
Interleaving Universal Principles And Relational 
Constraints Over Typed Feature Logic 

T h i l o  G i i t z  a n d  D e t m a r  M e u r e r s  

S F B  340, Un ive r s i t~ t  T i ib ingen ,  Kle ine  W i l h e l m s t r a f l e  113, 

72074 T i i b in g en ,  G e r m a n y .  

{tg, dm}~sf s. nphil, uni-tuebingen, de 

Abstract 
We introduce a typed feature logic system providing 
both universal implicational principles as well as defi- 
nite clauses over feature terms. We show that such an 
architecture supports a modular encoding of linguistic 
theories and allows for a compact representation using 
underspecification. The system is fully implemented 
and has been used as a workbench to develop and test 
large HPSG grammars. The techniques described in 
this paper are not restricted to a specific implementa- 
tion, but could be added to many current feature-based 
grammar development systems. 

I n t r o d u c t i o n  

A significant part of the development of formalisms for 
computational linguistics has been concerned with find- 
ing the appropriate data structures to model the lin- 
guistic entities. The first order terms of Prolog and 
DCGs were replaced by feature structures in PATR style 
systems, 1 and in recent years systems using typed fea- 
ture structures have been developed. 

Following the tradition of DCG and PATR, these typed 
feature systems are generally definite clause based, e.g., 
CUF (D5rre and Dorna 1993), or phrase structure based, 
e.g., ALE (Carpenter and Penn 1994). Instead of per- 
mitting the grammar writer to express universal well- 
formedness constraints directly, the systems require the 
grammar writer to express relational constraints and 
attach them locally at the appropriate places in the 
grammar. 2 

We believe there are several reasons why the advances 
in the linguistic data structures should entail the de- 
velopment of systems offering more expressive means 
for designing grammars. Using universal implicative 
constraints, or universal principles as they are usually 
called in the linguistic literature, grammatical generali- 

1Cf. Shieber (1986) for a discussion of these formalisms. 
2ALE has a restricted form of universal constraints, see 

the comparison section. 

sations can be expressed in a more compact and modu- 
lar way.  Another advantage of an architecture includ- 
ing principles is that it computationally realizes the ar- 
chitecture assumed in Pollard and Sag (1994) for HPSG. 
It thus becomes possible to develop and test HPSG gram- 
mars in a computational system without having to re- 
code them as phrase structure or definite clause gram- 
mars. The architecture can also serve as extended ar- 
chitecture for principle based parsing (e.g., Stabler and 
Johnson 1993) since it facilitates the implementation of 
GB-style universal principles. Offering both more per- 
spicuous grammar code and closeness to linguistic the- 
ory, it seems well motivated to explore an architecture 
which allows both relational constraints and universal 
restrictions to be expressed. 

Our implementation is based on the idea to compile 
implicational constraints into a relational representa- 
tion (GStz and Meurers 1995) where calls to the con- 
straint solver are made explicit. This allows for an 
integration of implicational and relational constraints 
and a uniform evaluation strategy. Efficient processing 
is achieved through user-supplied delay patterns that 
work on both relations and implicational constraints, 
as well as preferred execution of deterministic goals at 
run-time. 

The paper is organised as follows. We will start out 
by illustrating our architecture with an example. We 
then go on to describe the key aspects of the imple- 
mentation. We compare our work to other approaches 
before presenting some conclusions and open issues in 
the last section. 

M o t i v a t i n g  t h e  a r c h i t e c t u r e  

Consider the Head Feature Principle (HFP) of Pollard 
and Sag (1994) as an introductory example for a gram- 
matical principle. The HFP requires that  in a headed 
construction the head features of the mother are iden- 
tified with the head features of the head daughter. In a 



typed feature logic 3 this may be expressed by the prin- 
ciple shown in Fig. 1. 

phrase A dtrs : headed-struc -+ 
s y n s e m  : loc : cat : head : X A 
dtrs : head-dtr  : s y n s e m  : loc : cat : head : X 

Figure 1: A Head-Feature Principle 

In  CUF, we can encode the HFP as a clause defining a 
unary relation hfp as shown in Fig. 2. 4 

h/p := s y n s e m  : loc : cat : head: X A 
dtrs : head-dtr : s y n s e m  : loc : cat : head : X 

Figure 2: A relation encoding the HFP 

For the relation hfp to take effect, calls to it need 
to be attached at the appropriate places. Expressing 
grammatical constraints in such a way is both time con- 
suming and error prone. 

