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Abstract 

This paper proposes a method for generating a logical- 
constraint-based internal representation from a unifica- 
tion grammar formalism with disjunctive information. 
Unification grammar formalisms based on path equa- 
tions and lists of pairs of labels and values are better 
than those based on first-order terms in that the former 
is easier to describe and to understand. Parsing with 
term-based internal representations is more efficient than 
parsing with graph-based representations. Therefore, it 
is effective to translate unification grammar formalism 
based on path equations and lists of pairs of labels and 
values into a term-based internal representation. Pre- 
vious translation methods cannot deal with disjunctive 
feature descriptions, which reduce redundancies in the 
grammar and make parsing efficient. Since the pro- 
posed method translates a formalism without expanding 
disjunctions, parsing with the resulting representation is 
efficient. 

1 Introduction 

The objective of our research is to build a natural language 
understanding system that is based on unification. The 
reason we have chosen a unification-based approach is 
that it enables us to describe grammar declaratively, 
making the development and amendment of grammar 
easy. 

Analysis systems that are based on unification gram- 
mars can be classified into two groups from the viewpoint 
of the ways feature structures are represented: (a) those 
using labeled, directed graphs (Shieber, 1984) and (b) 
those using first-order terms (Pereira and Warren, 1980; 
Matsumoto et al., 1983; Tokunaga et al., 1991). 

In addition to internal representation, grammar for- 
malisms can be classified into two groups, (i) those that 
describe feature structures with path equations and lists 
of pairs of labels and values (Mukai and Yasukawa, 
1985; Ai't-Kaci, 1986; Tsuda, 1994), and (ii) those that 
describe feature structures with first-order terms (Pereira 
and Warren, 1980; Matsumoto et al., 1983; Tokunaga et 
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al., 1991). Since formalisms (i) are used in the family 
of the PATR parsing systems (Shieber, 1984), hereafter 
they will be called PATR-Iike formalisms. 

Most of the previous systems are either ones that 
generate representation (a) from formalisms (i) or ones 
that generate representation (b) from formalisms (ii). 
However, representation (b) is superior, and formalism 
(i) is far better. Representation (b) is superior for 
the following two reasons. First, unification of terms 
is more efficient of that of graphs because the data 
structure of terms is simpler (Sch6ter, 1993). l Second, 
it is easy to represent and process named disjunctions 
(DSrre and Eisele, 1990) in the term-based representation. 
Named disjunctions are effective when two or more 
disjunctive feature values depend on each other. The 
treatment of named disjunctions in graph unification 
requires a complex process, while it is simple in our 
logical-constraint-based representations. Formalism (i) 
is better because term-based formalism is problematic 
in that readers need to memorize the correspondence 
between arguments and features and it is not easy to 
add new features or delete features (Gazdar and Mellish, 
1989). 

Therefore, it is effective to translate formalism (i) 
into representation (b). Previous translation methods 2 
(Covington, 1989; Hirsh, 1988; SchSter, 1993; Erbach, 
1995) are problematic in that they cannot deal with dis- 
junctive feature descriptions, which reduce redundancies 
in grammar. Moreover, incorporating disjunctive infor- 
mation into internal representation makes parsing more 
efficient (Kasper, 1987; Eisele and DSrre, 1988; Maxwell 
and Kaplan, 1991; Hasida, 1986). 

This paper presents a method for translating grammar 
formalism with disjunctive information based on path 
equations and lists of pairs of labels and values into term- 

I Since unspecified features are represented by variables in term 
unification, when most of the features are unspecified, it is inefficient 
to represent feature structures by terms. In current linguistic theories 
such as HPSG (Pollard and Sag, 1994), however, thanks to the type 
specifications, the number of features that a feature structure can have 
is reduced, so it does not cause as much trouble. 

2Methods that generate representation (b) after generating represen- 
tation (a) are included. 
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based representations, without expanding disjunctions. 
The formalism used here is feature-based formalism with 
disjunctively defined macros (FF-DDM), an extension of  
the PATR-Iike formalisms that incorporates a descrip- 
tion of disjunctive information. The representation used 
here is logical-constraint-based grammar representation 
(LCGR), in which disjunctive feature structures are rep- 
resented by Horn clauses. 

2 Unification Grammar Formalisms with 
Disjunctive Information 

The main difference between PATR and FF-DDM is 
that there can be only one definition for one macro 
in PATR while multiple definitions are possible in FF- 
DDM. These definitions are disjuncts. I f  the conditions 
in one of  the definitions of  a macro are satisfied, the 
condition the macro represents is satisfied. In FF-DDM, 
the grammar is described using four kinds of  elements: 
type definitions, phrase structure rules, lexical entries, 
and macro definitions. 

Some examples are shown below. The first is an 
example of  type definition. 

