
A Method for Correcting Errors in Speech Recognition Using the Statistical
Features of Character Co-occurrence

Satoshi Kaki, Eiichiro Sumita, and Hitoshi Iida
ATR Interpreting Telecommunications Research Labs,

Hikaridai 2-2 Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
{skaki, sumita, iida}@itl.atr.co.jp

Abstract

It is important to correct the errors in the results of
speech recognition to increase the performance of a
speech translation system. This paper proposes a
method for correcting errors using the statistical
features of character co-occurrence, and evaluates the
method.

The proposed method comprises two successive
correcting processes. The first process uses pairs of
strings: the first string is an erroneous substring of the
utterance predicted by speech recognition, the second
string is the corresponding section of the actual
utterance. Errors are detected and corrected according
to the database learned from erroneous-correct
utterance pairs. The remaining errors are passed to the
posterior process which uses a string in the corpus
that is similar to the string including recognition
errors.

The results of our evaluation show that the use of
our proposed method as a post-processor for speech
recognition is likely to make a significant contribution
to the performance of speech translation systems.

method also obtains reliably recognized partial segments
of an utterance by cooperatively using both grammatical
and n-gram based statistical language constraints, and uses
a robust parsing technique to apply the grammatical
constraints described by context-free grammar (Tsukada et

aL, 97). However, these methods do not carry out any error
correction on a recognition result, but only specify correct
parts in it.

In this paper we therefore propose a method for
correcting errors, which is characterized by learning the
trend of errors and expressions, and by processing in an
arbitrary length string.

Similar work on English was presented by (E.K.
Ringger et al., 96). Using a noisy-channel model, they
implemented a post-processor to correct word-level errors
committed by a speech recognizer.

2 Method for Correcting Errors

We refer to two compositions of the proposal as Error-
Pattem-Correction (EPC) and Similar-String-Correction
(SSC) respectively. The correction using EPC and SSC
together in this order is abbreviated to EPC+SSC.

1 Introduction

In spite of the increased performance of speech recognition
systems, the output still contains many errors. For language
processing such as a machine translation, it is extremely
difficult to deal with such errors.

In integrating recognition and translation into a speech
translation system, the development of the following
processes is therefore important: (1) detection of errors in
speech recognition results; (2) sorting of speech
recognition results by means of error detection; (3)
providing feedback to the recognition process and/or
making the user speak again; (4) correct errors, etc.

For this purpose, a number of methods have been
proposed. One method is to translate correct parts
extracted from speech recognition results by using the
semantic distance between words calculated with an
example-based approach (Wakita et al., 97). Another

2.1 Error-Pattern-Correction (EPC)
When examining errors in speech recognition, errors are
found to occur in regular pattems rather than at random.
EPC uses such error pattems for correction. We refer to
this pattern as an Ermr-Pattem.

An Error-Pattem is made up of two strings. One is the

Ma chiog I [Sobsti ting
E.or- Corre -

]pa ofE.or / I for
Pattern l [Error-Part

~ p a rror-Pattern-Databa~-~
irs of Error- and Correct-~J

Figure 2-1 The block diagram for EPC

653

string including errors, and the other is the corresponding
correct string (the former string is referred to as the Error-
Part, and the latter as the Correct-Part respectively). These
parts are extracted from the speech recognition results and
the corresponding actual utterances, then they are stored in
a database (referred to as an Error-Pattern-Database). In
EPC, the correction is made by substituting a Correct-Part
for an Error-Part when the Error-Part is detected in a

recognition result (see Figure 2-1). Table 2-1 shows some
Error-Pattern examples.

Table 2-1 Examples of Error-Patterns

Correct-Part Error-Part

2.1.1 Extraction of Error-Patterns
The Error-Pattern-Database is mechanically prepared
using a pair of parts from the speech recognition
results and the corresponding actual utterance. The
examples below show candidates grouped according
to the correct part ' < ~ > ' and the erroneous part '< ~
~1.

Error-Pattern Candidates Frq.
<N> : <t.¢> 3

~<N> : !~<t.~> 3
~ < N > : ~[.~</'.c> 3

EPC is a simple and effective method because it
detects and corrects errors only by pattern-matching.
The unrestricted use of Error-Patterns, however, may
produce the wrong correction. Therefore a careful
selection of Error-Patterns is necessary. In this
method, several selection conditions are applied in
order, as described below. Candidates passing all of
the conditions are employed as Error-Patterns.

Condition of High Frequency: Candidates of not less
than a given threshold value (2 in the experiment) in
frequency are selected to collect errors which have a high
frequency of occurrence in recognition results.