Suppose we want to define the unary relation wf- 
phrase to hold of all grammatical phrases. In case all 
grammatical phrases are constrained by a term ¢ and 
some relation P,  we can define the relation wf-phrase 
shown in Fig. 3. 

w/-phrase := phrase A ¢ A P 

Figure 3: Defining the relation wf-phrase 

To specify that ¢ A P holds for all phrases while the 
HFP only holds for headed phrases, we now have to man- 
ually split the definition into two clauses, the subcase 
we want to attach the HFP to and the other one. 

This is both inelegant and, barring a clever indexing 
scheme, inefficient. Using universal principles on the 
other hand, the global grammar organisation does not 
need to account for every possible distinction. The or- 
ganisation of the data structure as typed feature struc- 
tures already provides the necessary structure and the 
grammatical constraints only need to enforce additional 
constraints on the relevant subsets. Thus, the implica- 

3Following King (1989) and Carpenter (1992), we use 
a typed feature logic with appropriateness restrictions for 
the domains and ranges of features. For space reasons we 
cannot provide a formal definition of the logic here, but 
the interested reader is referred to Carpenter (1992) for an 
exposition. 

4Throughout the paper and as syntax for the system 
discussed here we use the functional style notation of CUE 
(DSrre and Dorna 1993) for our relations, where a desig- 
nated result argument is made explicit. The denotation of 
a relation thus is a set of objects just like the denotation of 
any other feature term. 

w]-phrase := p h r a s e  A d trs  : headed-struc 
A h~pA C A P  

wf-phrase := p h r a s e  A d trs  : -~headed-struc 

A C A P  

Figure 4: Splitting up the wf-phrase relation to accom- 
modate the HFP call 

tional constraint encoding the HFP shown in Fig. 1 con- 
strains only the headed phrases, and the non-headed 
ones do not need to be considered. 

Finally, a system providing both universal principles 
and relational constraints at the same level offers a 
large degree of flexibility. While in ttPSG theories the 
principles usually form the main part of the grammar 
and relations such as append  are used as auxiliary con- 
straints called by the principles, a more traditional kind 
of grammar for which one prefers a relational organisa- 
tion can also be expressed more compactly by adding 
some universal principles constraining the arguments of 
the relations to the relational core. Both kinds of inter- 
action are possible in the non-layered architecture we 
propose. 

With respect to our example, the first kind of inter- 
action would be obtained by also expressing the general 
restriction on phrase as a universal constraint as shown 
in Fig. 5, while the more traditional kind of grammar 

p h r a s e  -+ C A P  

Figure 5: A universal constraint on phrases 

would keep the relation defining well-formed phrases 
shown in Fig. 3 and combine it with the universal con- 
straint of Fig. 1 in order to avoid splitting up the re- 
lation as was shown in Fig. 4. The proper interaction 
of relational and universal constraints then needs to be 
taken care of by the system. 

A n  e x a m p l e  g r a m m a r  

To further motivate our approach, we now show how 
to code a simple principle based grammar in our frame- 
work. Figure 6 shows the inheritance hierarchy of types 
which we will use for our example with the appropri- 
ateness conditions attached. 

Our example grammar consists of some universal 
principles, phrase structure rules and a lexicon. The 
lexicon and phrase structure rules are encoded in the 
wfs (well-formed sign) relation shown in Fig. 7 and the 
implicational principles in Fig. 8. The wfs predicate 
takes three arguments: a difference list pair threading 
the string through the tree in the style of DCGS, and 



level 

z e r o ~ ~ o ~  ~ s t  

/ I I e-list rne-list 1 
~ /  / I Ltlhdlast:mJ 

verb noun adj p r y  [ 

I atom 

i ign ] ead cat 
bar level I 
ubcat list J 

pW°rdatom] rphrase sign] 
hon Ihead-dtr 

Lcomp-dtr sign] 