(1) (deftype sign 

pos agr subj) 

This means that there is a type named sign and the 
feature structures of  type sign can have POS, AGR, and 
SUBJ features. 

This is an example of  a phrase structure rule. 

(2) (defrule psrl (s -> np vp) 

(<s pos> = sentence 

<np pos> = noun 

<vp pos> = verb 

<vp subj> = <rip> 

<np agr> = <vp agr> 

<s agr> = <vp agr>)) 

Here psrl is the name of this rule. Variable s denotes 
the feature structure of  the mother node, and n p  and 
v-p are variables that denote the feature structures of  the 
daughter nodes. Rule p s r l  denotes the relationship 
between three feature structures s ,  np ,  and v-p. The 
fourth argument is a set of  path equations. The path 
equation <s  p o s >  = s e n t e n c e  indicates that the 
POS feature value in the feature structure represented 
by the variable s is sentence. The path equation < v p  
s u b j >  = <np>  means the suaJ feature value o f v p  is 
identical to the feature structure np.  A path can be a list 
of  pairs of  labels and values, although we do not explain 
this in detail in this paper. 

Next we show an example of  a lexical item. 

(3) (defword walk (sign) 

(<sign pos> = verb 

<sign agr> = <sign subj agr>) 

(not3s <sign agr>)) 

Here sign is the variable that represents the lexical 
feature structure for walk. The disjunctively defined 
macro ( n o t 3 s  < s i g n  a g r > )  in the last line shows 
that the AGR feature value of s i g n  must satisfy one of  
the definitions of  n o t 3  s.  

Examples of  macro definitions, or definitions of  
n o  t 3 s ,  are shown below. 

(4) (defddmacro not3s (agr) 

(<agr num>= sing) 

(ist-or-2nd <agr per>)) 

(5) (defddmacro not3s (agr) 

(<agr num>= plural)) 

I f  one of these is satisfied, the condition for macro 
n o t 3  s is satisfied. Two definitions, (4) and (5) stand in 
a disjunction relation. 3 

3 Logical-Constraint-Based Grammar 
Representation 

3.1 Logical Constraint Representation of 
Disjunctive Feature Structures 

We will first define logical constraints. A logical con- 
straint (constraint for short) is a set of  positive literals of  
first-order logic. Each positive literal that is an element 
of  a constraint is called a constraint element. 

An example of  a constraint is (6). Constraint elements 
are written in the DEC-10 Prolog notation. The names 
of  variables start with capital letters. 

(6) {p(X) ,  q(X, f ( r ) ) }  

A definition clause of  a predicate is a Horn clause having 
that predicate as the predicate of  its head. For example, 
(7) is a definition clause o fp .  4 

(7) p( f (X,  Y)) , - - { r (X) ,  s (Y)}  

The bodies of  definition clauses can be considered as 
constraints, that is, bodies can be considered to constrain 
the variables in the head. For example, definition clause 
(7) means that, for a pair of  the variables X and Y, 
p( f (X,  Y)) is true if the instances satisfy the constraint 
{ r ( X ) ,  s (Y)}.  We omit the body when it is empty. The 
set of  definition clauses registered in the system is called 
a database. 

Feature structures that do not include any disjunctions 
can be represented by first-order terms. For example, (8) 
is described by (9). 

POS v 

] (8) sign AGRsuBJ signagr [ PER 3rd  sing ] 

[ agr 3rd J 

3Since there is no limitation on the number of arguments of a macro, 
named disjunctions can be described. 

4Horn clauses are described in a different notation from DEC-10 
Prolog so as to indicate explicitly that the bodies can be recognized as 
constraints. 
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(9) sign(v, agr( sing, 3rd), sign(_, agr( sing, 3rd), _)) 

Feature structure (8) is a O'ped feature structure used 
in typed unification grammars (Emele and Zajac, 1990). 
The set of features that a feature structure can have 
is specified according to types. In this paper, we do 
not consider type hierarchies. Symbol "_" in (9) is an 
anonymous variable. The arguments of function symbol 
sign correspond to POS feature, AGR feature, and SUBJ 
feature values. 

Disjunctions are represented by the bodies of definition 
clauses. A constraint element in a body whose predicate 
has multiple definition clauses represents a disjunction. 
For example, in our framework a disjunctive feature 
descri ~tlon (10) 5 is represented by (11). 

