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A b s t r a c t  
We develop a Data-Oriented Parsing (DOP) model 
based on the syntactic representations of Lexical- 
Functional Grammar (LFG). We start by sum- 
marizing the original DOP model for tree represen- 
tations and then show how it can be extended with 
corresponding functional structures. The resulting 
LFG-DOP model triggers a new, corpus-based notion 
of grammaticality, and its probability models exhibit 
interesting behavior with respect to specificity and 
the interpretation of ill-formed strings. 

1. Introduction 
Data-Oriented Parsing (DOP) models of natural 
language embody the assumption that human 
language perception and production works with 
representations of past language experiences, rather 
than with abstract grammar rules (cf. Bod 1992, 95; 
Scha 1992; Sima'an 1995; Rajman 1995). DOP 
models therefore maintain large corpora of linguistic 
representations of previously occurring utterances. 
New utterances are analyzed by combining 
(arbitrarily large) fragments from the corpus; the 
occurrence-frequencies of the fragments are used to 
determine which analysis is the most probable one. In 
accordance with the general DOP architecture 
outlined by Bod (1995), a particular DOP model is 
described by specifying settings for the following four 
parameters: 

• a formal definition of a well-formed r e p r e s e n -  
tation f o r  u t terance  analyses ,  
• a set of d e c o m p o s i t i o n  o p e r a t i o n s  that divide a 
given utterance analysis into a set of fragments, 
• a set of c o m p o s i t i o n  o p e r a t i o n s  by which such 
fragments may be recombined to derive an 
analysis of a new utterance, and 
• a definition of a probab i l i t y  mode l  that indicates 
how the probability of a new utterance analysis is 
computed on the basis of the probabilities of the 
fragments that combine to make it up. 

Previous instantiations of the DOP architecture were 
based on utterance-analyses represented as surface 
phrase-structure trees CTree-DOP", e.g. Bod 1993; 
Rajman 1995; Sima'an 1995; Goodman 1996; 
Bonnema et al. 1997). Tree-DOP uses two 
decomposition operations that produce connected 
subtrees of utterance representations: (1) the R o o t  
operation selects any node of a tree to be the root of 
the new subtree and erases all nodes except the 
selected node and the nodes it dominates; (2) the 
F r o n t i e r  operation then chooses a set (possibly 
empty) of nodes in the new subtree different from its 
root and erases all subtrees dominated by the chosen 
nodes. The only composition operation used by Tree- 
DOP is a node-substitution operation that replaces the 

left-most nonterminal frontier node in a subtree with a 
fragment whose root category matches the category of 
the frontier node. Thus Tree-DOP provides tree- 
representations for new utterances by combining 
fragments from a corpus of phrase structure trees. 

A Tree-DOP representation R can typically 
be derived in many different ways. If each derivation 
D has a probability P(D), then the probability of 
deriving R is the sum of the individual derivation 
probabilities: 

P(R) = ~D derives R P(D) 

A Tree-DOP derivation D = <tl,  t2 ... tk> is produced 
by a stochastic branching process. It starts by 
randomly choosing a fragment tl labeled with the 
initial category (e.g. S). At each subsequent step, a 
next fragment is chosen at random from among the 
set of competitors for composition into the current 
subtree. The process stops when a tree results with no 
nonterminal leaves. Let C P ( t l C S )  denote the 
probability of choosing a tree t from a competition set 
CS containing t. Then the probability of a derivation 
is 

P(<tl, t2 ... tk>) = l ' ] iCP( t i  I CS i )  

where the competition probability CP(t ICS) is given 
by 

CP(t I CS) = P(t) / :El, e CS P(t') 

Here, P(t) is the fragment probability for t in a given 
corpus. Let Ti-I = tj o t2 o ... o ti.1 be the subanalysis 
just before the ith step of the process, let LNC(Ti.I ) 
denote the category of the leftmost nonterminal of 
Ti- l ,  and let r(t) denote the root categ.ory of a 
fragment t. Then the competition set at the i th step is 

CS i = { t : r ( t )=LNC(T i .  1 ) } 

That is, the competition sets for Tree-DOP are 
determined by the category of the leftmost  
nonterminal of the current subanalysis. This is not the 
only possible definition of  competition set. As 
Manning and Carpenter (1997) have shown, the 
competition sets can be made dependent on the 
composition operation. Their left-corner language 
model would also apply to Tree-DOP, yielding a 
different definition for the competition sets. But the 
properties of such Tree-DOP models have not been 
investigated. 