Condition of Non-Side Effect:, This step excludes the
candidate whose Error-Part is included in actual utterances
to prevent the Error-Part from matching with a section of
actual utterances.

Condition of Inclusion-l: Because a long Error-Part is
more accurate for matching, this step selects an Error-
Pattern whose Error-Part is as long as possible. For two
arbitrary candidates, when one of their Error-Parts includes

the other, and their frequencies are the same value, the
candidate whose Error-Part includes the other is accepted.

Condition of Inclusion-2: If some Error-Parts are derived
from different utterances and have a common part in them,
this common part is suitable for an Error-Pattern.
Therefore in this step, an Error-Pattem with its Error-Part
as short as possible is selected. For two arbitrary
candidates, when one of their Error-Parts includes the
other, and their frequencies have different values, the

included candidate is accepted.

2.2 Similar-String-Correction (SSC)
In an erroneous Japanese sentence, the correct
expressions can be estimated frequently by the row of
characters before and after the erroneous sections of
the sentence. This means that we are involuntarily
applying a portion of a regular expression to an

erroneous section.
Instead of this portion of the regular expression,

SSC uses a collection of strings, the members of
which are in the corpus (this collection we refer to as
the String-Database). As shown in the block diagram
in figure 2-2, the correction is performed through the
following steps, the first step is error detection. The
next step is the retrieval of the string that is most

I Input String

Error

Detection

Retrieval of

Similar String

Substitution of

Dissimilar Part

I Corrected String

Figure 2-2 The block diagram of SSC

654

similar to the string including errors from the String-
Database (the former string is referred to as the
Similar-String, and the latter as the Error-String).
Finally, the correction is made using the difference
between these two strings.

2.2.1 Procedure for Correction
The procedure for correction varies slightly,
depending on the position of the detected error: a top,
a middle, or a tail, in an utterance. Here we will
explain the case of a middle.

Step 1: Estimate an erroneous section (referred to as an
error-block) with error detection method'. If there is no
error-block, the procedure is terminated.

Depending on the position of the error-block, the
procedure branches in the following way.

If P1 is less than T (T=4), then go to the step for a top.
If a value L - P2 + T is less than T, then go to the step

for a tail.
In all other cases, go to the step for a middle.
Here, P1 and P2 denote the start and end positions of

an error-block, and L denotes the length of the input string.

Step 2: Take the string (Error-String) that comprises an
error-block and each M (5 in the experiment) character
before and after the error-block out of the input string, and
using this string (Error-String) as a query key, retrieve a
string (Similar-String) from the String-Database to satisfy
the following condition. It must be located in a middle of
an utterance, it must have the highest value (S), and S must
be not less than a given threshold value (0.6 in the
experiment). Here, S is defined as:

S = (L - N) / L
where L is the len~uh of the Similar String, and N is the

minimum number of character insertions, deletions, or
substitutions necessary to transform the Error-String to the
Similar-String.

If there is no Similar-String, then go to step 1 leaving
this error-block undone.

Step 3: If the two strings (denoted A and B), that are each
K (2 in the experiment) characters before and after an
error-block in the Error-String, am found in the Similar-
String, take out the string (denoted C) between A and B in

1 For detecting errors in Japanese sentences, the method using the
probability of character sequence was reported to be fairly
effective (Araki et al., 93). The result of a preliminary
experiment was that the precision and recall rates were over
80% and over 70% respectively.

<error-block>

Error-String: ['~@] {~<:fi~A. ~>t;l:l [ffJ'~]

[A] A ' ' /~ ~Substituti°n ~ ~ [B]

Similar-String: [~'9"-] {~A.~r~l;~t [ffJ'~]~J~'~
Ict ~ "

_h)'ffure 2-3 The procedure o£ S S C

the Similar-String. ff k is not found, then go to Step 1
leaving this error-block undone.

Substitute string C as the correct string for the string
between A and B in the Error-String (see figure 2-3).

3. Evaluation

3.1 Data Condition for Experiments
Results of Speech Recognition: We used 4806
recognition results including errors, from the output of
speech recognition (Masataki et al., 96; Shimizu et al., 96)
experiment using an ATR spoken language database
(Morimoto et al., 94) on travel arrangements. The
characteristics of those results are shown in table 3-1.

The breakdown of these 4806 results is as follows:
4321 results were used for the preparation of Error-
Patterns and the other 495 results were used for the
evaluation.

