algorithm predicts 
1 and the received label is 0 the update  is (de- 
motion) Vi E ~4, wi +--/3 • wi.  For a study of the 
advantages of Winnow, see (Littlestone, 1988; 
Kivinen and Warmuth,  1995). 

3 T h e  P O S  P r o b l e m  

Part of speech tagging is the problem of iden- 
tifying parts of speech of words in a pre- 
sented text. Since words are ambiguous in 
terms of their part of speech, the correct part 
of speech is usually identified from the con- 
text the word appears in. Consider for ex- 
ample the sentence The can will rust. Both 
can and rust can accept modal-verb, norm 
and verb as possible POS tags (and a few 
more); rust can be tagged both as noun and 
verb. This leads to many possible POS tag- 
ging of the sentence one of which, determiner, 
noun, modal-verb, verb, respectively, is cor- 
rect. The problem has numerous application 
in information retrieval, machine translation, 
speech recognition, and appears to be an im- 
portant intermediate stage in many natural lan- 
guage understanding related inferences. 

In recent years, a number of approaches have 
been tried for solving the problem. The most 
notable methods are based on Hidden Markov 
Models(HMM)(Kupiec, 1992; Schiitze, 1995), 
transformation rules(Brill, 1995; Brill, 1997), 
and multi-layer neural networks(Schmid, 1994). 

HMM taggers use manually tagged training 
data to compute statistics on features. For 
example, they can estimate lexical probabili- 
ties Prob(wordlta9) and contextual probabili- 
ties P r o b ( t a g l p r e v i o u s  n tags) .  On the testing 
stage, the taggers conduct a search in the space 
of POS tags to arrive at the most probable POS 

labeling with respect to the computed statistics. 
That  is, given a sentence, the taggers assign in 
the sentence a sequence of tags that  maximize 
the product  of lexical and contextual probabil- 
ities over all words in the sentence. 

Transformation based learning(TBL) (Brill, 
1995) is a machine learning approach for rule 
learning. The learning procedure is a mistake- 
driven algorithm that produces a set of rules. 
The hypothesis of TBL is an ordered list of 
transformations. A t rans format ion  is a rule 
with an antecedent t and a consequent c E C. 
The antecedent t is a condition on the input  sen- 
tence. For example, a condition might  be t h e  
p r e c e d i n g  word t a g  i s  t. Tha t  is, applying 
the condition to a sentence s defines a feature 
t ( s )  E jr .  Phrased differently, the application 
of the condition to a given sentence s, checks 
whether the corresponding feature is active in 
this sentence. The condition holds if and only 
if the feature is active in the sentence. 

The TBL hypothesis is evaluated as follows: 
given a sentence s, an initial labeling is assigned 
to it. Then, each rule is applied, in order, to the 
sentence. If the condition of the rule applies, 
the current label is replaced by the label in the 
consequent. This process goes on until the last 
rule in the list is evaluated. The last labeling is 
the output  of the hypothesis. 

In its most  general setting, the TBL hypoth- 
esis is not a classifier (Brill, 1995). The reason 
is that ,  in general, the t ruth  value of the condi- 
tion of the i th rule may change while evaluating 
one of the preceding rules. For example, in part  
of speech tagging, labeling a word with a part  of 
speech changes the conditions of the following 
word that  depend on that  part  of speech(e.g., 
the preceding word tag is t). 

TBL uses a manually-tagged corpus for learn- 
ing the ordered list of transformations. The 
learning proceeds in stages, where on each stage 
a transformation is chosen to minimize the num- 
ber of mislabeled words in the presented cor- 
pus. The transformation is then applied, and 
the process is repeated until no more mislabel- 
ing minimization can be achieved. 

For example, in POS, the consequence of a 
transformation labels a word with a part  of 
speech. (Brill, 1995) uses lexicon for initial an- 
notat ion of the training corpus, where each word 
in the lexicon has a set POS tags seen for the 
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word in the training corpus. Then a search in 
the space of transformations is conducted to de- 
termine a transformation that  most reduces the 
number of wrong tags for the words in the cor- 
pus. The application of the transformation to 
the initially labeled produces another labeling of 
the corpus with a smaller number of mistakes. 
Iterating this procedure leads to learning an or- 
dered list of transformation which can be used 
as a POS tagger. 