Experiments with Tree-DOP on the Penn 
Treebank and the OVIS corpus show a consistent 
increase in parse accuracy when larger and more 
complex subtrees are taken into account (cf. Bod 
1993, 95, 98; Bonnema et al. 1997; Sekine & 
Grishman 1995; Sima'an 1995). However, Tree-DOP 
is limited in that it cannot account for underlying 
syntactic (and semantic) dependencies that are not 
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reflected directly in a surface tree. All modern 
linguistic theories propose more articulated represen- 
tations and mechanisms in order to characterize such 
linguistic phenomena. DOP models for a number of 
richer representations have been explored (van den 
Berg et al. 1994; Tugwell 1995), but these approaches 
have remained context-free in their generative power. 
In contrast, Lexical-Functional Grammar (Kaplan & 
Bresnan 1982; Kaplan 1989), which assigns 
representations consisting of a surface constituent tree 
enriched with a corresponding functional structure, is 
known to be beyond context-free. In the current work, 
we develop a DOP model based on representations 
defined by LFG theory CLFG-DOP").  That is, we 
provide a new instantiation for the four parameters of 
the DOP architecture. We will see that this basic 
LFG-DOP model triggers a new, corpus-based notion 
of grammaticality, and that it leads to a different 
class of its probabi l i ty  models  which exhibit  
interesting properties with respect to specificity and 
the interpretation of ill-formed strings. 

2. A D O P  model based on L e x i c a l - F u n c t i o n a l  
representations 

Representations 
The definition of a well-formed representation for 
utterance-analyses follows from LFG theory, that is, 
every utterance is annotated with a c-structure, an f- 
structure and a mapping ¢ between them. The c- 
structure is a tree that describes the surface 
constituent structure of an utterance; the f-structure is 
an attribute-value matrix marking the grammatical 
relations of subject, predicate and object, as well as 
providing agreement features and semantic forms; and 

is a correspondence function that maps nodes of the 
c-structure into units of the f-structure (Kaplan & 
Bresnan 1982; Kaplan 1989). The following figure 
shows a representation for the utterance Kim eats. 
(We leave out some features to keep the example 
simple.) 

(1) 

"XlPRED K,m]] 
TENSE PRES I 

• PRED 'eat(SUB J)' ] 

Note that the ¢ correspondence function gives an 
explicit characterization of the relation between the 
superficial and underlying syntactic properties of an 
utterance, indicating how certain parts of the string 
carry information about particular units of underlying 
structure. As such, it will play a crucial role in our 
definition for the decomposit ion and composit ion 
operations of LFG-DOP. In (1) we see for instance 
that the NP node maps to the subject f-structure, and 
the S and VP nodes map to the outermost f-structure. 

It is generally the case that the nodes in a 
subtree carry information only about the f-structure 
units that the subtree's root gives access to. The 
notion of accessibil i ty is made precise in the 
following definition: 

An f-structure unit f i s  ¢-accessible from a node n 
iff either n is C-linked to f (that is, f =  ¢(n) ) o r f  
is contained within ¢(n) (that is, there is a chain 
of attributes that leads from ¢(n) to f). 

All the f-structure units in (1) are C-accessible from 
for instance the S node and the VP node, but the 
TENSE and top-level PRED are not 0-accessible from 
the NP node. 

According to LFG theory, c-structures and f- 
structures must satisfy certain formal well-formedness 
conditions. A c-structure/f-structure pair is a valid 
LFG representation only if it satisfies the Non- 
branching Dominance, Uniqueness, Coherence and 
Completeness conditions (Kaplan & Bresnan 1982). 
Nonbranching Dominance demands that no c-structure 
category appears twice in a nonbranching dominance 
chain; Uniqueness asserts that there can be at most 
one value for any attribute in the f-structure; 
Coherence prohibits the appearance of grammatical 
functions that are not governed by the lexical 
predicate; and Completeness requires that all the 
functions that a predicate governs appear as attributes 
in the local f-structure. 

