
Mistake-Driven Mixture of Hierarchical Tag Context Trees

Masahiko Haruno
NTT Communication Science Laboratories

1-1 Hikari-No-Oka Yokosuka-Shi
Kanagawa 239, Japan

haruno©cslab, kecl. ntt. co. j p

Yuji Matsumoto
NAIST

8916-5 Takayama-cho Ikoma-Shi
Nara 630-01, Japan

mat su©is, aist-nara, ac. j p

Abstract
This paper proposes a mistake-driven mix-
ture method for learning a tag model. The
method iteratively performs two proce-
dures: 1. constructing a tag model based
on the current data distribution and 2.
updating the distribution by focusing on
data that are not well predicted by the
constructed model. The final tag model
is constructed by mixing all the models
according to their performance. To well
reflect the data distribution, we repre-
sent each tag model as a hierarchical tag
(i.e.,NTT 1 < proper noun < noun) con-
text tree. By using the hierarchical tag
context tree, the constituents of sequential
tag models gradually change from broad
coverage tags (e.g.,noun) to specific excep-
tional words that cannot be captured by
generM tags. In other words, the method
incorporates not only frequent connec-
tions but also infrequent ones that are of-
ten considered to be collocationah We
evaluate several tag models by implement-
ing Japanese part-of-speech taggers that
share all other conditions (i.e.,dictionary
and word model) other than their tag
models. The experimental results show
the proposed method significantly outper-
forms both hand-crafted and conventional
statistical methods.

1 Introduction

The last few years have seen the great success of
stochastic part-of-speech (POS) taggers (Church,
1988: Kupiec, 1992; Charniak et M., 1993; Brill,
1992; Nagata, 1994). The stochastic approach gen-
erally attains 94 to 96% accuracy and replaces the
labor-intensive compilation of linguistics rules by
using an automated learning algorithm. However,

1NTT is an abbreviation of Nippon Telegraph and
Telephone Corporation.

practical systems require more accuracy because
POS tagging is an inevitable pre-processing step for
all practical systems.

To derive a new stochastic tagger, we have two
options since stochastic taggers generally comprise
two components: word model and tag model. The
word model is a set of probabilities that a word oc-
curs with a tag (part-of-speech) when given the pre-
ceding words and their tags in a sentence. On the
contrary, the tag model is a set of probabilities that
a tag appears after the preceding words and their
tags.

The first option is to construct more sophisticated
word models. (Charniak et al., 1993) reports that
their model considers the roots and suffixes of words
to greatly improve tagging accuracy for English cor-
pora. However, the word model approach has the
following shortcomings:

• For agglutinative languages such as Japanese
and Chinese, the simple Bayes transfer rule is
inapplicable because the word length of a sen-
tence is not fixed in all possible segmentations -~.
We can only use simpler word models in these
languages.

• Sophisticated word models largely depend on
the target language. It is time-consuming to
compile fine-grained word models for each lan-
guage.

The second option is to devise a new tag model.
(Sch~tze and Singer. 1994) have introduced a
variable-memory-length tag model. Unlike conven-
tional bi-gram and tri-gram models, the method
selects the optimal length by using the context
tree (Rissanen, 1983) which was originally intro-
duced for use in data compression (Cover and
Thomas, 1991). Although the variable-memory
length approach remarkably reduces the number of
parameters, tagging accuracy is only as good as con-
ventional methods. Why didn't the method have
higher accuracy ? The crucial problem for current

P(,,,)P(,,lu,,) P (wi) cannot be consid- 2In P(w,]t ,) = P(t,) '

ered to be identical for ~ll segmentations.

230

tag models is the set of collocational sequences of
words that cannot be captured by just their tags.
Because the maximal likelihood estimator (MLE)
emphasizes the most frequent connections, an ex-
ceptional connection is placed in the same class as a
frequent connection.

To tackle this problem, we introduce a new tag
model based on the mistake-driven mixture of hi-
erarchical tag context trees. Compared to Schiitze
and Singer's context tree (Schiitze and Singer, 1994),
the hierarchical tag context tree is extended in that
the context is represented by a hierarchical tag set
(i.e.,NTT < proper noun < noun). This is extremely
useful in capturing exceptional connections that can
be detected only at the word level.