There have been a t tempts  to apply neural 
networks to POS tagging(e.g.,(Schmid, 1994)). 
The work explored multi-layer network archi- 
tectures along with the back-propagation algo- 
r i thm on the training stage. The input  nodes 
of the network usually correspond to the tags of 
the words surrounding the word being tagged. 
The performance of the algorithms is compara- 
ble to that  of HMM methods.  

In this paper, we address the POS problem 
with no unknown words (the closed world as- 
sumption) from the standpoint  of SNOW. That  
is, we represent a POS tagger as a network of 
linear separators and use Winnow for learning 
weights of the network. The S N O W  approach 
has been successfully applied to other prob- 
lems of natural  language processing(Golding 
and Roth, 1998; Krymolowski and Roth, 1998; 
Roth, 1998). However, this problem offers ad- 
ditional challenges to the S N O W  architecture 
and algorithms. First, we are trying to learn 
a multi-class predictor, where the number of 
classes is unusually large(about 50) for such 
learning problems. Second, evaluating hypoth- 
esis in testing is done in a presence of at t r ibute 
noise. The reason is that  input features of the 
network are computed with respect to parts  of 
speech of words, which are initially assigned 
from a lexicon. 

We address the first problem by restricting 
the parts of speech a tag for a word is selected 
from. Second problem is alleviated by perform- 
ing several labeling cycles on the testing corpus. 

4 T h e  T a g g e r  N e t w o r k  

The tagger network consists of a collection of 
linear separators, each corresponds to a distinct 
part  of speech 1 . The input nodes of the net- 
work correspond to the features. The features 
are computed for a fixed word in a sentence. We 

1The 50 par t s  are taken from the WSJ corpus 

use the following set of features2: 
(1) The preceding word is tagged c. 
(2) The following word is tagged e. 
(3) The word two before is tagged c. 
(4) The word two after is tagged c. 
(5) The preceding word is tagged c and the fol- 
lowing word is tagged t. 
(6) The preceding word is tagged c and the word 
two before is tagged t. 
(7) The following word is tagged c and the word 
two after is tagged t. 
(8) The current word is w. 
(9) The most probable par t  of speech for the 
current word is c. 

The most probable par t  of speech for a word 
is taken from a lexicon. The lexicon is a list of 
words with a set of possible POS tags associated 
with each word. The lexicon can be computed 
from available labeled corpus data,  or it can rep- 
resent the a-priori information about words in 
the language. 

Training of the S N O W  tagger network pro- 
ceeds as follows. Each word in a sentence pro- 
duces an example. Given a sentence, features 
are computed with respect to each word thereby 
producing a positive examples for the part  of 
speech the word is labeled with, and the nega- 
tive examples for the other parts of speech. The 
positive and negative examples are presented to 
the corresponding subnetworks, which update  
their weights according to Winnow. 

In testing, this process is repeated, producing 
a test example for each word in the sentence. In 
this case, however, the POS tags of the neigh- 
boring words are not known and, therefore, the 
majori ty of the features cannot be evaluated. 
We discuss later various ways to handle this 
situation. The default one is to use the base- 
line tags - the most  common POS for this word 
in the training lexicon. Clearly this is not ac- 
curate, and the classification can be viewed as 
done in the presence of attribute noise. 

Once an example is produced, it is then pre- 
sented to the networks. Each of the subnet- 
works is evaluated and we select the one with 
the highest level of activation among the separa- 
tors corresponding to the possible tags for the 
current word. After every prediction, the tag 
output  by the S N O W  tagger for a word is used 
for labeling the word in the test data. There- 

~The features I-8 are par t  of (Brill, 1995) features 
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fore, the features of the following words will de- 
pend on the output  tags of the preceding words. 

5 E x p e r i m e n t a l  R e s u l t s  

The data  for  all the experiments was extracted 
from the Penn Treebank WSJ corpus. The 
training and test corpus consist of 600000 and 
150000, respectively. The first set of experi- 
ment  uses only the SNOW system and eval- 
uate its performance under various conditions. 
In the second set SNOW is compared with a 
naive Bayes algorithm and with Brill's TBL, 
all trained and tested on the same data.  We 
also compare with Baseline which simply as- 
signs each word in the test corpus its most  com- 
mon POS in the lexicon. Baseline performance 
on our test corpus is 94.1%. 

A lexicon is computed from both the train- 
ing and the test corpus. The lexicon has 81227 
distinct words, with an average of 2.2 possible 
POS tags per word in the lexicon. 