Decomposition operations 
Many different DOP models are compatible with the 
system of LFG representations. In this paper we 
outline a basic LFG-DOP model which extends the 
operations of Tree-DOP to take correspondences and 
f-structure features into account. The decomposition 
operations for this model will produce fragments of 
the composite LFG representations. These will consist 
of  connected subtrees whose nodes are in C- 
correspondence with sub-units of f-structures. We 
extend the Root and Frontier decomposition opera- 
tions of Tree-DOP so that they also apply to the nodes 
of the c-structure while respecting the fundamental 
principles of c-structure/f-structure correspondence. 

When a node is selected by the R o o t  
operation, all nodes outside of that node's subtree are 
erased, just as in Tree-DOP. Further, for LFG-DOP, 
all ¢ links leaving the erased nodes are removed and 
all f-structure units that are not C-accessible from the 
remaining nodes are erased. Root thus maintains the 
intuit ive corre la t ion  be tween  nodes and the 
information in their corresponding f-structures. For 
example, if Root selects the NP in (1), then the f- 
structure corresponding to the S node is erased, giving 
(2) as a possible fragment: 

(2) 

~ i  PRED 'Kim' ! 
NP NUM SG ] 

In addition the Root  operation deletes from the 
remaining f-structure all semantic forms that are local 
to f-structures that correspond to erased c-structure 
nodes, and it thereby also maintains the fundamental 
two-way connection between words and meanings. 
Thus, if Root selects the VP node so that the NP is 
erased, the subject semantic form "Kim" is also 
deleted: 
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(3) 

SUB, [,~u,., sG ] ] 
p ~ , . , , . . . D -  TENSE PRES 

eats PRED 'eat(SUB J)' 

As with Tree-DOP, the F r o n t i e r  operation then 
selects a set of frontier nodes and deletes all subtrees 
they dominate. Like Root, it also removes the ~ links 
of the deleted nodes and erases any semantic form 
that corresponds to any of those nodes. Frontier does 
not delete any other f-structure features. This reflects 
the fact that all features are C-accessible from the 
fragment's root even when nodes below the frontier 
are erased. For instance, if the VP in (1) is selected 
as a frontier node, F r o n t i e r  erases the predicate 
"eat(SUB J)" from the fragment: 
(4) 

Kim 

su., IPRE°:ml INo. 
TENSE PRES 

Note that the Root and Frontier operations retain the 
subject's NUM feature in the VP-rooted fragment (3), 
even though the subject NP is not present. This 
reflects the fact, usually encoded in particular 
grammar rules or lexical entries, that verbs of English 
carry agreement features for their subjects. On the 
other hand, fragment (4) retains the predicate's 
TENSE feature, reflecting the possibility that English 
subjects might also carry information about their 
predicate 's  tense. Subject- tense agreement  as 
encoded in (4) is a pattern seen in some languages 
(e.g. the split-ergativity pattern of languages like 
Hindi, Urdu and Georgian) and thus there is no 
universal principle by which fragments such as (4) 
can be ruled out. But in order to represent directly the 
possibility that subject-tense agreement is not a 
dependency of English, we also allow an S fragment 
in which the TENSE feature is deleted, as in (5). 
(5) 

Kim 

Fragment (5) is produced by a third decomposition 
operation, Discard ,  defined to construct generali- 
zations of the fragments supplied by R o o t  and 
Front ier .  D i s c a r d  acts to delete combinations of 
attribute-value pairs subject to the fol lowing 
restriction: D i s c a r d  does not delete pairs whose 
values C-correspond to remaining c-structure nodes. 