To make the best use of the hierarchical con-
text tree, the mistake-driven mixture method imi-
tates the process in which linguists incorporate ex-
ceptional connections into hand-crafted rules: They
first construct coarse rules which seems to cover
broad range of data. They then try to analyze data
by using the rules and extract exceptions that the
rules cannot handle. Next they generalize the ex-
ceptions and refine the previous rules. The following
two steps abstract the human algorithm for incorpo-
rating exceptional connections.

1. construct temporary rules which seem to well
generalize given data.

2. try to analyze data by using the constructed
rules and extract the exceptions that cannot
be correctly handled, then return to the first
step and focus on the exceptions.

To put the above idea into our learning algo-
rithm, The mistake-driven mixture method attaches
a weight vector to each example and iteratively per-
forms the following two procedures in the training
phase:

1. constructing a context tree based on the current
data distribution (weight vector)

2. updating the distribution (weight vector) by fo-
cusing on data not well predicted by the con-
structed tree. More precisely, the algorithm re-
duces the weight of examples that are correctly
handled.

For the prediction phase, it then outputs a final
tag model by mixing all the constructed models ac-
cording to their performance. By using the hierar-
chical tag context tree, the constituents of a series
of tag models gradually change from broad coverage
tags (e.g.,noun) to specific exceptional words that
cannot be captured by general tags, In other words,
the method incorporates not only frequent connec-
tions but also infrequent ones that are often consid-
ered to be exceptional.

The construction of the paper is as follows. Sec-
tion 2 describes the stochastic POS tagging scheme
and hierarchical tag setting. Section 3 presents a

new probability estimator that uses a hierarchical
tag context tree and Section 4 explains the mistake-
driven mixture method. Section 5 reports a prelim-
inary evaluation using Japanese newspaper articles.
We tested several tag models by keeping all other
conditions (i.e., dictionary and word model) iden-
tical. The experimental results show that the pro-
posed method significantly outperforms both hand-
crafted and conventional statistical methods. Sec-
tion 6 concerns related works and Sections 7 con-
cludes the paper.

2 P r e l i m i n a r i e s

2.1 Basic E q u a t i o n

In this section, we will briefly review the basic
equations for part-of-speech tagging and introduce
hierarchical-tag setting.

The tagging problem is formally defined as finding
a sequence of tags t l , , that maximize the probability
of input string L.

P (w l , . , t l , ~ , L)
a r g m a x t . P(Wl,n,t l ,nlL) = argmazq , . P(L)

¢~ argmaxtl ~ L P(tl,~ , Wl,~)

We break out P(ta,~, Wl,n) as a sequence of the prod-
ucts of tag probability and word probability.

rl

P(tl,n, Wl,~) = 1-I P(u'iltl ,i-l ' wl , i -1)P(t i l t l ' i - l ' wx,i)
i = 1

By approximating word probability as con-
strained only by its tag, we obtain equation (1).
Equation (1) yields various types of stochastic tag-
gers. For example, bi-gram and tri-gram models
approximate their tag probability as P(til t i-1) and
P(t i l t i_ l , t i_ .) , respectively. In the rest of the pa-
per, we assume all tagging methods share the word
model P(wilt i) and differ only in the tag model
P(ti ltl,i-1, Wl,i).

argmaxt eL l " I P(t i [t l , i -a ' wi . i)P(wi l t i) (1)
i =1 .

2.2 H ie r a r ch i ca l Tag Set

To construct a tag model that captures excep-
tional connections, we have to consider word-level
context as well as tag-level. In a more general
form, we introduce a tag set that has a hierarchi-
cal structure. Our tag set has a three-level struc-
ture as shown in Figure 1. Tile topmost and the
second level of the hierarchy are part-of-speech level
and part-of-speech subdivision level respectively. Al-
though stochastic taggers usually make use of subdi-
vision level, part-of-speech level is remarkably robust

231

(root)

0 i * (noun) (adverb)

(proper) (numeral) (declarative)

NTr AT&T 1 2

part-of-speech level

(degree) subdivision level

word level

Figure 1: Hierarchical Tag Set

against data sparseness. The bot tom level is word
level and is indispensable in coping with exceptional
and collocational sequences of words. Our objective
is to construct a tag model that precisely evaluates
P(tiltl,i-1, Wl,i) (in equation (1)) by using the three-
level tag set.

To construct this model, we have to answer the
following questions.

1. Which level is appropriate for t i .9

2. Which length is to be considered for tl,i-1 and
wl,i ?

:3. Which level is appropriate for tl,i-1 and wl,i ?