POS v 

l ist  "[ sign AGR *1 agr PER [2ndJ 

(10) l agr [NUM plural] 
suB,  sign [ AO, *1 ] 
POS n ] 

sign AGR agr[ NUMPER 3rdSing] 
(11) pCsign(v, Agr, sign(_, Agr,_))) 

~--{not_3s(Agr)} 
p( sign(n, ag (  ing, 3 d), _)) 
not_3s( agr( sing, Per ) )  *--{ l st_or.2nd( Per ) } 
not_3s(ag (pt  al, _)) 
l st_or_2nd( l st ) ~-- 
l st_or_2nd( 2nd) ,-- 

Literal p(X) means that variable X is a candidate for the 
disjunctive feature structure (DFS) specified by predicate 
p. The constraint element lst_or_2nd(Per) in (11) 
constrains variable Per to be either 1st or 2nd. In 
a similar way, not_3s(Agr) means that Agr is a term 
having the form agr(Num, Per), and that either N u m  is 
sing and Per is subject to 1 st_or_2nd(Per) or that N u m  
is plural. As this example shows, constraint elements in 
bodies represent disjunctions and each definition clause 
of their predicates represents a disjunct. 

3.2 Unification by Logical Constraint 
Transformation 

Unification of DFSs corresponds to logical constraint 
satisfaction. For example, the unification of DFSs p(X) 
and q(Y) is equivalent to obtaining all instances of X 
that satisfy {p(X),  q(X)}. 

In order to be able to use the result of one unification 
in another unification, it would be useful to output results 
in the form of constraints. Such a method of satisfaction 
is called constraint transformation (Hasida, 1986). Con- 
straint transformation returns a constraint equivalent to 
the input when it is satisfiable, but it fails otherwise. 

5 Braces represent disjunctions. 

The efficiency of another unification using the result- 
ing constraint depends on which form of constraint the 
transformation process has returned. Obtaining compact 
constraints corresponds to avoiding unnecessary expan- 
sions of disjunctions in graph unification (Kasper, 1987; 
Eisele and DSrre, 1988). Some constraint transformation 
methods whose resulting constraints are compact have 
been proposed (Hasida, 1986; Nakano, 1991). By using 
these algorithms, we can efficiently analyze using LCGR. 

3.3 Grammar Representation 

LCGR consists of a set of phrase structure rules, a set of 
lexical items, and a database. 

Each phrase structure role is a triplate ( V --, ~, 
C /, where V is a variable, ~ is a list of variables, 
and C is a constraint on V and variables in ~. This 
means if instances of the variables satisfy constraint C, 
they form the syntactic structure permitted by this rule. 
For example, ( X --~ Y Z, {psr l (X ,Y ,Z)}  ) means 
if there is a set of instances x, y, and z of X,  Y, 
and Z that satisfies {psrl(X, Y, Z)}, the sequence of a 
phrase having feature structure y and that having feature 
structure z can be recognized as a phrase having feature 
structure x. 

Each lexical item is a pair (w,p), where w is a word 
and p is a predicate. This means an instance of X 
that satisfies {p(X)} can be a lexical feature structure 
for word w. For example, (walk, lex_walk I means 
instances of X that satisfy {lex_walk(X)} are lexical 
feature structures for walk. 

The database is a set of definite clauses. Predicates 
used in the constraints and predicates that appear in the 
bodies of the definite clauses in the database should have 
their definition clauses in the database. 

4 Translation Algorithm 

LCGR representation is generated from the grammar 
in the FF-DDM formalism as follows. (i) Predicates 
that represent feature values are generated from type 
definitions. (ii) Phrase structure rules, lexical items, and 
macro definitions are translated into LCGR elements. 
(iii) Redundancies are removed from definite clauses 
by reduction. Below we explain the algorithm through 
examples. 

Creating predicates that represent feature values 
Let us consider the following type definition. 

(12) (deftype sign 
pos agr subj) 

Then a feature structure of the type sign is represented 
by three-argument term sign(_, _, _), and its arguments 
represent Pos, AGR, and SUBJ features. By using this, the 
following three definite clauses are created and added to 
the database. 
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(13) pos(sign(X,_,_),X) 
agr(sign(_,X,_),X) 
subj(sign(_,_,X),X) .-- 

Translation of phrase structure rules, lexical items, 
and macro definitions Each of the phrase structure 
rules, lexical items, and macro definitions is translated 
into a definite clause and added to the database. This is 
done as follows. 

(I) Create a literal to be the head. In the case of 
a phrase structure rule and a lexical item, let a 
newly created symbol be the predicate and all the 
variables in the third element be the arguments. 
With macro definition, let the macro name be the 
predicate and all the variables in the third element 
be the arguments. 

(II) Compute the body by using path equations and 
disjunctively defined macros, and add the created 
Horn clause to the database. 

By using the predicates created at the step (I), 
phrase structure rules and lexical items in LCGR 
are created. 