5.1 Investigating S N O  W 

We first explore the ability of the network to 
adapt  to new data.  While online algorithms are 
at a disadvantage - each example is processed 
only once before being discarded - they have the 
advantage of (in principle) being able to quickly 
adapt  to new data.  This is done within SNOW 
by allowing it to update  its weights in test mode. 
Tha t  is, after prediction, the network receives a 
label for a word, and then uses the label for 
updat ing its weights. 

In test mode,  however, the true tag is not 
available to the system. Instead, we used as 
the feedback label the corresponding baseline 
tag taken from the lexicon. In this way, the 
algorithm never uses more information than is 
available to batch algorithms tested on the same 
data.  The intuition is that ,  since the baseline 
itself for this task is fairly high, this informa- 
tion will allow the tagger to better  tolerate new 
trends in the data  and steer the predictors in the 
right direction. This is the default system that  
we call SNOW in the discussion that  follows. 

Another policy with on-line algorithms is to 
supply it with the true feedback, when it makes 
a mistake in testing. This policy (termed adp- 
SNOW) is especially useful when the test data  
comes from a different source than the train- 
ing data,  and will allow the algorithm to adapt  
to the new context. For example, a language 

acquisition system with a tagger trained on a 
general corpus can quickly adapt  to a specific 
domain, if allowed to use this policy, at least 
occasionally. What  we found surprising is that  
in this case supplying the true feadback did 
not improve the performance of SNOW signifi- 
cantly. Both on-line methods though, perform 
significantly better than if we disallow on-line 
update,  as we did for noadp-SNOW. The re- 
sults, presented in table 1, exhibit the advan- 
tage of using an on-line algorithm. 

96.5 97.13 97.2 

Table 1: Effect  o f  a d a p t a t i o n :  Per- 
formance of the tagger network with no 
adaptation(noadp-SNOW), baseline adap- 
tat ion(SNOH0, and true adaptat ion(adp- 
SNOW). 

One difficulty in applying the SNOW ap- 
proach to the POS problem is the problem of 
at t r ibute noise alluded to before. Namely, the 
classifiers receive a noisy set of features as in- 
put  due to the a t t r ibute  dependence on (un- 
known) tags of neighboring words. We address 
this by studying quality of the classifier, when 
it is guaranteed to get (almost) correct input. 

Table 2 summarizes the effects of this noise on 
the performance. Under SNOW we give the re- 
sults under normal conditions, when the the fea- 
tures of the each example are determined based 
on the baseline tags. Under SNOW-i-cr we de- 
termine the features based on the correct tags, 
as read from the tagged corpus. One can see 
that  this results in a significant improvement,  
indicating that  the classifier learned by SNOW 
is almost perfect. In normal conditions, though, 
it is affected by the at tr ibute noise. 

Baseline[SNOW+crISNOW [ 
94.t  98.8 97.13 _l 

Table 2: Q u a l i t y  o f  classifier" The SNOW 
tagger was tested with correct initial tags 
(SNOW+cr) and, as usual, with baseline based 
initial tags. 

Next, we experimented with the sensitivity of 
SNOW to several options of labeling the train- 
ing data.  Usually both features and labels of 
the training examples are computed in terms of 
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correct parts  of speech for words in the training 
corpus. We call the labeling Semi-supervised 
when we only require the features of the train- 
ing examples to be computed in terms of the 
most  probable pos for words in the training cor- 
pus, but the labels still correspond to the correct 
parts of speech. The labeling is Unsupervised 
when both features and labels of the training 
examples are computed in terms of most prob- 
able POS of words in the training corpus. 

i Baseline [ S OW uns J S OW ss I 
94.1 94.3 97.13 97.13 

Table 3: Effect  o f  s u p e r v i s i o n .  Performance 
of SNOW with unsupervised (SNOW+uns), 
semi-supervised (SNOW+ss) and normal mode 
of supervised training. 

It is not surprising that  the performance of 
the tagger learned in an semi-supervised fash- 
ion is the same as that  of the one trained from 
the correct corpus. Intuitively, since in the test 
stage the input  to the classifier uses the base- 
line classifier, in this case there is a better fit 
between the data  supplied in training (with a 
correct feedback!) and the one used in testing. 

5.2 C o m p a r a t i v e  Study 
We compared performance of the SNOW tag- 
ger with one of the best POS taggers, based on 
Brill's TBL, and with a naive Bayes (e.g.,(Duda 
and Hart, 1973) based tagger. We used the 
same training and test sets. The results are 
summarized in table 4. 