To resolve the first question, we fix ti at subdivision
level as is done in other tag models. The second and
third questions are resolved by introducing hierar-
chical tag context trees and mistake-driven mixture
method that are respectively described in Section 3
and 4.

Before moving to the next section, let us define
the basic tag set. If all words are considered con-
text candidates, the search space will be enormous.
Thus, it is reasonable for the tagger to constrain the
candidates to frequent open class words and closed
class words. Tile basic tag set is a set of tile most
detailed context elements that comprises the words
selected above and part-of-speech subdivision level.

3 H i e r a r c h i c a l T a g C o n t e x t T r e e

A hierarchical tag context tree is constructed by a
two-step methodology. The first step produces a
context tree by using tile basic tag set. The sec-
ond step then produces the hierarchical tag context
tree. It generalizes the basic tag context tree and
avoids over-fitting the data by replacing excessively
specific context in the tree wi4h more general tags.

Finally, the generated tree is transformed into a fi-
nite automaton to improve tagging efficiency (Ron
et al., 1997).

3.1 C o n s t r u c t i n g a Basic Tag C o n t e x t T r e e

In this section, we construct a basic tag context tree.
Before going into detail of the algorithm, we briefly
explain the context tree by using a simple binary
case. The context tree was originally introduced
in the field of data compression (Rissanen, 1983;
Willems et al., 1995; Cover and Thomas, 1991) to
represent how many times and in what context each
symbol appeared in a sequence of symbols. Figure
2 exemplifies two context trees comprising binary
symbols 'a ' and 'b'. T(4) is constructed from the se-
quence 'baab'and T(6) from 'baabab '. The root node
of T(4) explains that both ' a ' and 'b ' appeared twice
in 'baab' when no consideration is taken of previous
symbols. The nodes of depth 1 represent an order 1
(bi-gram) model. The left node of T(4) represents
that both 'a ' and "b' appeared only once after sym-
bol 'a', while the right node of T(4) represents only
'a ' occurred once after 'b '. In the same way, the node

of depth 2 in T(6) represents an order 2 (tri-gram)
context model.

It is straightforward to extend this binary tree to a
basic tag context tree. In this case, context symbols
'a ' and 'b" are replaced by an element of the basic

tag set and the frequency table of each node then
consists of the part-of-speech subdivision set.

The procedure construct-btree which constructs a
basic tag context tree is given below. Let a set of
subdivision tags to be Sl,--.,sn. Let weight[t] be
a weight vector attached to the tth example x(t).
Initial values of weight[t] are set to 1.

1. the only node, the root, is marked with the
count table (c(s l ,)0 ,"- , C(Sn,)~) = (0,'--.0)).

2. Apply the following recursively. Let T(t-1) be

232

a b
-- (2,2) -

(1,1) (1,o)

r(4)

a b
(3,3) .

(1,2) (2,o)

(o,1) (1,o) (o,o)

r(6)

Figure 2: Context Trees for 'baab" and 'baabab'

the last constructed tree with counts of nodes
z, (c(sl ,z) , - . . , c(sn,z)). After the next symbol
whose subdivision is x(t) is observed, generate
the next tree T(t) as follows: follow the T(t-1),
starting at the root and taking the branch in-
dicated by each successive symbol in the past
sequence by using basic tag level. For each
node z visited, increment the component count
c(x(t) , :) by weight[t]. Continue until node w
is a leaf node.

3. If w is a leaf, extend the tree by creat-
ing new leaves: c(x(t),wsl)=...=c(x(t),wsn)
= weight[t], c(x(t),wsl) c(x(t),wsn)=O.
Define the resulting tree to be T(t) .

3.2 C o n s t r u c t i n g a H i e r a r c h i c a l T a g
C o n t e x t T r e e

This section delineates how a hierarchical tag con-
text tree is constructed from a basic tag context tree.
Before describing the algorithm, we prepare some
definitions and notations.

Let .4 be a part-of-speech subdivision set. As de-
scribed in the previous section, frequency tables of
each node consist of the set A. At ally node s of a
context tree, let n(ats) and /5(als) be tile count of
element a and its probability, respectively.

p(ats) _ n(als)
~bc_.a n(bls)

We introduce an information-theoretical criteria
A(sb) (Weinberger et al., 1995) to evaluate the gain
of expanding a node s by its daughter sb.

