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A b s t r a c t  

In this paper, we present a stochastic language mod- 
eling tool which aims at retrieving variable-length 
phrases (multigrams), assuming bigram dependen- 
cies between them. The phrase retrieval can be in- 
termixed with a phrase clustering procedure, so that 
the language data are iteratively structured at both 
a paradigmatic and a syntagmatic level in a fully in- 
tegrated way. Perplexity results on ATR travel ar- 
rangement data with a bi-multigram model (assum- 
ing bigram correlations between the phrases) come 
very close to the trigram scores with a reduced num- 
ber of entries in the language model. Also the ability 
of the class version of the model to merge semanti- 
cally related phrases into a common class is illus- 
trated. 

1 I n t r o d u c t i o n  

There is currently an increasing interest in statisti- 
cal language models, which in one way or another 
aim at exploiting word-dependencies spanning over 
a variable number of words. Though all these mod- 
els commonly relax the assumption of fixed-length 
dependency of the conventional ngram model, they 
cover a wide variety of modeling assumptions and of 
parameter estimation frameworks. In this paper, we 
focus on a phrase-based approach, as opposed to a 
gram-based approach: sentences are structured into 
phrases and probabilities are assigned to phrases in- 
stead of words. Regardless of whether they are gram 
or phrase-based, models can be either determinis- 
tic or stochastic. In the phrase-based framework, 
non determinism is introduced via an ambiguity on 
the parse of the sentence into phrases. In practice, 
it means that even if phrase abe is registered as a 
phrase, the possibility of parsing the string as, for 
instance, lab] [c] still remains. By contrast, in a de- 
terministic approach, all co-occurences of a, b and c 
would be systematically interpreted as an occurence 
of phrase [abel. 
Various criteria have been proposed to derive 
phrases in a purely statistical way 1; data likeli- 

I i.e. w i thou t  u s i ng  g r a m m a r  rules  like in S tochas t i c  Con-  
tex t  Free G r a m m a r s .  

hood, leaving-one-out likelihood (PLies et al., 1996), 
mutual information (Suhm and Waibel, 1994), and 
entropy (Masataki and Sagisaka, 1996). The use of 
the likelihood criterion in a stochastic framework al- 
lows EM principled optimization procedures, but it 
is prone to overlearning. The other criteria tend 
to reduce the risk of overlearning, but their opti- 
mization relies on heuristic procedures (e.g. word 
grouping via a greedy algorithm (Matsunaga and 
Sagayama, 1997)) for which convergence and opti- 
mality are not theoretically guaranteed. The work 
reported in this paper is based on the multigram 
model, which is a stochastic phrase-based model, 
the parameters of which are estimated according to 
a likelihood criterion using an EM procedure. The 
multigram approach was introduced in (Bimbot et 
al., 1995), and in (Deligne and Bimbot, 1995) it was 
used to derive variable-length phrases under the as- 
sumption of independence of the phrases. Various 
ways of theoretically releasing this assumption were 
given in (Deligne et al., 1996). More recently, ex- 
periments with 2-word multigrams embedded in a 
deterministic variable ngram scheme were reported 
in (Siu, 1998). 
In section 2 of this paper, we further formulate 
a model with bigram (more generally ~-gram) de- 
pendencies between the phrases, by including a 
paradigmatic aspect which enables the clustering 
of variable-length phrases. It results in a stochas- 
tic class-phrase model, which can be interpolated 
with the stochastic phrase model, in a similar way 
to deterministic approaches. In section 3 and 4, 
the phrase and class-phrase models are evaluated in 
terms of perplexity values and model size. 

2 Theoretical formulation of the 
multigrams 

2.1 Variable-length phrase distribution 

In the multigram framework, the assumption is 
made that sentences result from the concatenation 
of variable-length phrases, called multigrams. The 
likelihood of a sentence is computed by summing 
the likelihood values of all possible segmentations of 
the sentence into phrases. The likelihood computa- 
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tion for any particular segmentation into phrases de- 
pends on the model assumed to describe the depen- 
dencies between the phrases. We call b i -mu l t ig ram 
mode l  the model where bigram dependencies are 
assumed between the phrases. For instance, by lim- 
iting to 3 words the maximal length of a phrase, the 
bi-multigram likelihood of the string "a b c d" is: 

p([,,] I # )  p([b] I [hi) p([c] ] [b]) p([d] ] [c]) 
p([,,] I #)p([b] I [a])p([cd]l[b]) 
p([,,] I # )  p([b¢] I [,,]) p([d] I [bc]) 
p([a] I #)p([bcd]l[a]) 
p([ab] l #) p([c] l [ab]) p([d] l [c]) 
p([ab] I #) p([cd] I [,,b]) 
p([:bc] I #) p([d] I [:bc]) 

