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A b s t r a c t  

"Prose rhythm" is a widely observed but  
scarcely quantified phenomenon. We de- 
scribe an information-theoretic model for 
measuring the regularity of lexical stress in 
English texts, and use it in combination 
with tr igram language models to demon- 
strate a relationship between the probabil- 
ity of word sequences in English and the 
amount  of rhythm present in them. We 
find that  the stream of lexical stress in text 
from the Wall Street Journal has an en- 
tropy rate of less than 0.75 bits per sylla- 
ble for common sentences. We observe that  
the average number of syllables per word 
is greater for rarer word sequences, and to 
normalize for this effect we run control ex- 
periments to show that  the choice of word 
order contributes significantly to stress reg- 
ularity, and increasingly with lexical prob- 
ability. 

1 I n t r o d u c t i o n  

Rhythm inheres in creative output,  asserting itself as 
the meter in music, the iambs and trochees of poetry, 
and the uniformity in distances between objects in 
art and architecture. More subtly there is widely be- 
lieved to be rhythm in English prose, reflecting the 
arrangement of words, whether deliberate or sub- 
conscious, to enhance the perceived acoustic signal 
or reduce the burden of remembrance for the reader 
or author. 

In this paper we describe an information-theoretic 
model based on lexical stress that  substantiates this 
common perception and relates stress regularity in 
written speech (which we shall equate with the in- 
tuitive notion of "rhythm") to the probability of the 
text itself. By computing the stress entropy rate for 
both a set of Wall Street Journal sentences and a ver- 
sion of the corpus with randomized intra-sentential 
word order, we also find that  word order contributes 
significantly to rhythm, particularly within highly 
probable sentences. We regard this as a first step in 

quantifying the extent to which metrical properties 
influence syntactic choice in writing. 

1.1 Basics 
In speech production, syllables are emitted as pulses 
of sound synchronized with movements of the mus- 
culature in the rib cage. Degrees of stress arise from 
variations in the amount  of energy expended by the 
speaker to contract these muscles, and from other 
factors such as intonation. Perceptually stress is 
more abstractly defined, and it is often associated 
with "peaks of prominence" in some representation 
of the acoustic input signal (Ochsner, 1989). 

Stress as a lexical property, the primary concern 
of this paper, is a function that  maps a word to a 
sequence of discrete levels of physical stress, approx- 
imating the relative emphasis given each syllable 
when the word is pronounced. Phonologists distin- 
guish between three levels of lexical stress in English: 
primary, secondary, and what we shall call weak 
for lack of a better  substitute for unstressed. For 
the purposes of this paper we shall regard stresses 
as symbols fused serially in t ime by the writer or 
speaker, with words acting as building blocks of pre- 
defined stress sequences that  may be arranged arbi- 
trarily but never broken apart.  

The culminative property of stress states that  ev- 
ery content word has exactly one primary-stressed 
syllable, and that  whatever syllables remain are sub- 
ordinate to it. Monosyllabic function words such as 
the and of usually receive weak stress, while content 
words get one strong stress and possibly many sec- 
ondary and weak stresses. 

It has been widely observed that  strong and weak 
tend to alternate at "rhythmically ideal disyllabic 
distances" (Kager, 1989a). "Ideal" here is a complex 
function involving production, perception, and many 
unknowns. Our concern is not to pinpoint this ideal, 
nor to answer precisely why it is sought by speakers 
and writers, but  to gauge to what extent it is sought. 

We seek to investigate, for example, whether the 
avoidance of primary stress clash, the placement of 
two or more strongly stressed syllables in succession, 
influences syntactic choice. In the Wall Street Jour- 
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nal corpus we find such sentences as "The fol-low- 
ing is-sues re-cent-ly were f i led  with the Se-cur- 
i-ties and Ex -change  Com-mis-sion". The phrase 
"recently were filed" can be syntactically permuted 
as "were filed recently", but this clashes filed with 
the first syllable of recently. The chosen sentence 
avoids consecutive primary stresses. Kager postu- 
lates with a decidedly information theoretic under- 
tone that the resulting binary alternation is "simply 
the maximal degree of rhythmic organization com- 
patible with the requirement that  adjacent stresses 
are to be avoided." (Kager, 1989a) 

Certainly we are not proposing that  a hard deci- 
sion based only on metrical properties of the output  
is made to resolve syntactic choice ambiguity, in the 
case above or in general. Clearly semantic empha- 
sis has its say in the decision. But it is our belief 
that rhythm makes a nontrivial contribution, and 
that  the tools of statistics and information theory 
will help us to estimate it formally. Words are the 
building blocks. How much do their selection (dic- 
tion) and their arrangement (syntax) act to enhance 
rhythm? 