._k(sb) = Z n (a l s b l l ° g ~) (2)
aCA

A(sb) is the difference in optimal code lengths
when symbols at node sb are compressed by using

probability distribution P(.Is) at node s and P('lsb)
at node sb. Thus, the larger A(sb) is, the more
meaningful it is to expand a node by sb.

Now, we go back to the hierarchical tag context
tree construction. As illustrated in Figure 3, the gen-
eration process amounts to the iterative selection of b
out of word level, subdivision, part-of-speech and null
(no expansion). Let us look at the procedure from
the information-theoretical viewpoint. Breaking out
equation (2) as (3), 2x(sb) is represented as the prod-
uct of the frequencies of all subdivision symbols at
node sb and Kullback-Leibler (KL) divergence.

n(alsb), P(alsb)
A(sb)= n(sb) E - - *og - - ac_a n(sb) p(als)

= n (s b) ~ P(alsb)log P(alsb)
~g.-t P(als)

= n(sb)D~.L(P(.[sb),/~(.[s)) (3)

Because the KL divergence defines a distance
measure between probability distributions, P(.]sb)
and P(.Is), there is the following trade-off between
the two terms of equation (3).

• The more general b is, the more subdivision
symbols appear at node sb.

• The more specific b is, the more /~(-[s) and

P(.Isb) differ.

By using the trade-off, the optimal level of b is se-
•lected.

Table 1 summarizes the algorithm construct-htree
that constructs the hierarchical tag context tree.
First, construct-htree generates a basic tag context
tree by calling construct-btree. Assume that the

233

(root)

~ a d j e c t i v e

Which is appropriate for b
word, subdivision, part-of-speech

$b or null ?

Figure 3: Constructing Hierarchical Tag Context Tree

training examples consist of a sequence of triples,
< pt ,s t ,wt >, in which Pt, st and wt represent
part-of-speech, subdivision and word, respectively.
Eachtime the algorithm reads an example, it first
reaches current leaf node s by following the past se-
quence, computes A(sb), and then selects the opti-
mal b. The initially constructed basic tag context
tree is used to compute A(sb)s.

4 M i s t a k e - D r i v e n M i x t u r e o f

H i e r a r c h i c a l T a g Context Trees

Up to this section, we introduced a new tag model
that uses a single hierarchical tag context tree to
cope with the exceptional connections that cannot
be captured by just part-of-speech level. However,
this approach has a clear limitation; the exceptional
connections that do not occur so often cannot be
detected by the single tree model. In such a ease,
the first term n(sb) in equation (3) is enormous for
general b and the tree is expanded by using more
general symbols.

To overcome this limitation, we devised the
mistake-driven mixture algorithm summarized in Ta-
ble 4 which constructs T context trees and outputs
the final tag model.

mistake-driven mixture sets the weights to 1 for
all examples and repeats the following procedures
T times. The algorithm first construct a hierarchi-
cal context tree by using the current weight vector.
Example data are then tagged by the tree and the
weights of correctly handled examples are reduced
by equation (4). Finally, the final tag model is con-
structed by mixing T trees according to equation
(5).

By using the mistake-driven mixture method, the
constituents of a series of hierarchical tag context
trees gradually change from broad coverage tags

(e.g.,noun) to specific exceptional words that can-
not be captured by part-of-speech and subdivisions.
The method, by mixing different levels of trees, in-
corporates not only frequent connections but also
infrequent ones that are often considered to be col-
locational without over-fitting the data.

5 Preliminary Evaluation

We performed an preliminary evaluation using the
first 8939 Japanese sentences in a year's volume of
newspaper articles(Mainichi, 1993). We first auto-
matically segmented and tagged these sentences and
then revised them by hand. The total number of
words in the hand-revised corpus was 226162. We
trained our tag models on the corpora with every
tenth sentence removed (starting with the first sen-
tence) and then tested the removed sentences. There
were 22937 words in the test corpus.

As the first milestone of performance, we tested
a hand-crafted tag model of JUMAN (Kurohashi et
al., 1994), the most widely used Japanese part-of-
speech tagger. The tagging accuracy of JUMAN for
the test corpus was only 92.0 %. This shows that our
corpus is difficult to tag because the corpus contains
various genres of texts; from obituaries to poetry.