To )resent the general formalism of the model in 
this section, we assume ~-gram correlations between 
the phrases, and we note n the maximal length of a 
phrase (in the above example, ~=2 and n=3). Let 
W denote a string of words, and {S} the set of pos- 
sible segmentations on W. The likelihood of W is: 

z ( w ) =  ~ z(w,s) 
se{s} 

(1) 

and the likelihood of a segmentation S of W is: 

c (w,s) = I-I P(S(,) I s( ,_~-+~) . . .s( ,_~))  (2) 

with s(~) denoting the phrase of rank (r) in the seg- 
mentation S. The model is thus fully defined by 
the set of ~-gram probabilities on the set {8i} i of all 
the phrases which can be formed by combining 1, 2, 
...up to n words of the vocabulary. Maximum like- 
lihood (ML) estimates of these probabilities can be 
obtained by formulating the estimation problem as 
a ML estimation from incomplete data (Dempster et 
al., 1977), where the unknown data is the underly- 
ing segmentation S. Let Q(k, k +  1) be the following 
auxiliary function computed with the likelihoods of 
iterations k and k + 1 : 

Q ( k , k +  1) = ~ £.(k)(SIW)log£(k+')(W, S) 
SE{S} 

(3) 
It has been shown in (Dempster et al., 1977) 
that if Q(k ,k  + 1) > Q(k,k) ,  then £(k+l)(W) > 
£(k)(W). Therefore the reestimation equation of 
p(sir I si, . . . s ir_ , ) ,  at iteration (k + 1), can be 
derived by maximizing Q(k, k + 1) over the set of 
parameters of iteration (k + 1), under the set of con- 
straints ~"~'.a" p(sir [ s i , . . . s i r_ , )  = 1, hence: 

P(k+l)(siv I Si, .. "Sir_,) = 

ESE{S} C(8ia .. .81-~_, 8i-~, S) x f_.(k)(S I W) 
(4) 

~sels} c(si, sir_, ,  S) x £(k)(S I W) 

where c(si, . . .  si-~, S) is the number ofoccurences of 
the combination of phrases sl, . . .  siw in the segmen- 
tation S. Reestimation equation (4) can be imple- 
mented by means of a forward-backward algorithm, 
such as the one described for bi-multigrams (~ = 2) 
in the appendix of this paper. In a decision-oriented 
scheme, the reestimation equation reduces to: 

c(si, . . .  si.~_, s~ ,  S "(k)) 
p(k+l)(si-~ I si, . . . s i r_ , )  = c(si,  . . . s i r_ , ,  S "(k)) 

(5) 
where S *(k), the segmentation maximizing 
£:(k)(S ] W), is retrieved with a Viterbi algo- 
rithm. 
Since each iteration improves the model in the sense 
of increasing the likelihood /:(k)(W), it eventually 
converges to a critical point (possibly a local 
maximum). 

2.2 Var iable- length  phrase  c lus ter ing 

Recently, class-phrase based models have gained 
some attention (Ries et al., 1996), but usually 
it assumes a previous clustering of the words. 
Typically, each word is first assigned a word-class 
label "< Ck >", then variable-length phrases 
[Ck,Ck2...Ck,] of word-class labels are retrieved, 
each of which leads to define a phrase-class label 
which can be denoted as "< [Ck,Ck2...Ch] >". But 
in this approach only phrases of the same length 
can be assigned the same phrase-class label. For 
instance, the phrases "thank you for" and "thank 
you very much for" cannot be assigned the same 
class label. We propose to address this limitation 
by directly clustering phrases instead of words. 
For this purpose, we assume bigram correlations 
between the phrases (~ = 2), and we modify the 
learning procedure of section 2.1, so that each 
iteration consists of 2 steps: 

• S tep  ! Phrase clustering: 

{ p(k)(si I s~) } 

, {p(~)(cq(.)IC~(.,)), p(k)(s~ I c,(.,)) } 

• Step  2 Bi-multigram reestimation: 