arthur sleeps loves tintagel 

Figure 6: A type hierarchy 

the syntactic category (sign) as functional style result 
argument, s The analysis tree is encoded in two daugh- 
ters features as part  of the syntactic categories in the 
style of HPSG. Clause 1 of wfs combines a verbal projec- 
tion with its subject, and clause 2 with its complements. 
The lexical entries for the verbs "loves" and "sleeps" are 
specified in clauses 3 and 4, respectively. Finally, clause 
5 defines lexical entries for the proper names "Arthur" 
and "Tintagel". 

Now consider the principles defined in Fig. 8. 
Constraints 1-4 encode a simple version of X-bar theory, 
constraint 5 ensures the propagation of categorial infor- 
mation along the head path, and constraint 6 ensures 
that  complements obey the subcategorization require- 
ments of the heads. 

We may now ask the system for a solution to queries 
like wfs([arthur, sleeps], D). The solution in this case is 
the AVM in Fig. 9. 

We can also query for a term like word A subcat : 
he-list and check it against the implications alone, as 
it contains no relational goals. The result in Fig. 10 
shows that  our X-bar principles have applied: bar level 
two requires that  the subcat list must be empty, and bar 
level one can only appear on phrases. The system thus 
correctly infers that  only bar level zero is possible. 

5We use standard abbreviatory bracket notation for lists. 

1. wfs(PO,P) :-- 
phrase A head : verb A subeat : [] A 
bar : two A comp-dtr : wfs(PO, P1) A 
head-rift : wfs( P1, P)  

2. wfs(PO, P) := 
phrase A head : verb A subcat : ne-list A 
head-dtr : wfs(PO, P1) A 
eomp-dtr : wfs(P1, P)  

3. wfs([XlY] ,Y)  := 
word A head : verb A bar : zero A 
subcat : [head : noun, head : noun] A 
phon : (loves A X )  

4. wfs([X[Y],Y) := 
word A head : verb A bar : zero A 
subcat : [head : noun] h phon : (sleeps A X )  

5. wfs([XIY],Y)  := 
word A head : noun A 
bar : two A subcat : [] A 
phon : ( ( arthur V tintageO A X )  

Figure 7: Phrase structure rules and the lexicon 

1. bar: zero -+ word 

2. bar: one ~ head-dtr : bar: (-~two) 

3. bar:two -~ subcat : [ ] 

4. phrase -~ comp-dtr : bar : two 

5. phrase --~ head : X A head-dtr : head : X 

6. phrase --+ comp-dtr : X A subeat : Y A 
head-dtr : subcat : [XIY ] 

Figure 8: X-bar theory, head feature principle and sub- 
cat principle 

The advantages of such a modular encoding of gram- 
matical principles are obvious. The intuition behind 
the constraints is clear, and new rules are easily added, 
since the principles apply to any rule. On the other 
hand, one can experiment with individual principles 
without having to change the other principles or rules. 
Finally, the option of encoding grammatical constraints 
as either implicational constraints or relations opens the 
possibility to chose the encoding most naturally suited 
to the specific problem. We feel that  this improves on 
earlier, purely definite-clause-based approaches. 

I m p l e m e n t a t i o n  

C o m p i l a t i o n  Building on the compilation method 
described in GStz and Meurers (1995), our compiler 



"phrase 
BAR t~o 
HEAD [] verb 
SUBCAT [] 

[w°rd r] 
PHON arthlt 

COMP-DTR []  /BAR tWO [ 
IHEAD noun ] 
LSUBCAT e-list J 

-word 
PHON sleeps 
BAR zero 

HEAD-DTR HEAD [] 

[ne-list tl 
~UBCAT /HD [] 