Next. we compared the mixture of bi-grams and
the mixture of hierarchical tag context trees. In this
experiment, only post-positional particles and aux-
iliaries were word-level elements of basic tags and all
other elements were subdivision level. In contrast,
bi-gram was const ructedby using subdivision level.
We set the iteration number T to 5. The results of
our experiments are summarized in Figure 4.

As a single tree estimator (Number of Mixture =
1), the hierarchical tag context tree attained 94.1%
accuracy, while bi-gram yielded 93.1%. A hierarchi-
cal tag context tree offers a slight improvement, but

234

Initialize weight[j] = 1 for all examples j
1 = 1
call constrnct-btree
do

Read tth example xt(< pt,dt, wt >)
in which Pt, dt and wt represent part-of-speech, subdivision and word, respectively.
Follow ;gt_l,Xt_2,...,xt_(i_l) and Reach leaf node s
low = swt-i, high = sdt-i
while(max(iN(low), ,.3,(high)) >_ Threshold) {

if(iN(low) > A(high))
Expand the tree by the node low

else if(high==spt-i)
Expand the tree by the node high

else low = sdt_i, high = spt-i
}
t = t + l

while(xt is not empty)

Table 1: Algorithm construct-htree

I n p u t : sequence of N examples < Pl, dl, wl >, . •., < pN, dN, WN >
in which Pi, di and wi represent part-of-speech, subdivision and word, respectively.
In i t ia l ize the weight vector weight[i] =1 for i = 1 N
D o f o r t = 1 , 2 T

Call construct-htree providing it with the weight vector weight D and
Construct a part-of-speech tagger h t
Let Error be a set of examples that are not identified by ht

• • N
Compute the error rate of hi: et = EicError we*ght[2]/Y"~i=l weight[i]
¢~t = i'--'d
For examples correctly predicted by ht, update the weights vector to be

weight[i] = weight[i]flt (4)
O u t p u t a final tag model

h I = ET=l(log~)h t /ET=l(log~) (5)

Table 2: Algorithm mistake-driven mixture

not a gret deal• This conclusion agrees with Schiitze
and Singer's experiments that used a context tree of
usual part-of-speech.

When we turn to the mixture estimator, a great
difference is seen between hierarchical tag context
trees and bi-grams. The hierarchical tag con-
text trees produced by the mistake-driven mixture
method, greatly improved the accuracy and over-
fitting data was not serious. The best and worst
performances were 96.1% (Number of Mixture = 3)
and 94.1% (Number of Mixture = 1), respectively.
On the other hand, the performance of the bi-gram
mixture was not satisfactory. Tile best and worst
performances were 93.8 % (Number of Mixture = 2)
and 90.8 % (Number of Mixture = 5), respectively.

From the result, we may say exceptional connec-
tions are well captured by hierarchical context trees
but not by bi-grams. Bi-grams of subdivision are too

general to selectively detect exceptions.

6 R e l a t e d W o r k

Although statistical natural language processing has
mainly focused on Maximum Likelihood Estimators,
(Pereira et al., 1995) proposed a mixture approach
to predict next words by using the Context Tree
Weighting (CTW) method .(Willems et al., 1995).
The CTW method computes probability by mixing
subtrees in a single context tree in Bayesian fashion.
Although the method is very efficient, it cannot be
used to construct hierarchical tag context trees.

Various kinds of re-sampling techniques have been
studied in statistics (Efron, 1979; Efron and Tibshi-
rani, 1993) and machine learning (Breiman, 1996;
Hull et al., 1996; Freund and Schapire, 1996a).
In particular, the mistake-driven mixture algorithm

235

g-

F_

97

95

94

93'

92

91

90

i i i

mixture of biKjrarns .e-
mixture of context trees -+---

f -
. - "

................... • 2. j , " .
I

I I

3 4
Number of Mixture

Figure 4: Context Tree Mixture v.s. Bi-gram Mixture

was directly motivated by Adaboost (Freund and
Schapire, 1996a). The Adaboost method was de-
signed to construct a high-performance predictor by
iteratively calling a weak learning algorithm (that
is slightly better than random guess). An em-
pirical work reports that the method greatly im-
proved the performance of decision-tree, k-nearest-
neighbor, and other learning methods given rela-
tively simple and sparse data (Freund and Schapire,
1996b). We borrowed the idea of re-sampling to de-
tect exceptional connections and first proved that
such a re-sampling method is also effective for a
practical application using a large amount of data.
The next step is to fill the gap between theory and
practition. Most theoretical work on re-sampling as-
sumes i.i.d (identically, independently distributed)
samples. This is not a realistic assumption in part-
of-speech tagging and other NL applications. An
interesting future research direction is to construct
a theory that handles Markov processes.