{ p(~)(cq(.,) I cq(.,)), p(~)(s~ I cq(.j)) } 

, {p(~+')(s~ I si) } 

Step 1 takes a phrase distribution as an input ,  
assigns each phrase sj to a class Cq(,.), and out- 
puts the corresponding class dmtnbutmn. In our 
experiments, the class assignment is performed by 
maximizing the mutual information between adja- 
cent phrases, following the line described in (Brown 
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et al., 1992), with only the modification that can- 
didates to clustering are phrases instead of words. 
The clustering process is initialized by assigning each 
phrase to its own class. The loss in average mutual 
information when merging 2 classes is computed for 
every pair of classes, and the 2 classes for which the 
loss is minimal are merged. After each merge, the 
loss values are updated and the process is repeated 
till the required number of classes is obtained. 
Step _2 consists in reestimating a phrase distribution 
using the bi-multigram reestimation equation (4) 
or (5), with the only difference that the likelihood 
of a parse, instead of being computed as in Eq. (2), 
is now computed with the class estimates, i.e. as: 

£(W,S) = 1"I p(Cq(,.)) l Cq(s._.)) p(s(.) l Cq(,.))) 
T 

(6) 
This is equivalent to reestimating p(k+l)(sj [ Si) 
from p(k)(Cq(, D [ Cq(,,)) x p(k)(sj [ Cq(,D), instead 
ofp(k)(sj [ si) as was the case in section 2.1. 
Overall, step 1 ensures that the class assignment 
based on the mutual information criterion is optimal 
with respect to the current estimates of the phrase 
distribution and step _2 ensures that the phrase dis- 
tribution optimizes the likelihood computed accord- 
ing to (6) with the current estimates of the ciass 
distribution. The training data are thus iteratively 
structured in a fully integrated way, at both a 
paradigmatic level (step 1) and a syntagmatic level 
(step 2_). 

2.3 In t e rpo la t ion  of  s tochas t ic  class-phrase 
and  phrase  models  

With a class model, the probabilities of 2 phrases 
belonging to the same class are distinguished only 
according to their unigram probability. As it is un- 
likely that this loss of precision be compensated by 
the improved robustness of the estimates of the class 
distribution, class based models can be expected to 
deteriorate the likelihood of not only train but also 
test data, with respect to non-class based models. 
However, the performance of non-class models can 
be enhanced by interpolating their estimates with 
the class estimates. We first recall the way linear 
interpolation is performed with conventional word 
ngram models, and then we extend it to the case of 
our stochastic phrase-based approach. Usually, lin- 
ear interpolation weights are computed so as to max- 
imize the likelihood of cross evaluation data (Jelinek 
and Mercer, 1980). Denoting by A and (1 - A) the 
interpolation weights, and by p+ the interpolated es- 
timate, it comes for a word bigram model: 

I i) = 

a p(w i I w,) + ( l -a)  p(Cq(wj) I cq(w,)) I 

with A having been iteratively estimated on a cross 
evaluation corpus l,V¢~o,, as: 

1 A (k) p(wj [ wi) 
A(k+l) - - T¢',.o,, Z c(wiwj) p(~)(wj I wi) (8) 

i j  

where Tcro,, is the number of words in Weros,, and 
c(wiwj)  the number of co-occurences of the words 
wi and wj in Wero,~. 
In the case of a stochastic phrase based model - 
where the segmentation into phrases is not known a 
priori - the above computation of the interpolation 
weights still applies, however, it has to be embedded 
in dynamic programming to solve the ambiguity on 
the segmentation: 

A(k+l) _ 1 S-" e(sis~] S *(k)) A(k) p(sj  I si) 
c(S'(~)) ~ p(~)(si I si) 

s,2 

(9) 
where S "(k) the most likely segmentation of Wero,s 
given the current estimates p(~)(sj I si) can be re- 
trieved with a Viterbi algorithm, and where c(S*(k)) 
is the number of sequences in the segmentation 
S "(k). A more accurate, but computationally more 
involved solution would be to compute A (~+1) as the 

~(k) p(sj I s~) expectation of 1 

over the set of segmentations {S} on Wcross, us- 
ing for this purpose a forward-backward algorithm. 
However in the experiments reported in section 4, 
we use Eq (9) only. 