[TL []  e-lis 

Figure 9: Solution to the query wfs([arthur, sleeps], H) 

word zero ] 
BAR 

SUBCAT ne-listJ 

Figure 10: Solution for the query wordA subcat : ne-list 

collects the types for which principles are formulated, 
defines a relational encoding of the principles, and at- 
taches calls to the relations at the places in the gram- 
mar where a constrained type can occur. We assume 
that  the grammar  writer guarantees that  each type in 
the grammar  is consistent (for a grammar  G and ev- 
ery type t there is a model of G that  satisfies t). One 
therefore does not need to attach calls to each possible 
occurrence of a constrained type, but only to those oc- 
currences where the grammar  contains additional spec- 
ifications which might lead to an inconsistency (GStz 
and Meurers 1996). The interpretation of the resulting 
program is lazy in the sense that  we do not enumer- 
ate fully specific solutions but compute more general 
answers for which a grammatical instantiation is guar- 
anteed to exist. A good example for this behaviour was 
shown in Fig. 10: the system does not instantiate the 
PHON and the HEAD values of the solution, since the 
existence of grammatical  values for these attributes is 
independent of the query. 

A way in which we deviate from the compilation 
method of GStz and Meurers (1995) is that  our sys- 
tem performs all constraint inheritance at compile-time. 
While inheriting all principles to the most specific types 
and transforming the resulting constraints to a disjunc- 
tive normal form can significantly slow down compile 
times, the advantage is that  no inheritance needs to 
be done on-line. To influence this trade-off, the user 

can instruct the system to hide a disjunctive principle 
in an auxiliary relation in order to keep it from being 
multiplied out with the other constraints. Such auxil- 
iary relations, which will be discussed further in con- 
nection with the delay mechanism, have turned out to 
be especially useful in conjunction with principles with 
complex antecedents. The reason is that  our compiler 
transforms an implication with complex antecedents to 
an implication with a type antecedent. The negation 
of the complex antecedent is added to the consequent, 
which can result in highly disjunctive specifications. 

Interpretation As a guiding principle, the inter- 
preter follows the ideas of the Andorra Model 6 in 
that  it always executes deterministic goals before non- 
deterministic ones. We consider determinacy only with 
respect to head unification: a goal is recognised to be 
determinate if there is at most one clause head that  
unifies with it. This evaluation strategy has two ad- 
vantages: it reduces the number of choice points to a 
minimum, and it leads to early failure detection. In 
our implementation, the overhead of determining which 
goals are determinate has turned out to be by far out- 
weighed by the reduction in search space for our lin- 
guistic applications. An additional speed-up can be ex- 
pected from applying known pre-processing techniques 
(Santos Costa, Warren, and Yang 1991) to automati-  
cally extract so-called determinacy code. 

The execution order of non-determinate goals can be 
influenced by the user with wait declarations (Naish 
1985). The execution of some goal is postponed un- 
til the call is more specific than a user-specified term. 
Speculative computation may thus be reduced to a nec- 
essary minimum. For our previous example, we might 
define the delay statements in Fig. 11. The first state- 

delay(wfs,argl:list) 
delay(phrase,subcat:list) 
delay_deterministic(sign) 

Figure 11: Controlstatementexamples 

ment says that  calls to wfs must be delayed until the 
first argument is instantiated to some list value. Sim- 
ilarly, the second statement delays the principles on 
phrase until the subcat information is known. , The 
third statement is of a slightly different form, based on 
the preferred treatment of determinate goals described 
above. Instead of specifying the instantiation state re- 
quired for execution, the delay_deterministic statement 

6Cf. Haxidi and Janson (1990) and references cited 
therein. 

4 



specifies that  the universal principles about signs can 
only be executed in case they are determinate. 

The delay mechanism for relational goals is very close 
to the one used in CUF. We extended this mechanism 
to the universal principles: the constraints on a certain 
type were only checked, once certain attributes were 
sufficiently instantiated (w.r.t. the delay statement). 
Our experience has shown, however, that  delaying uni- 
versal principles in such a way turns out to be too weak. 
Instead of delaying all constraints on a type until some 
condition is met, one wants to be able to postpone the 
application of some particular universal principle. A 
subcategorization principle applying to phrases, for ex- 
ample, should be delayed until the valence requirements 
of the mother or the daughters are known. We therefore 
allow the user to name a principle and supply it with a 
specific delay. Internally, this corresponds to introduc- 
ing an auxiliary relation under the name supplied by 
the user and delaying it accordingly so that  the choice 
points introduced by the principle are hidden. 