7 Conclus ion

We have described a new tag model that uses
mistake-driven mixture to produce hierarchical tag
context trees that can deal with exceptional con-
nections whose detection is not possible at part-of-
speech level. Our experinaental results show that
combining hierarchical tag context trees with the

mistake-driven mixture method is extremely effec-
tive for 1. incorporating exceptional connections
and 2. avoiding data over-fitting. Although we have
focused on part-of-speech tagging in this paper, the
mistake-driven mixture method should be useful for
other applications because detecting and incorporat-
ing exceptions is a central problem in corpus-based
NLP. We are now costructing a Japanese depen-
dency parser that employes mistake-driven mixture
of decision trees.

R e f e r e n c e s

Leo Breiman. 1996. Bagging predictors. Machine
Learning, 24(2):123-140, August.

Eric Brill. 1992. A simple rule-based part of speech
tagger. In Proc. Third Conference on Applied
Natural Language Processin 9, pages 152-155.

Eugene Charniak, Curtis Hendrickson, Neil Jacob-
son, and Mike Perkowits. 1993. Equations for
Part-of-Speech Tagging. In Proc. 11th AAAI,
pages 784-789.

K. W. Church. 1988. A stochastic parts program
and noun phrase parser for unrestricted text. In
Proc. ACL 2nd Conference on Applied Natural
Language Processing, pages 126-143.

2 3 6

T.M. Cover and J.A. Thomas, 1991. Elements of
Information Theory. John Wiley & Sons.

B. Efron and R. Tibshirani, 1993. An Introduction
to the Bootstrap. Chapman and Hall.

B. Efron. 1979. Bootstrap: another look at the
jackknife. The Annals of Statistics, 7(1):1-26.

Yoav Freund and Robert Schapire. 1996a. A
decision-theoretic generalization of on-line learn-
ing and an application to boosting.

Yoav Freund and Robert Schapire. 1996b. Experi-
ments with a New Boosting algorithm. In Proc.
13rd International Conference on Machine Learn-
ing, pages 148-156.

David A. Hull, Jan O. Pedersen, and Hinrich
Schiitze. 1996. Method combination for docu-
ment filtering. In Proc. A CM SIGIR 96, pages
279-287.

J. Kupiec. 1992. Robust part-of-speech tagging us-
ing a hidden Markov model. Computer Speech
and Language, 6:225-242.

Sadao Kurohashi, Toshihisa Nakamura, Yuji Mat-
sumoto, and Makoto Nagao. 1994. Improvements
of Japanese morphological analyzer juman. In
Proc. International Workshop on Sharable Nat-
ural Language Resources, pages 22-28.

Mainichi, 1993. CD Mainichi Shinbun. Nichigai As-
sociates Co.

Masaaki Nagata. 1994. A Stochastic Japanese Mor-
phological Analyzer Using Forward-DP
Backward-A* N-Best Search Algorithm. In Proc.
15th COLING, pages 201-207.

Fernando C. Pereira, Yoram Singer, and Naftali
Tishby. 1995. Beyond Word N-Grams. In Proc.
Third Workshop on Very Large Corpora, pages
95-106.

Jorma Rissanen. 1983. A universal data compres-
Sion system. IEEE Transaction on Information
Theory, 29(5):656-664, September.

Dana Ron, Yoram Singer, and Naftali Tishby. 1997.
The power of amnesia: Learning probabilistic au-
tomata with variable memory length. (to appear)
Machine Learning Special Issue on COLT94.

H. Schiitze and Y. Singer. 1994. Part-of-speech tag-
ging using a variable markov model. In the 32th
Annual Meeting of A CL, pages 181-187.

M J. Weinberger, J J. Rissanen, and M. Feder. 1995.
A universal finite memory source. 1EEE Transac-
tion on Information Theory, 41(3):643-652, May.

F M J. Willems, Y M. Shtarkov, and T J. Tjalkens.
1995. The context-tree weigting method: Ba-
sic properties. 1EEE Transaction on Information
Theory, 41(3):653-664, May.

237