3 E x p e r i m e n t s  wi th  phrase  based 
m o d e l s  

3.1 Pro toco l  and da tabase  
Eva lua t ion  protocol  A motivation to learn bi- 
gram dependencies between variable length phrases 
is to improve the predictive capability of conven- 
tional word bigram models, while keeping the num- 
ber of parameters in the model lower than in the 
word trigram case. The predictive capability is usu- 
ally evaluated with the perplexity measure: 

P P  = e-rXtogC(w) 

where T is the number of words in W. The lower 
P P  is, the more accurate the prediction of the model 
is. In the case of a stochastic model, there are ac- 
tually 2 perplexity values P P  and PP*  computed 
respectively from ~"]~s £(W,S) and £ ( W , S * ) .  The 
difference PP*  - P P  is always positive or zero, and 
measures the average degree of ambiguity on a parse 
S of W, or equivalently the loss in terms of predic- 
tion accuracy, when the sentence likelihood is ap- 
proximated with the likelihood of the best parse, as 
is done in a speech recognizer. 
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In section 3.2, we first evaluate the loss ( P P "  - P P )  
using the forward-backward estimation procedure, 
and then we study the influence of the estimation 
procedure itself, i.e. Eq. (4) or (5), in terms of per- 
plexity and model size (number of distinct 2-uplets 
of phrases in the model). Finally, we compare these 
results with the ones obtained with conventional n- 
gram models (the model size is thus the number of 
distinct n-uplets of words observed), using for this 
purpose the CMU-Cambridge toolkit (Clarkson and 
Rosenfeld, 1997). 

Training protocol  Experiments are reported for 
phrases having at most n = 1, 2, 3 or 4 words (for 
n =1, bi-multigrams correspond to conventional bi- 
grams). The bi-multigram probabilities are initial- 
ized using the relative frequencies of all the 2-uplets 
of phrases observed in the training corpus, and they 
are reestimated with 6 iterations. The dictionaries of 
phrases are pruned by discarding all phrases occur- 
ing less than 20 times at initialization, and less than 
10 times after each iteration s, except for the 1-word 
phrases which are kept with a number of occurrences 
set to 1. Besides, bi-multigram and n-gram prob- 
abilities are smoothed with the backoff smoothing 
technique (Katz, 1987) using Witten-Bell discount- 
ing (Witten and Bell, 1991) 3. 

Da tabase  Experiments are run on ATR travel ar- 
rangement data (see Tab. 1). This database con- 
sists of semi-spontaneous dialogues between a hotel 
clerk and a customer asking for travel/accomodation 
informations. All hesitation words and false starts 
were mapped to a single marker "*uh*". 

Train test 
Nb sentences 13 650 2 430 
Nb tokens 167 000 29 000 (1% OOV) 
Vocabulary 3 525 + 280 OOV 

Table 1: ATR Travel Arrangement Data 

3.2 Resul ts  

Ambigu i ty  on a parse (Table 2) The difference 
( P P "  - P P )  usually remains within about 1 point of 
perplexity, meaning that the average ambiguity on a 
parse is low, so that relying on the single best parse 
should not decrease the accuracy of the prediction 
very much. 

Inf luence of  the  e s t ima t ion  p rocedure  (Ta- 
ble 3) As far as perplexity values are concerned, 

2Using different pruning thresholds values did not  dra- 
matically affect the results on our data ,  provided tha t  the 
threshold at initialization is in the range 20-40, and tha t  the 
threshold of the iterations is less than  10. 

3The Witten-Bell discounting was chosen, because it 
yielded the best perplexity scores with conventional n-grams 
on our test data. 

mmmmmmmmm 

Table 2: Ambiguity on a parse. 

the estimation scheme seems to have very little in- 
fluence, with only a slight advantage in using the 
forward-backward training. On the other hand, the 
size of the model at the end of the training is about 
30% less with the forward-backward training: ap- 
proximately 40 000 versus 60 000, for a same test 
perplexity value. The bi-multigram results tend to 
indicate that the pruning heuristic used to discard 
phrases does not allow us to fully avoid overtrain- 
ing, since perplexities with n =3, 4 (i.e. dependen- 
cies possibly spanning over 6 or 8 words) are higher 
than with n =2 (dependencies limited to 4 words). 