Let us illustrate the problem and its solution with a 
schematic example. Suppose the grammar writer writes 
a principle ¢ --4 ¢. Our compiler will generate from this 
a constraint t --~ (-~¢) V (¢ A ¢),  for some appropriate 
type t. If  ¢ is a complex conjunctive description, then 
the result of normaiising -~¢ might be highly disjunc- 
tive. This has two undesirable consequences. Firstly, 
if there is another constraint t --4 ~ with disjunctive ~, 
then the compiler will need to normalise the expression 
((-~¢)V(¢A¢))A~. This is the appropriate thing to do in 
those cases where many of the generated disjuncts are 
inconsistent and the resulting disjunction thus turns out 
to be small. If, however, these constraints talk about 
different parts of t 's structure, then the resulting dis- 
junction will be big and the expansion at compile-time 
should be avoided. 

The other problem is that  we can only specify delays 
on all constraints on t at once, and cannot delay indi- 
vidual principles. In other words, the control for the 
execution of principles is not fine-grained enough. 

We solved these problems by offering the user the 
possibility to name constraints, e.g., principle1 : ¢ --4 ¢.  
This prohibits the compile-time cross-multiplication de- 
scribed above, and it allows the user to specify delays 
for such a principle, e.g. d e l a y ( p r i n c i p l e l  . . . .  ) 
or even delay_deterministic (principlel), if that is 
appropriate. 

D e b u g g i n g  Having addressed the key issues behind 
compilation and interpretation, we now turn to a prac- 
tical problem which quickly arises once one tries to im- 
plement larger grammars.  On the one hand, the com- 
plex data structures of such grammars contain an over- 

whelming number of specifications which are difficult 
to present to the user. On the other hand, the in- 
teraction of universal principles and relations tends to 
get very complex for realistic linguistic theories. While 
a powerful graphical user interface 7 solves the presen- 
tation problem, a sophisticated tracing and debugging 
tool was developed to allow stepwise inspection of the 
complex constraint resolution process. The debugger 
displays the feature structure(s) to be checked for gram- 
maticality and marks the nodes on which constraints 
still have to be checked. As a result of the determinacy 
check, each such node can also be marked as failed, 
delayed or deterministic. Similar to standard Prolog 
debuggers, the user can step, skip, or fail a constraint 
on a node, or request all deterministic processing to 
be undertaken. An interesting additional possibility for 
non-deterministic goals is that  the user can inspect the 
matching defining clauses and chose which one the sys- 
tem should try. Figure 12 below shows a screen shot of 
the debugger. 

The debugger has turned out to be an indispensable 
tool for grammar development. As grammar  size in- 
creases, it becomes very difficult to track down bugs 
or termination problems without it, since these prob- 
lems are often the result of some global interaction and 
thus cannot be reduced to a manageable sub-part of the 
grammar. 

The reader interested in further practical aspects of 
our system is referred to (GStz and Meurers 1997) 

C o m p a r i s o n  w i t h  p r e v i o u s  w o r k  

There are quite a number of typed feature systems 
available today, among them ALE (Carpenter and Penn 
1994), CUF (DSrre and Dorna 1993) and TFS (Emele 
and Zajac 1990; Emele 1994). 

TFS also offered type constraints and relations and to 
our knowledge was the first working typed feature sys- 
tems. However, it had some serious drawbacks. TFS 

did not allow universal principles with complex an- 
tecedents, but only type constraints. And the system 
did not include a delay mechanism, so that  it was often 
impossible to ensure termination or efficient processing. 
The addition of a delay mechanism as described in this 
paper would certainly increase the efficiency of TFS. 

ALE provides relations and type constraints (i.e., only 
types as antecedents), but their unfolding is neither 
lazy, nor can it be controlled by the user in any way. 

7To view grammars and computations our system uses 
a GUI which allows the user to interactively view (parts of) 
AVMS, compare and search AVM8, etc. The ouI comes with a 
clean backend interface and has already been used as front- 
end for other natural language applications, e.g., in VERB- 
MOBIL. The GUI was developed by Carsten Hess. 