This condit ion maintains the essential 
correspondences of LFG representations: if a c- 
structure and an f-structure are paired in one fragment 
provided by Root and Frontier ,  then Discard  also 
pairs that c-structure with all generalizations of that 
fragment's f-structure. Fragment (5) results from 
applying D i s c a r d  to the TENSE feature in (4). 
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Discard also produces fragments such as (6), where 
the subject's number in (3) has been deleted: 
(6) 

V P ~ I  TENSE R 

e ! t s~  [ PRED 'eat(SUBJ)' J 

Again, since we have no language-specific knowled- 
ge apart from the corpus, we have no basis for ruling 
out fragments like (6). Indeed, it is quite intuitive to 
omit the subject's number in fragments derived from 
sentences with past-tense verbs or modals. Thus the 
specification of Discard  reflects the fact that LFG 
representations, unlike LFG grammars, do not 
indicate unambiguously the c-structure source (or 
sources) of their f-structure feature values. 

The composition operat ion 
In LFG-DOP the operation for combining fragments, 
again indicated by o, is carried out in two steps. First 
the c-structures are combined by left-most substitution 
subject to the category-matching condition, just as in 
Tree-DOP. This is fol lowed by the recursive 
unification of the f-structures corresponding to the 
matching nodes.  The resul t  retains the ¢ 
correspondences of the fragments being combined. A 
derivation for an LFG-DOP representation R is a 
sequence of fragments the first of which is labeled 
with S and for which the iterative application of the 
composition operation produces R. 

We show in (7) the effect of the LFG 
composition operation using two fragments from 
representations of an imaginary corpus containing the 
sentences Kim eats and People ate. The VP-rooted 
fragment is substituted for the VP in the first 
fragment, and the second f-structure unifies with the 
first f-structure, resulting in a representation for the 
new sentence Kim ate. 
(7) 

SUBJ [ 

Kim 

ate 

PRED 'Kim'] ] 
so I] 

su., II  I = 
TENSE PAST 

PRED 'eat(SUB J)' 

i uM so II 
TENSE PAST [ 

PRED 'eat(SUB J)' ] 

This representation satisfies the well-formedness 
conditions and is therefore valid. Note that in LFG- 
DOP, as in Tree-DOP, the same representation may 
be produced by several derivations involving different 
fragments. 



Another valid representation for the sentence Kim ate 
could be composed from a fragment for Kim that does 
not preserve the number feature, leading to a 
representation which is unmarked for number. The 
probability models we discuss below have the 
desirable property that they tend to assign higher 
probabilities to more specific representations. 

The following derivation produces a valid 
representation for the intuitively ungrammatical 
sentence People eats: 
(8) 

, I i ° 
w "L ,j 

people 

eats 

suB, II I = 
TENSE PRES 
PRED 'eat(SUB J)' 

people eats 

SUBJ [ NUMPRED '~°ple'lpL ] 

TENSE PRES 
PRED 'eat(SUB J)' 

This system of fragments and composition thus 
provides a representational basis for a robust model of 
language comprehension in that it assigns at least 
some representations to many strings that would 
generally be regarded as ill-formed. A correlate of this 
advantage, however, is the fact that it does not offer a 
direct formal account of metalinguistic judgments of 
grammaticality. Nevertheless, we can reconstruct the 
notion of grammaticality by means of the following 
definition: 

A sentence is grammatical with respect to a corpus 
if  and only if  it has at least one valid 
representation with at least one derivation whose 
fragments are produced only by Root and Frontier 
and not by Discard. 

Thus the system is robust in that it assigns three 
representations (singular, plural, and unmarked as the 
subject's number) to the string People eats, based on 
fragments for which the number feature of people, 
eats, or both has been discarded. But unless the 
corpus contains non-plural instances of people or non- 
singular instances of eats, there will be no Discard- 
free derivation and the string will be classified as 
ungrammatical (with respect to the corpus). 

Probability models 
As in Tree-DOP, an LFG-DOP representation R can 
typically be derived in many different ways. If each 
derivation D has a probability P(D),  then the 
probability of deriving R is again the probability of 
producing it by any of its derivations. This is the sum 
of the individual derivation probabilities: 

(9) P(R) = •O derives R P(D) 

An LFG-DOP derivation is also produced by a 
stochastic branching process which at each step 
makes a random selection from a competition set of 
competing fragments. Let CP(f l  CS) denote the 
probabil i ty of  choosing a fragment f from a 
competition set CS containing f, then the probability 
of a derivation D = <fl,f2 ...fk> is 