Test perplexity values P P "  
n 1 2 3 4 
F.-B. 56.0 45.1 45.4 46.3 
Viterbi 56.0 45.7 45.9 46.2 

Model size 
n 1 2 3 4 
F.-B. 3 2 5 0 5  42347 43672 43186 
Viterbi 32505 65141 67258 67295 

Table 3: Influence of the estimation procedure: 
forward-backward (F.-B.) or Viterbi. 

Compar i son  wi th  n-grams (Table 4) The low- 
est bi-multigram perplexity (43.9) is still higher than 
the trigram score, but it is much closer to the tri- 
gram value (40.4) than to the bigram one (56.0) 4 
The number of entries in the bi-multigram model is 
much less than in the trigram model (45000 versus 
75000), which illustrates the ability of the model to 
select most relevant phrases. 

I [';~--] I . ~  , ]  ~ l , l , l i .~.~ I ,  [ ~ - I  w.i~i 

n (and n) 1 2 3 4 
n-gram 314.2 56.0 40.4 39.8 
bimultigrams 56.0 43.9 44.2 45.0 

Model size 
n (and n) 1 2 3 4 
n-gram 3526 32505 75511 112148 
bimultigrams 32505 42347 43672 43186 

Table 4: Comparison with n-grams: Test perplexity 
values and model size. 

4Besides, the trig-ram score depends on the discounted 
scheme: with a linear discounting, the trlg'ram perplexity on 
our test  da ta  was 48.1. 
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4 Experiments with class-phrase 
based models 

4.1 P ro toco l  and d a t a b a s e  

Evalua t ion  p ro toco l  In section 4.2, we compare 
class versions and interpolated versions of the bi- 
gram, trigram and bi-multigram models, in terms 
of perplexity values and of model size. For bigrams 
(resp. trigrams) of classes, the size of the model is 
the number of distinct 2-uplets (resp. 3-uplets) of 
word-classes observed, plus the size of the vocab- 
ulary. For the class version of the bi-multigrams, 
the size of the model is the number of distinct 2- 
uplets of phrase-classes, plus the number of distinct 
phrases maintained. In section 4.3, we show samples 
from classes of up to 5-word phrases, to illustrate 
the potential benefit of clustering relatively long and 
variable-length phrases for issues related to language 
understanding. 

Training p ro toco l  All non-class models are the 
same as in section 3. The class-phrase models are 
trained with 5 iterations of the algorithm described 
in section 2.2: each iteration consists in clustering 
the phrases into 300 phrase-classes (step 1), and in 
reestimating the phrase distribution (step 2) with 
Eq. (4). The bigrams and trigrams of classes are es- 
timated based on 300 word-classes derived with the 
same clustering algorithm as the one used to cluster 
the phrases. The estimates of all the class ditribu- 
tions are smoothed with the backoff technique like 
in section 3. Linear interpolation weights between 
the class and non-class models are estimated based 
on Eq. (8) in the case of the bigram or trigram mod- 
els, and on Eq.(9)  in the case of the bi-multigram 
model. 

D a t a b a s e  The training and test data used to train 
and evaluate the models are the same as the ones 
described in Table 1. We use an additional set of 
7350 sentences and 55000 word tokens to estimate 
the interpolation weights of the interpolated models. 

4.2 Resu l t s  

The perplexity scores obtained with the non-class, 
class and interpolated versions of a bi-multigram 
model (limiting to 2 words the size of a phrase), 
and of the bigram and trigram models are in Ta- 
ble 5. Linear interpolation with the class based mod- 
els allows us to improve each model's performance 
by about 2 points of perplexity: the Viterbi perplex- 
ity score of the interpolated bi-multigrams (43.5) re- 
mains intermediate between the bigram (54.7) and 
trigram (38.6) scores. However in the trigram case, 
the enhancement of the performance is obtained at 
the expense of a great increase of the number of 
entries in the interpolated model (139256 entries). 
In the bi-multigram case, the augmentation of the 
model size is much less (63972 entries). As a re- 

sult, the interpolated bi-multigram model still has 
fewer entries than the word based trigram model 
(75511 entries), while its Viterbi perplexity score 
comes even closer to the word trigram score (43.5 
versus 40.4). Further experiments studying the in- 
fluence of the threshold values and of the number 
of classes still need to be performed to optimize the 
performances for all models. 