Table 3-1 The recognition characteristics
Recognition
accuracy(%) Insertion Deletion Substitution Sum
(in character)

74.73 2642 1702 8087 12431

Preparation of Error-Patterns: As the threshold value
for the frequency of the occurrence, we employed a value
of not less than 2, therefore we obtained 629 Error-Pattems
using the 4321 results of speech recognition.

Preparation of the String-Database: Using the different
data-sets of the ATR spoken language database from the
above-mentioned 4806 results, we prepared the String-
Database.

We employed 3 as the threshold value for the frequency
of the occurrence, and 10 as the length of a string,
therefore obtaining 16655 strings.

3.2 Two Factors for Evaluation
We evaluated the following two factors before and
after correction: (1) the counting of errors, and (2) the
effectiveness of the method in understanding the
recognized results.

655

To confirm the effectiveness, the recognition
results were evaluated by two native Japanese. They
assigned one of five levels, A-E, to each recognition
result before and after correction, by comparing it
with the corresponding actual utterance. Finally, we
employed the overall results of the stricter of two
evaluators.

(A) No lacking in the meaning of the actual utterance,
and with perfect expression.

(B) No lacking in meaning, but with slightly awkward

expression.
(C) Slightly lacking in meaning.
(D) Considerably lacking in meaning.
(E) Unable to understand, and unable to imagine the

actual utterance.

4. Results and Discussions
4.1 Decrease in the Number of Errors
Table 4-1 shows the number of errors before and after
correction. These results show the following.

Table 4-1 The number of errors before and after correction
Insertion Deletion Substitution Sum

Before 264 206 891 1361
EPC 226(-14.4) 190(-7.8) 853(-4.3) 1269(-6.8)
SSC 251(-4.9) 214(+3.9) 870(-2.4) 1335(-1.9)

EPC+SSC 216(-18.2) 198(-3.9) 831 (-7.9) 1245(-8.5)
The values inside brackets 0 are the rate of decrease

In EPC+SSC, the rate of decrease was 8.5%, and
the decrease was obtained in all type of errors.

In SSC, the number of deletion errors increased by
3.9%. The reason for this is that in SSC, correction by
deleting the part of a substitution error frequently
caused new deletion errors as shown in the example
below. From the standpoint of the correction it might
be a mistaken correction, but it increases
understanding of the results by deleting a noise and
makes the results viable for machine translation. It
therefore practically refines the speech recognition
results.

Correct String:
' ~ : t~ ~ 5 ~%~ ~ ' ¢ , V , , ~ ~-)~,~/19~'~,='~°~ ~'¢ '
"Hai arigatou gozaimasu Kyoto Kanko Hoteru yoyaku gakari de
gozaimasu", ('l'hank you for calling Kyoto Kanko Hotel reservations.)

Input String:

-¢,
"A hai arigatou gozaimasu e Kyoto Kanko Hoteru yanichikan
gozaimasu", (Thank you for calling Kyoto Kanko Hotel)

Corrected String:

"A hai arigatou gozaimasu e Kyoto Kanko Hoteru de gozaimasu",
(Thank you for calling Kyoto Kanko Hotel.)

656

4.2 Improvement of Understandability
Table 4-2 shows the number of change in the
evaluated level.

The rate of improvement after correction was 7%.
There were also a lot of cases that improved their
level by recovering content words. For example, the
word "cash" was recovered in '~,~ ~, "~'--~,@, "~"
(before-'after), "guide" in '~i]X-J --~ ~ - " ~ ' , etc.

These results confirm that our method is effective
in improving the understanding of the recognition

results.
On the other hand, there were four level-down

cases. Three of these cases were caused by the
misdetection of errors in the SSC procedure. The
remaining case occurred in the EPC procedure. The
Error-Pattern used in this case could not be excluded
by the condition of non-side effects because its Error-
Part was not included in the corpus of the actual
utterance.

Table 4-2 The number of changes in the evaluated level before
and aJier correction.

EPC SSC EPC+SSC
Improve 1 8 (3 . 7) 1 5 (3 . 1) 3 4 (7 . 0)
No Change 466(96.1) 467(96.3) 447(92.2)
Down 1 (0 . 2) 3 (0 . 6) 4 (0 . 8)

The values inside brackets 0 are the rate (%) of the number to total
number of evaluated results.

4.3 More Applicable for a Result Having a Few
Errors
Table 4-3 shows the rate of change in the evaluated
level by the original number of erroneous characters 2

Table 4-3 The rate o f change in the evaluated level by the
original number of erroneous characters involved in the
r e c o

Num. of erroneous
characters

nition results (EPC+SSC).