5 



This can lead to severe termination problems with re- 
cursive constraints. The ALE type constraints were de- 
signed to enhance the typing system, and not for recur- 
sive computation. This should be done in the phrase 
structure or procedural attachment part. However, we 
believe that the addition of delaying and an interpre- 
tation strategy as described in this paper would add to 
the attractiveness of ALE as a constraint-based gram- 
mar development platform. 

The definite clause part of our system is very similar 
to the one of CUF: both use delay statements and pre- 
ferred execution of deterministic goals. Although CUF 
does not offer universal principles, their addition should 
be relatively simple. Given that CUF already offers the 
control strategies required by our scheme, the changes 
to the run-time system would be minimal. 

C o n c l u s i o n  a n d  f u t u r e  r e s e a r c h  

We have presented an architecture that integrates rela- 
tional and implicational constraints over typed feature 
logic. We showed how such an architecture facilitates 
the modular and compact encoding of principle based 
grammars. 

Our implementation has been tested with several 
smaller and one large (> 5000 lines) grammar, a 
linearisation-based grammar of a sizeable fragment of 
German (Hinrichs et al. 1997). As the grammar 
constraints combine sub-strings in a non-concatenative 
fashion, we use a preprocessor that "chunks" the input 
string into linearisation domains, which are then fed 
to the constraint solver. With our Prolog based inter- 
preter, parse times axe around 1-5 sec. for 5 word sen- 
tences and 10-60 sec. for 12 word sentences. It should 
be pointed out that parsing with such a grammar would 
be difficult with any system, as it does neither have nor 
allow the addition of a context-free backbone. 

We are currently experimenting with a C based com- 
piler (Zahnert 1997) using an abstract machine with a 
specialised set of instructions based on the WAM (War- 
ren 1983; A~-Kaci 1991). This compiler is still under 
development, but it is reasonable to expect speed im- 
provements of at least an order of magnitude. Abstract- 
machine-based compilation of typed feature logic lan- 
guages has recently received much attention (Carpenter 
and Qu 1995, Wintner 1997, Penn in prep.). True com- 
pilation is the logical development in a maturing field 
that has hitherto relied on interpreters in high-level pro- 
gramming languages such as Prolog and Lisp. 

We also plan to investigate a specialised constraint 
language for linearisation grammars, to be able to opti- 
raise the processing of freer word order languages such 
as German. 

R e f e r e n c e s  

Ai-Kaci, H. (1991). Warren's Abstract Machine. MIT 
Press. 

Carpenter, B. (1992). The logic of typed feature struc- 
tures, Volume 32 of Cambridge Tracts in Theo- 
retical Computer Science. Cambridge University 
Press. 

Carpenter, B. and G. Penn (1994). ALE - The At- 
tribute Logic Engine, User's Guide, Version 2.0.1, 
December 1994. Technical report, Carnegie Mel- 
lon University. 

Carpenter, B. and Y. Qu (1995). An abstract ma- 
chine for attribute-value logics. In Proceedings of 
the Fourth International Workshop on Parsing 
Technology. Prague. 

DSrre, J. and M. Dorna (1993, August). CUF - 
a formalism for linguistic knowledge representa- 
tion. In J. DSrre (Ed.), Computational aspects of 
constraint based linguistic descriptions I, pp. 1- 
22. Universit~it Stuttgart: DYANA-2 Deliverable 
R1.2.A. 

Emele, M. C. (1994). The typed feature structure 
representation formalism. In Proceedings of the 
International Workshop on Sharable Natural Lan- 
guage Resources, Ikoma, Nara, Japan. 

Emele, M. C. and R. Zajac (1990). Typed unifica- 
tion grammars. In Proceedings of the 13 th Inter- 
national Conference on Computational Linguis- 
tics. 

GStz, T. and W. D. Meurers (1995). Compiling 
HPSG type constraints into definite clause pro- 
grams. In Proceedings of the Thrirty-Third An- 
nual Meeting of the A CL, Boston. Association for 
Computational Linguistics. 