Test perplexity values P P "  
non-class 

bigrams 56.04 
bimultigrams 45.1 
trigrams 40.4 

class 
66.3 
57.4 
49.3 

Model size 
non-class 

bigrams 32505 
bimultigrams 42347 

75511 trigrams 

class 
20471 
21625 
63745 

interpolated 
54.7 
43.5 
38.6 

interpolated 
52976 
63972 

139256 

Table 5: Comparison of class-phrase bi-multigrams 
and of class-word bigrams and trigrams: Test per- 
plexity values and model size. 

4 .3  Examples  

Clustering variable-length phrases may provide a 
natural way of dealing with some of the language dis- 
fluencies which characterize spontaneous utterances, 
like the insertion of hesitation words for instance. To 
illustrate this point, examples of phrases which were 
merged into a common cluster during the training 
of a model allowing phrases of up to n = 5 words 
are listed in Table 6 (the phrases containing the hes- 
itation marker "*uh*" are in the upper part of the 
table). It is often the case that phrases differing 
mainly because of a speaker hesitation are merged 
together. 
Table 6 also illustrates another motivation for phrase 
retrieval and clustering, apart from word prediction, 
which is to address issues related to topic identifica- 
tion, dialogue modeling and language understand- 
ing (Kawahara et al., 1997). Indeed, though the 
clustered phrases in our experiments were derived 
fully blindly, i.e. with no semantic/pragmatic in- 
formation, intra-class phrases often display a strong 
semantic correlation. To make this approach effec- 
tively usable for speech understanding, constraints 
derived from semantic or pragmatic knowledge (like 
speech act tag of the utterance for instance) could 
be placed on the phrase clustering process. 

5 Conclusion 
An algorithm to derive variable-length phrases as- 
suming bigram dependencies between the phrases 
has been proposed for a language modeling task. It 
has been shown how a paradigmatic element could 
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{ yes_that_will ; *uh*_that_would } 
{ yes_that_will_be ; *uh*_yes_that's } 
{ *uh*_by_the ; and_by_the } 
{ yes_*uh*i ; i_see_i ) 
{ okay_i_understand ; *uh*_yes_please ) 
{ could_you_recommend ; *uh*_is_there } 
{ *uh*_could_you_tell ; and_could_you.tell } 
{ so_that_will ; yes_that_will ; yes_that_would ; 
uh*.that_would ) 
{ if_possible_i'd_like ; we_would_like ; *uh*_i_want } 
{ that_sounds_good ; *uh*-i_understand ) 
{ *uh*_i_really ; *uh*_i_don't } 
{ *uh*_i'm.staying ; andA'm.staying } 
{ all_right_we ; *uh*_yes.i ) 

{ good_morning ; good_afternoon ; hello } 
{ sorry_to_keep_you_waiting ; hello_front_desk ; 
thank_you_very_much ; thank_you_for_calling ; 
you're_very.welcome ; yes_that's_correct ; 
yes_that's_right } 
{ non.smoking ; western_style ; first_class ; 
japanese_style } 
{ familiar_with ;in_charge_of } 
{ could_you_tell_me ; do_you_know } 
{ how/ong ; how_much ; what_time ; 
uh*_what_time ; *uh*_how_much ; 
and_how_much ; and_what_time } 
{ explain ; tell_us ; tell_me ; tell_me_about ; 
tell_me_what ; tell_me_how ; tell_me_how_much ; 
tell_me_the ; give_me ; give_me_the ; 
give_me_your ; please_tell_me } 
{ are_there ; are_there_any ; if_there_are ; 
iLthereis  ;if_you_have ; if_there's ; 
do_you_have ; do_you_have_a ; do_you_have_any ; 
we_have_two ; is_there ; is_there_any ; 
is_there_a ; is_there_anything ; *uh*_is_there ; 
uh*_do_you_have } 
{ tomorrow_morning ; nine_o'clock ; eight_o'clock ; 
seven_o'clock ; three_p.m. ; august_tenth ; 
in_the_morning ; six_p.m. ; six_o'clock } 
{ we'd_like ; i'dAike ; i_would_like } 
{ that'll_be_fine ; that's_fine ; i_understand } 
{ kazuko_suzuki ; mary ; mary_phillips ; 
thomas_nelson ; suzuki ; amy_harris ; 
john ;john_phillips } 
{ fine ; no_problem ; anything_else } 
{ return_the.car ; pick_it_up } 
{ todaiji ; kofukuji ; brooklyn ; enryakuji ; 
hiroshima ; las_vegas ; saltAake_city ; chicago ; 
kinkakuji ; manhattan ; miami ; kyoto_station ; 
this_hotel ; our_hotel ; your_hotel ; 
the_airport ; the_hotel } 