Num. of Rate(%) of change

No
results Improve Change Down

0 102 0.0 98.0 2.0
1 30 16.7 80.0 3.3
2 21 28.6 66.7 4.8
3 26 19.2 80.8 0.0
4 40 12.5 87.5 0.0
5 27 14.8 85.2 0.0
6 24 12.5 87.5 0.0
7 21 9.5 90.5 0.0
8 17 0.0 100.0 0.0
9 20 5.0 95.0 0.0

10 29 0.0 100.0 0.0
11 22 0.0 100.0 0.0

12 > 106 2.8 97.2 0.0
Total 485 7.0 92.2 0.8

This number is the m i n i m u m number o f character insert ions,

delet ions or subst i tut ions necessary to t ransform the result o f

recognit ion into a corresponding actual utterance.

included in the recognition results.
The recognition results improving their level after

cone~tion mosdy fell in the range of erroneous numbers
by not more than 7. The reasons for this are that with there
being many errors, the failure of the corrections increases
because the corrections are prevented by other surrounding
errors. In addition, when only a few successful corrections
have been made, they have little influence on the overall
understanding.
These results show that the proposed method is more
applicable for a recognition result having a few errors, as
compared with one having many errors.

5 Conclusion

As described above, our proposed method has the
following features:

(1) Since the proposed method is designed with a arbitrary
length string as a unit, it is capable of correcting errors
which are hard to deal with by methods designed to treat
words as units.

For example, the insertion error '~" ("wo") in the string
'3~f.~L ~ , ~ Jj"(~ ' ("shiharai wo houhou'~ shown in table 2-
1 cannot be corrected by a method designed to treat words
as units, because of the existence of the particle' ~ ' ("wo")
as a correct word. However with the proposed method, it is
possible to correct this kind of error by using the row of
characters before and after ' ~ ' ("wo").

(2) In the proposed method of learning the trend of errors
and expressions with long strings, it is possible to correct
errors where it is difficult to narrow the candidates down to
the correct character with the probability of the character
sequence alone.

When considering the candidate for "(" ("te") in' l.,U.
"(~ ~. ~ ©U." ("shitetekimasunode '~) shown in table 2-1
to satisfy the probability of the character sequence, its
candidates, '4 ~' ("/"), '}3' Co"), 'I~' ("itada'~ are arranged
in order of increasing probability. It is therefore difficult to
narrow the candidates into the correct character ' I~ '
("itada") by the probability of character sequence alone.
But with the proposed method it is possible to correct this
kind of error by using the row of the characters before and
after "(" Cte").

(3) Both the Error-Pattem-Database and String-Database
can be mechanically prepared, which reduces the effort
required to prepare the databases and makes it possible to

apply this method to a new recognition system in a short

time.
From the evaluation, it became clear that the

proposed method has the following effects:
(1) It reduces over 8% of the errors.
(2) It improves the understanding of the recognition results

by7%.
(3) It has very little influence on correct recognition results.
(4) It is more applicable for a recognition result with a few

errors than one with many errors.

Judging from these results and features, the use of the
proposed method as a post-processor for speech
recognition is likely to make a significant contribution to
the performance of speech translation systems.

In the future, we will try to improve the correcting
accuracy by changing algorithms and will also try to
improve translation performance by combining our
method with Wakita's method.

References

T. Araki et al., 93. A Method for Detecting and Correcting of
Characters Wrongly Substituted, Deleted or Inserted in
Japanese Strings Using 2nd-Order Markov Model IPSJ,
Report of SIG-NL, 97-5, pp. 29-35 (1993)

T. Morimoto et al., 94: A Speech and language database for
speech translation research. Proc. of ICSLP 94, pp. 1791-

1794, 1994.

H. Masataki et al., 96. Variable-order n-gram generation by

word-class splitting and consecutive word grouping. In Proc.

of ICASSP, 1996.
T. Shimizu et al., 96. Spontaneous Dialogue Speech Recognition

using Cross-word Context Constrained Word Graphs.

ICASSP 96, pp. 145-148, 1996.
Y. Wakita et al., 97. Correct parts extraction from speech

recognition results using semantic distance calculation, and
its application to speech translation. ACI.JF_.ACL Workshop
Spoken Language Translation, pp. 24-31, 1997-7.

H. Tsukada et al., 97. Integration of grammar and statistical
language constraints for partial word-sequence recognition.
In Proc. of 5th European Conference on Speech
Communication and Technology (EuroSpeech 97), 1997.

E.K.Ringger et al., 96. A Fertility Channel Model for Post-
Correction of Continuous Speech Recognition. ICSLP96, pp.
897-900, 1996.

657