(10) P(<fl,f2 ...fk>) = FIi CPffi I CSi) 

where as in Tree-DOP, CP(f I CS) is expressed in 
terms of fragment probabilities P(f) by the formula 

( 11 ) CP(f  I CS) = P(D / ~,fe c s  P(f )  

Tree-DOP is the special case where there are no 
conditions of validity other than the ones that are 
enforced at each step of the stochastic process by the 
composition operation. This is not generally the case 
and is certainly not the case for the Completeness 
Condition of LFG representations: Completeness is a 
property of  a final representation that cannot be 
evaluated at any intermediate steps of the process. 
However, we can define probabilities for the valid 
representat ions by sampling only from such 
representations in the output of the stochastic process. 
The probability of  sampling a particular valid 
representation R is given by 

(12) P(R I R is valid) = P(R) / ~R'  is valid P(R') 

This formula assigns probabilities to valid represent- 
ations whether or not the stochastic process 
guarantees validity. The valid representions for a 
particular utterance u are obtained by a further 
sampling step and their probabilities are given by: 

(13) P(R I R is valid and yields u) = 
P(R) / ~R' is valid and yields u P(R~ 

The formulas (9) through (13) will be part of any 
LFG-DOP probability model. The models will differ 
only in how the competition sets are defined, and this 
in turn depends on which well-formedness conditions 
are enforced on-line during the stochastic branching 
process and which are evaluated by the off-line 
validity sampling process. 

One model, which we call M1, is a straight- 
forward extension of Tree-DOP's probability model. 
This computes the competition sets only on the basis 
of the category-matching condition, leaving all other 
well-formedness conditions for off-line sampling. Thus 
for M1 the competition sets are defined simply in 
terms of the categories of a fragment's c-structure root 
node. Suppose that Fi-I = f l  ° f2  o ... ofi.1 is the 
current subanalysis at the beginning of step i in the 
process, that LNC(Fi.1) denotes the category of the 
leftmost nonterminal node of the c-structure of F i.1, 
and that r(f) is now interpreted as the root-node 
category of f s  c-structure component.  Then the 
competition set for the i th step is 

(14) CSi = { f :  r(0C)=LNC(Fi.1) } 

Since these competition sets depend only on the 
category of the leftmost nonterminal of the current c- 
structure, the competition sets group together all 
fragments with the same root category, independent 
of any other properties they may have or that a 
particular derivation may have. The competition 
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probability for a fragment can be expressed by the 
formula 

(15) CP(f) = p(f ) /~Ef:  r(f)=rff) P(]") 

We see that the choice of a fragment at a particular 
step in the stochastic process depends only on the 
category of its root node; other well-formedness 
properties of  the representation are not used in 
making fragment selections. Thus, with this model the 
stochastic process may produce many invalid 
representations; we rely on sampling of  valid 
representations and the conditional probabilities given 
by (12) and (13) to take the Uniqueness, Coherence, 
and Completeness Conditions into account. 

Another possible model (M2) defines the 
competition sets so that they take a second condition, 
Uniqueness, into account in addition to the root node 
category. For M2 the competing fragments at a 
particular step in the stochastic derivation process are 
those whose c-structures have the same root node 
category as LNC(Fi.1 ) and also whose f-structures are 
consistently unifiable with the f-structure of Fi. 1 . Thus 
the competition set for the ith step is 

(16) CSi = { f :  r(f)=LNC(Fi.1) a n d f i s  unifiable 
with the f-structure of Fi-1 } 

Although it is still the case that the category- 
matching condition is independent of the derivation, 
the unifiabil i ty requi rement  means that the 
competition sets vary according to the representation 
produced by the sequence of previous steps in the 
stochastic process. Unifiability must be determined at 
each step in the process to produce a new 
competition set, and the competition probability 
remains dependent on the particular step: 

(17) CP(3~ I CSi) = 
P(fi) / ~ f :  r(f)=r(fl) and f i s  unifiable with/~. I P(f)  

On this model we again rely on sampling and the 
conditional probabilities (12) and (13) to take just the 
Coherence and Completeness  Condit ions into 
account. 