Table 6: Example of phrases assigned to a common 
cluster, with a model allowing up to 5-word phrases 
(clusters are delimited with curly brackets) 

be integrated within this framework, allowing to as- 
sign common labels to phrases having a different 
length. Experiments on a task oriented corpus have 
shown that structuring sentences into phrases results 
in large reductions in the bigram perplexity value, 
while still keeping the number of entries in the lan- 
guage model nmch lower than in a trigram model, 
especially when these models are interpolated with 
class based models. These results might be further 
improved by finding a more efficient pruning strat- 
egy, allowing the learning of even longer dependen- 
cies without over-training, and by further experi- 
menting with the class version of the phrase-based 
model. 
Additionally, the semantic relevance of the clusters 
of phrases motivates the use of this approach in 
the areas of dialogue modeling and language under- 
standing. In that case, semantic/pragmatic infor- 
mations could be used to constrain the clustering of 
the phrases. 

A p p e n d i x :  F o r w a r d - b a c k w a r d  
a l g o r i t h m  f o r  t h e  e s t i m a t i o n  o f  t h e  
b i - m u l t i g r a m  p a r a m e t e r s  

Equation (4) can be implemented at a complexity of 
O(n~T), with n the maximal length of a sequence 
and T the number of words in the corpus, using a 
forward-backward algorithm. Basically, it consists 
in re-arranging the order of the summations of the 
numerator and denominator of Eq. (4): the likeli- 
hood values of all the segmentations where sequence 
sj occurs after sequence si, with sequence si end- 
ing at the word at rank (t), are summed up first; 
and then the summation is completed by summing 
over t. The cumulated likelihood of all the segmen- 
tations where sj follows si, and si ends at (t), can be 
directly computed as a product of a forward and of a 
backward variable. The forward variable represents 
the likelihood of the first t words, where the last li 
words are constrained to form a sequence: 

= 

The backward variable represents the conditional 
likelihood of the last ( T - t )  words, knowing that 
they are preceded by the sequence [w(t_zi+l)...w(0]: 

= 

Assuming that the likelihood of a parse is computed 
according to Eq. (2), then the reestimation equation 
(4) can be rewritten as shown in Tab. 7. 
The variables a and/3 can be calculated according 
to the following recursion equations (assuming a 
start and an end symbol at rank t = 0 and t = T+I ) :  
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p(k+l)(s j [Si) .-  ~ T = I  O~(t, It) p(k)(Sj ISi) ~( t  "1- lj,  l j)  6i(t -- li -}- 1) 6j(t + 1) 
E ,  ~(t, li) l~(t, It) 6 i ( t - - l i + l )  

li and lj refer respectively to the lengths of the sequences si and sj, and where the Kronecker function 5k(t) 
equals 1 if the word sequence starting at rank t is sk, and equals 0 if not. 

Table 7: Forward-backward reestimation 

for 1 < t < T +  1, and 1 < ii <_ n: 

n 
a(t, It) E a(t - li, l) (') "-" p ([Wi t_ l , , l ) ]  [ [W(~tTili~+l]) 

I=l 

a(0, 1) = 1, a(0, 2) = ... = a(0, n) = 0. 

f o r 0 < t  < T ,  and l < l j  < n: 

I Z(t + l, l) 
I=l 

~ ( T +  1, 1) = 1, f l (T+  1,2) = ... = / ~ ( T +  1,n) = 0. 

In the case where the likelihood of a parse is 
computed with the class assumption, i.e. ac- 
cording to (6), the term p(k)(sj [st) in the 
reestimation equation shown in Table 7 should 
be replaced by its class equivalent, i.e. by 
p(k)(Cq(, D ICq(,,)) p(k)(sj [ Cq(,D). In the recursion 

equation of ~, the term p([W~)_t,+l)]l[Wft_Tt'__~+l]) 
is replaced by the corresponding class bigram prob- 
ability multiplied by the class conditional prob- 
ability of the sequence [W~_)t,+l)]. A similar 
change affects the recursion equation of ~, with 
P(tW~::~l]ltW~:)b+,)]) being replaced by the cor- 
responding class bigram probability multiplied by 
the class conditional probability of the sequence 
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