For example, let us consider the following lexical item 
for verb walk. 
(14) (defword walk (sign) 

(<sign pos> = verb 
<sign agr> = <sign subj agr>) 
(not3s <sign agr>)) 

First at the step (I), a new predicate cO and LCGR 
variable Sign that corresponds to s i g n  are created, 
cO(Sign) being the head. At the step (II), < s i g n  
pos>  in the second line is replaced by the variable 
X1 and pos(Sign, X1 ) is added to the body. The 
symbol v e r b  is replaced by the LCGR constant verb. 
Then eq(X l, verb) is added to the body, where eq is a 
predicate that represents the identity relation and that has 
the following definition clause. 

eq(X, X) ~-- 
As for the third line, the path < s i g n  a g r >  at 
the left-hand side is replaced by X2, < s i g n  s u b j  
a g r >  at the right-hand side is replaced by X4, 
and {agr(Sign, X2), subj(Sign, X3), agr(X3, X4)} 
is added to the body. Then eq(X2, X4) is added 
to the body. For macro ( n o t 3 s  < s i g n  a g r > ) ,  
< s i g n  a g r >  is replaced by X5, and agr(Sign, X5) 
and not3s(X5) are added to the body. Then (15) is 
added to the database. 

(15) c0(Sign) *-- { pos( Sign, X 1), eq( X 1, verb), 
agr(Sign, X2), subj(Sign, X3), agr(X3, X4), 
eq(X2, X4), agr(Sign, X5), not3s(X5)} 

Finally, (walk, cO) is registered as a lexical item. Phrase 
structure rules and macro definitions are translated in the 

(III) 

same way. Horn clause (16) is generated from (2), and ( 
S ~ NP VP, {el(S, NP, VP)} ) is registered. 

(16) el(S, NP, VP) (---{ pos(S, X1), eq(Xl, sentence), 
pos(NP, X2), eq(X2, noun), pos(VP, X3), 
eq(X3, verb), subj(VP, X4), eq(X4, NP), 
agr(NP, X5), agr(VP, X6), eq(X5, X6), 
agr(S, X7), agr(VP, X8), eq(X7, X8)} 

In the same way, Horn clauses (17) are generated from 
the macro definitions (4) and (5). 

(17) not3s( A gr ) *--{num( Agr, X 1), eq( X l, sing), 
per( Agr, X2), l st_or_2nd( X 2 ) } 

not3s( Agr ) ~{num( Agr, X 1), eq( X 1, plural)} 

In the above translation process, ifa macro m has multiple 
definitions, predicate m' also has multiple definitions. 
This means disjunctions are not expanded during this 
process. 

Removing Redundancy by Reduction In the defini- 
tion clauses created by the above proposed method, many 
predicates that have only one definition clause are used, 
such as predicate eq, predicates representing feature val- 
ues, and predicates representing macro that have only one 
definition. We call these predicates definite predicates. 
If these definition clauses are used in analysis as they 
are, it will be inefficient because the definition clause of 
definite predicates must be investigated every time these 
clauses are used. 

Therefore, by using the procedure reduce (Tsuda, 
1994) each literal whose predicate is definite in the body 
is replaced by the body of its definition clause. 

Let us consider (18) below as an example. If the sole 
definition clause of c2 is (19), c2(X, Y) in (18) is unified 
with the head of (19). Then, (18) is transformed into 
(20). 

(18) cl( f (X),  Y) ,--{eZ(X, Y)} 

(19) c2(g(A, B), Y) *-{c3(A), c4(B)} 

(20) cl(f(g(A, B)), Y) ~--{c3(A), c4(B)} 

By using this operation, Horn clause (15) above is trans- 
formed into the following one. 

cO(sign(verb, X 6, sign(X7, X 6, X8))) 
~ {not3s( X 6) } 

Since not3s has two definitions, not3s(X6) is not re- 
placed. Consequently, the disjunction denoted by not3s 
is not expanded in this translation. 

5 E x p e r i m e n t  

The advantage of this method compared to the previous 
methods is that it can translate without expanding dis- 
junctions. To show this, we compared the time taken 
for two analyses: the first using a grammar translated 
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into terms after expanding disjunctions 6 and the second 
using a grammar translated without expanding disjunc- 
tions through our method. The computation times were 
measured using a bottom-up chart parser (Kay, 1980) 
in Allegro Common Lisp 4.3 running on Digital Unix 
3.2 on DEC Alpha station 500/333MHz. It employs 
constraint projection (Nakano, 1991) as an efficient con- 
straint transformation method. We measured the time 
for computing all parses. We used a Japanese grammar 
based on Japanese Phrase Structure Grammar (JPSG) 
(Gunji, 1987) that covers fundamental grammatical con- 
structions of Japanese sentences. For all of 21 example 
sentences (5 to 16 words), the time taken for analysis 
using the grammar translated without disjunction expan- 
sion was shorter (43% to 72%). This demonstrates the 
advantage of our method. 

6 Conclusion 

This paper presented a method for translating a grammar 
formalism with disjunctive information that is based on 
path equations and lists of pairs of labels and values 
into logical-constraint-based grammar representations, 
without expanding disjunctions. Although we did not 
treat type hierarchies in this paper, we can incorporate 
them by using the method proposed by Erbach (1995). 
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