In model M3 we define the stochastic process 
to enforce three conditions, Coherence, Uniqueness 
and category-matching, so that it only produces 
representations with well-formed c-structures that 
correspond to coherent and consistent f-structures. The 
competition probabilities for this model are given by 
the obvious extension of (17). It is not possible, 
however, to construct a model in which the 
Completeness Condition is enforced during the 
derivation process. This is because the satisfiability of 
the Completeness Condition depends not only on the 
results of previous steps of a derivation but also on 
the following steps (see Kaplan & Bresnan 1982). 
This nonmonotonic  proper ty  means that the 
appropriate step-wise competition sets cannot be 
defined and that this condition can only be enforced 
at the final stage of validity sampling. 

In each of these three models the category- 
matching condition is evaluated on-line during the 
derivation process while other conditions are either 
evaluated on-line or off-line by the after-the-fact 
sampling process. LFG-DOP is crucially different 
from Tree-DOP in that at least one validity 
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requirement, the Completeness Condition, must 
always be left to the post-derivation process. Note 
that a number of other models are possible which 
enforce other combinations of these three conditions. 

3. Illustration and properties of LFG-DOP 
We illustrate LFG-DOP using a very small corpus 
consisting of the two simplified LFG representations 
shown in (18): 
(18) 

"x  
SUBJ [ PrOD 'pe°plel] 

PRED 'walk(suB J)' J 

The fragments from this corpus can be composed to 
provide representat ions for the two observed 
sentences plus two new utterances, John walked and 
People fell. This is sufficient to demonstrate that the 
probability models M1 and M2 assign different 
probabilities to particular representations. We have 
omitted the TENSE feature and the lexical categories 
N and V to reduce the number of the fragments we 
have to deal with. Applying the Root and Frontier 
operators  sys temat ica l ly  to the first corpus 
representation produces the fragments in the first 
column of (19), while the second column shows the 
additional f-structure that is associated with each c- 
structure by the Discard operation. 

A total of 12 fragments are produced from 
this representation, and by analogy 12 fragments with 
either PL or unmarked NUM values will also result 
from People walked. Note that the [S NP VP] 
fragment with the unspecified NUM value is produced 
for both sentences and thus its corpus frequency is 2. 
There are 14 other S-rooted fragments, 4 NP-rooted 
fragments, and 4 VP-rooted fragments; each of these 
occurs only once. 

These fragments can be used to derive three 
different representations for John walked (singular, 
plural, and unmarked as the subject's number). To 
facilitate the presentation of our derivations and 
probability calculations, we denote each fragment by 
an abbreviated name that indicates its c-structure 
root-node category, the sequence of its frontier-node 
labels, and whether its subject's number is SG, PL, or 
unmarked (indicated by U). Thus the first fragment in 
(19) is referred to as S/John-fell/SG and the unmarked 
fragment that Discard produces from it is referred to 
as S/John-fell/U. Given this naming convention, we 
can specify one of the derivations for John walked by 
the express ion S/NP-VP/U o NP/ John /SG o 
VP/walked/U, corresponding to an analysis in which 
the subject's number is marked as SG. The fragment 
VP/walked/U of course comes from People walked, 



the second corpus sentence,  and does  not appear  in 
(19). 

(19) 

~ ' f a l I ( S U B J ) '  J L PRED 'fall(SuB,I)' 1 

[ PRED 
SUBJ NU'M 

John 

f e l l "  ~ PLIED 'falllsUBD' 

~ P ~  'Js~ hn] 
NUM 

John 

ls BJ IPREO'O d 

su., I i ! 
PRED 'fall(SUB J)' 

PRED 'fall(SUBJ)'] 

PRED 'John] 