[ BaselinelNB I TBL I SNOWladp-SNOW I 
94.1 96 97.15 97.13 97.2 

Table 4: C o m p a r i s o n  o f  t a g g i n g  pe r fo r -  
m a n c e ,  

In can be seen that  the TBL tagger and 
SNOW perform essentially the same. However, 
given that  SNOW is an online algoril:hm, we 
have tested it also in its (true feedback) adap- 
tive mode, where it is shown to outperform 
them. It is interesting to note that  a simple 
minded NB method also performs quite well. 

Another important  point of comparison is 
that  the NB tagger and the SNOW taggers are 
trained with the features described in section 4. 
TBL, on the other hand, uses a much larger 
set of features. Moreover, the learning and 

tagging mechanism in TBL relies on the inter- 
dependence between the produced labels and 
the features. However, (Ramshaw and Marcus, 
1996) demonstrate  that  the inter-dependence 
impacts only 12% of the predictions. Since the 
classifier used in TBL without inter-dependence 
can be represented as a linear separator(Roth,  
1998), it is perhaps not surprising that  SNOW 
performs as well as TBL. Also, the success of the 
adaptive SNOWtaggers shows that  we can alle- 
viate the lack of the inter-dependence by adap- 
tat ion to the testing corpus. It also highlights 
importance of relationship between a tagger and 
a corpus. 

5.3 Alternat ive  Performance Metrics  
Out of 150000 words in the test corpus used 
about 65000 were non-ambiguous. That  is, they 
can assume only one POS. Incorporating these 
in the performance measure is somewhat mis- 
leading since it does not provide a good measure 
of the classifier performance. 

Table 5: P e r f o r m a n c e  for  a m b i g u o u s  
w o r d s .  

Sometimes we may be interested in determin- 
ing POS classes of words rather than simply 
parts of speech. For example, some natural lan- 
guage applications may require identifying that  
a word is a noun without specifying the exact 
noun tag for the word(singular, plular, proper, 
etc.). In this case, we want to measure perfor- 
mance with respect to POS classes. Tha t  is, if 
the predicted part  of speech for a word is in the 
same class with the correct tag for the word, 
then the prediction is termed correct. 

Out  of 50 POS tags we created 12 
POS classes: punctuat ion marks, determin- 
ers, preposition and conjunctions, existentials 
"there",  foreign words, cardinal numbers and 
list markers, adjectives, modals, verbs, adverbs, 
particles, pronouns, nouns, possessive endings, 
interjections. The performance results for the 
classes are shown in table 5.3. 

In analyzing the results, one can see that  
many of the mistakes of the tagger are "within" 
classes. We are currently exploring a few is- 
sues that  may allow us to use class information, 
within SNO W, to improve tagging accuracy. In 
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96.2 97 97.95 97.95 98 

Table 6: P e r f o r m a n c e  for P O S  c lasses .  

particular, we can incorporate POS classes into 
our SNOW tagger network. We can create an- 
other level of output nodes. Each of the nodes 
will correspond to a POS class and will be con- 
nected to the output nodes of the POS tags in 
the class. The update mechanism of network 
will then be made dependent on both class and 
tag prediction for a word. 

6 C o n c l u s i o n  

A Winnow-based network of linear separators 
was shown to be very effective when applied to 
POS tagging. We described the SNOW archi- 
tecture and how to use it for POS tagging and 
found that  although the algorithm is an on-line 
algorithm, with the advantages this carries, its 
performance is comparable to the best taggers 
available. 

This work opens a variety of questions. Some 
are related to further studying this approach, 
based on multiplicative update algorithms, and 
using it for other natural language problems. 

More fundamental, we believe, are those 
that  are concerned with the general learning 
paradigm the SNOW architecture proposes. 

A large number of different kinds of ambigu- 
ities are to be resolved simultaneously in per- 
forming any higher level natural language infer- 
ence (Cardie, 1996). Naturally, these processes, 
acting on the same input and using the same 
"memory", will interact. In SNO W, a collection 
of classifiers are used; all are learned from the 
same data, and share the same "memory". In 
the study of SNOWwe embark on the study of 
some of the fundamental issues that  are involved 
in putting together a large number of classifiers 
and investigating the interactions among them, 
with the hope of making progress towards using 
these in performing higher level inferences. 
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