GStz, T. and W. D. Meurers (1996). The importance 
of being lazy - using lazy evaluation to process 
queries to HPSG grammars. In P. Blache (Ed.), 
Acres de la troisi~me confdrence anuelle sur le 
traitment automatique du langage naturel. 

GStz, T. and W. D. Meurers (1997). The ConTroll 
system as large grammar development platform. 
In Proceedings of the A CL/EA CL post-conference 
workshop on Computational Environments for 
Grammar Development and Linguistic Engineer- 
ing, Madrid, Spain. 

Haridi, S. and S. Janson (1990). Kernel Andorra Pro- 
log and its computation model. In D. H. D. War- 
ren and P. Szeredi (Eds.), Proceedings of the sev- 
enth international conference on logic program- 
ming, pp. 31-46. MIT Press. 

6 



Hinrichs, E., D. Meurers, F. Richter, M. Sailer, 
and H. Winhart (1997). Ein HPSG-Fragment des 
Deutschen, Teil 1: Theorie. Arbeitspapiere des 
SFB 340 Nr. 95, Universit~it Tiibingen. 

King, P. J. (1989). A logical formalism for head- 
driven phrase structure grammar. Ph. D. thesis, 
University of Manchester. 

Naish, L. (1985). Negation and Control in Prolog. 
Springer-Verlag. 

Penn, G. (in prep.). Statistical Optimizations in a 
Feature Structure Abstract Machine. Ph.D. the- 
sis, Carnegie Mellon University. 

Pollard, C. and I. A. Sag (1994). Head-Driven 
Phrase Structure Grammar. Chicago: University 
of Chicago Press. 

Santos Costa, V., D. H. D. Warren, and R. Yang 
(1991). The Andorra-I preprocessor: Supporting 
full Prolog on the Basic Andorra model. In Pro- 
ceedings of the Eighth International Conference 
on Logic Programming, pp. 443-456. 

Shieber, S. M. (1986). An Introduction to Unifi- 
cation-Based Approaches to Grammar. Number 4 
in CSLI Lecture Notes. Center for the Study of 
Language and Information. 

Stabler, E. P. and M. Johnson (1993). Topics in prin- 
ciple based parsing. Course notes for the 1993 
LSA Summer Institute. 

Warren, D. H. D. (1983). An abstract Prolog instruc- 
tion set. Technical note 309, SRI International. 

Wintner, S. (1997). An Abstract Machine for Unifi- 
cation Grammars. Ph.D. thesis, Technion, Haifa, 
Israel. 

Zahnert, A. (1997). fl2c - ein Compiler ffir 
CLP(TFS). Diplomarbeit, Fakult/it f/ir Infor- 
matik, Universit/it Tiibingen. 

7 



" • " ' "  I 
J 

Port: 3 C A L L  

t 

l:i 

on 171 1./.$~ 
asem " ~  

lo¢  ' l a y  
oat ca~  

head[] 
fronted 

oonstl~l siv@le word 
phon [~"< z'az,r/a > 

s ~ n s  era [ ~ 
/zoo ~ r ~  
/ /oat[ ~ 

L~atu~ ~ , ~  

status co~p1e~e 

I spnsem[ sy~se~ 
I / lool 'z~ 
I / / °atr  ' ' '¢  
I / / Iva-'-r'~ 
I / [ [ L°°'~"s<-L> 
[ Lstatus ~o~.l'e ~ 

aadtr [] [ ~,.2~ze..,,~z-d 1 
phon ~ ~ I 
Ispnsem F ~ 11 

l ,l cat ca~ 
head [] 

append_string ( [] , [51 <> [] ) 

~ a p p e n d _ s t r i u g  ( [] [ ]  [ ]  ) 
J 

Ipp_adj rip ( [ ]  , < [ ]  [ ]  < I ~ l l ' s .~ . ze  wo rd  l f f~ l  <> > > 
/~hon 

,1 / s~,ns erar s y r , ~  
l poor~ 

.::> :! " 

i . 

~ J  

I phrasq 
41k cmep.;~,,L skip ~'v'~ unfoM? 31 F~_:'~ 

Figure 12: A screen shot of the graphical  debugger 

8 