Model  M1 evaluates  only the Tree-DOP root-category 
condit ion during the stochastic branching process,  and 
the compe t i t i on  sets are f ixed  independen t  of  the 
derivation.  The probabi l i ty  of  choos ing  the f ragment  
S /NP-VP/U,  g iven  that  an S - roo t ed  f r agmen t  is 
required, is a lways  2/16, its frequency divided by the 
sum of  the f r equenc ies  o f  all  the S f ragments .  
S i m i l a r l y ,  the  p r o b a b i l i t y  o f  then  c h o o s i n g  
NP/John/SG to subst i tute at the NP front ier  node is 
1/4, s ince  the NP c o m p e t i t i o n  set  con t a in s  4 
fragments each with f requency 1. Thus, under model  
M1 the p r o b a b i l i t y  o f  p r o d u c i n g  the c o m p l e t e  
derivat ion S /NP-VP/U o NP/John/SG o V P / w a l k e d / U  
is 2 / 1 6 x l / 4 x l / 4 = 2 / 2 5 6 .  This  p robab i l i t y  is smal l  
because it indicates  the l ike l ihood of  this der ivat ion 
compared to other der ivat ions for John walked and for 
the three other analyzable  strings. The computat ion of  
the other M1 der ivat ion probabi l i t ies  for John walked 
is left to the reader.  There are 5 different  der ivat ions  
for the representat ion with SG number  and 5 for the 
PL number,  while there are only 3 ways of  producing 
the unmarked number  U. The condit ional  probabil i t ies  
for the part icular  representa t ions  (SG, PL, U) can be 
calculated by (9) and (13), and are given below. 

P (NUM=SG I valid and yield = John walked) = .353 
P(NUM=PL I valid and yield = John walked) = .353 
P(NUM=U I valid and yield = John walked) = .294 
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W e  see that  the two spec i f ic  r ep resen ta t ions  are 
equally l ikely and each of  them is more probable  than 
the representation with unmarked NUM. 

M o d e l  M2 p r o d u c e s  a s l i gh t ly  d i f f e ren t  
d is t r ibut ion  o f  probabi l i t ies .  Under  this model ,  the 
cons i s tency  requ i rement  is used in addi t ion  to the 
roo t - ca t ego ry  match ing  r equ i r emen t  to def ine  the 
c o m p e t i t i o n  sets at each  s tep  o f  the b r anch ing  
process .  This  means  that  the f i rs t  f r agmen t  that  
ins tant ia tes  the N U M  feature  to e i ther  SG or PL 
cons t ra ins  the compe t i t i on  sets for  the fo l lowing  
cho ices  in a der iva t ion .  Thus,  hav ing  chosen  the 
NP/John/SG fragment  in the der ivat ion S /NP-VP/U o 
NP/ John /SG o VP/wa lked /U ,  only  3 VP f ragments  
instead of  4 remain in the compet i t ion  set at the next 
step, since the VP/wa lked /PL  f ragment  is no longer  
avai lable .  The probabi l i ty  for this der iva t ion  under 
model  M2 is therefore 2 / 1 6 x l / 4 x l / 3 = 2 / 1 9 2 ,  s l ight ly  
h igher  than the p robab i l i t y  a s s igned  to it by M1. 
Table  1 shows the comple te  set o f  der iva t ions  and 
their M2 probabil i t ies for John walked. 

S/NP-VP/U o NP/JohrdSG o VP/walked/U SG 2/16 x 1/4 x 1/3 
S/NP-VP/SG ° NP/John/SG o VP/walked/U SG 1/16 x 1/3 x 1/3 
S/NP-VP/SG ° NP/John/U o VP/walked/U SG 1/16 x 1/3 x 1/3 
S/NP-walked/U o NP/John/SG SG 1/16 x 1/4 
S/John-VP/SG o VP/walked/U SG 1/16 x 1/3 

P(NUM=SG and yield = John walked) = 351576 = .061 
P(NUM=SG I valid and yield = John walked) = 701182 = .38 

S/NP-VP/U o NP/John/U o VP/walked/PL PL 2/16 x 1/4 x 1/4 
S/NP-VP/PL o NP/John/U oVP/walked/PL PL 1/16 x 1/3 x 1/3 
S/NP-VP/PL ° NP/John/U o VP/walked/U PL 1/16 x 1/3 x 1/3 
S/NP-walked/PL o NP/JohrdU PL 1/16 x 1/3 
S/John-VP/U ° VP/walked/PL PL 1/16 x 1/4 

P(NUM=PL and yield = John walked) = 33.5/576 = .058 
P(NUM=PL I valid and yield = John walked) = 671182 = .37 

S/NP-VP/U o NP/John/U o VP/walked/U U 2/16 x 1/4 x 1/4 
S/NP-walked/U o NP/John/U U 1/16 x 1/4 
S/John-VP/U o VP/walked/U U 1/16 x 1/4 

P(NUM=U and yield = John walked) = 22.51576 = .039 
P(NUM=U I valid and yield = John walked) = 451182 = .25 

Table 1: Model M2 derivations, subject number features, 
and probabilities for John walked 

The total probabi l i ty  for the der ivat ions  that produce 
John walked is .158, and the condi t ional  probabi l i t ies  
for the three representat ions are: 

P (NUM=SG I valid and yield = John walked) = .38 
P(NUM=PL I valid and yield = John walked) = .37 
P (NUM=U I valid and yield = John walked) = .25 

For  model  M2 the unmarked  represen ta t ion  is less 
l ikely than under M1, and now there is a slight bias in 
favor  o f  the value  SG over  PL. The SG value is 
favored because  it is carr ied by subst i tut ions for the 
l e f t -mos t  word  o f  the u t te rance  and thus reduces  
compet i t ion  for subsequent  choices .  The value  PL 
would be more probable  for the sentence People fell. 
Thus both models  give higher  probabi l i ty  to the more 
speci f ic  representa t ions .  Moreover ,  M1 ass igns  the 
same probabi l i ty  to SG and PL, whereas  M2 doesn't .  



M2 reflects a left-to-right bias (which might be 
psycholinguistically interesting -- a so-called primacy 
effect), whereas M1 is, like Tree-DOP, order indepen- 
dent. 

It turns out that all LFG-DOP probability 
models (M 1, M2 and M3) display a preference for the 
most specific representation. This preference partly 
depends on the number  of  derivations: specific 
representations tend to have more derivations than 
generalized (i.e., unmarked) representations, and 
consequently tend to get higher probabilities -- other 
things being equal. However,  this preference also 
depends on the number of feature values: the more 
feature values, the longer the minimal derivation 
length must be in order to get a preference for the 
most specific representation (Cormons, forthcoming). 

The bias in favor of more specific represen- 
tations, and consequently fewer Discard-produced 
feature generalizations, is especially interesting for 
the interpretation of ill-formed input strings. Bod & 
Kaplan (1997) show that in analyzing an intuitively 
ungrammatical string like These boys walks, there is a 
probabilistic accumulation of evidence for the plural 
interpretation over the singular and unmarked one (for 
all models M1, M2 and M3). This is because both 
These and boys carry the PL feature while only walks 
is a source for the SG feature, leading to more 
derivations for the PL reading of These boys walks. In 
case of "equal evidence" as in the ill-formed string 
Boys walks, model M I assigns the same probability to 
PL and SG, while models M2 and M3 prefer the PL 
interpretation due to their left-to-right bias. 

4. Conclusion and computational issues 
Previous DOP models were based on context-free tree 
representations that cannot adequately represent all 
linguistic phenomena. In this paper, we gave a DOP 
model based on the more articulated representations 
provided by LFG theory. LFG-DOP combines the 
advantages  of  two approaches :  the l inguistic 
adequacy of LFG together with the robustness of 
DOP. LFG-DOP triggers a new, corpus-based notion 
of grammaticality, and its probability models exhibit 
a preference for the most specific analysis containing 
the fewest number of feature generalizations. 

The main goal of  this paper was to provide 
the theoretical background of LFG-DOP. As to the 
computational aspects of LFG-DOP, the problem of 
finding the most probable representation of a sentence 
is NP-hard even for Tree-DOP. This problem may be 
tackled by Monte Carlo sampling techniques (as in 
Tree-DOP, cf. Bod 1995) or by computing the Viterbi 
n best derivations of a sentence. Other optimization 
heuristics may consist of restricting the fragment 
space, for example by putting an upper bound on the 
fragment depth, or by constraining the decomposition 
operations. To date, a couple of LFG-DOP implemen- 
tations are either operational (Cormons, forthcoming) 
or under development ,  and corpora  with LFG 
representations have recently been developed (at 
XRCE France and Xerox PARC). Experiments with 
these corpora will be presented in due time. 
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