1.2 P a s t  m o d e l s  a n d  q u a n t i f i c a t i o n s  

Lexical stress is a well-studied subject at the intra- 
word level. Rules governing how to map a word's 
orthographic or phonetic transcription to a sequence 
of stress values have been searched for and studied 
from rules-based, statistical, and connectionist per- 
spectives. 

Word-external stress regularity has been denied 
this level of attention. Patterns in phrases and 
compound words have been studied by Halle (Halle 
and Vergnaud, 1987) and others, who observe and 
reformulate such phenomena as the emphasis of 
the penult imate constituent in a compound noun 
(National Center for Supercomputing Applications, 
for example.) Treatment  of lexical stress across 
word boundaries is scarce in the literature, however. 
Though prose rhythm inquiry is more than a hun- 
dred years old (Ochsner, 1989), it has largely been 
dismissed by the linguistic community as irrelevant 
to formal models, as a mere curiosity for literary 
analysis. This is part ly because formal methods of 
inquiry have failed to present a compelling case for 
the existence of regularity (Harding, 1976). 

Past a t tempts  to quantify prose rhythm may be 
classified as perception-oriented or signal-oriented. 
In both cases the studies have typically focussed on 
regularities in the distance between peaks of promi- 
nence, or interstress intervals, either perceived by 
a human subject or measured in the signal. The 
former class of experiments relies on the subjective 
segmentation of utterances by a necessarily limited 
number of part icipants--subjects  tapping out the 
rhythms they perceive in a waveform on a recording 
device, for example (Kager, 1989b). To say nothing 
of the psychoacoustic biases this methodology intro- 

duces, it relies on too little data  for anything but a 
sterile set of means and variances. 

Signal analysis, too, has not yet been applied to 
very large speech corpora for the purpose of inves- 
tigating prose rhythm, though the technology now 
exists to lend efficiency to such studies. The ex- 
periments have been of smaller scope and geared 
toward detecting isochrony, regularity in absolute 
time. Jassem et al.(Jassem, Hill, and Witten, 1984) 
use statistical techniques such as regression to ana- 
lyze the duration of what they term rhythm units. 
Jassem postulates that  speech is composed of extra- 
syllable narrow rhythm units with roughly fixed du- 
ration independent of the number of syllable con- 
stituents, surrounded by varia.ble-length anacruses. 
Abercrombie (Abercrombie, 1967) views speech as 
composed of metrical feet of variable length that  be- 
gin with and are conceptually highlighted by a single 
stressed syllable. 

Many experiments lead to the common conclu- 
sion that  English is stress-timed, that  there is some 
regularity in the absolute duration between strong 
stress events. In contrast to postulated syllable- 
timed languages like French in which we find exactly 
the inverse effect, speakers of English tend to expand 
and to contract syllable streams so that  the dura- 
tion between bounding primary stresses matches the 
other intervals in the utterance. It is unpleasant 
for production and perception alike, however, when 
too many weak-stressed syllables are forced into 
such an interval, or when this amount  of "padding" 
varies wildly from one interval to the next. Prose 
rhythm analysts so far have not considered the syl- 
lable stream independent from syllabic, phonemic, 
or interstress duration. In particular they haven't  
measured the regularity of the purely lexical stream. 
They have instead continually re-answered questions 
concerning isochrony. 

Given that speech can be divided into interstress 
units of roughly equal duration, we believe the more 
interesting question is whether a speaker or writer 
modifies his diction and syntax to fit a regular num- 
ber of syllables into each unit. This question can 
only be answered by a lexical approach, an approach 
that  pleasingly lends itself to efficient experimenta- 
tion with very large amounts of data. 

2 Stress entropy  rate 

We regard every syllable as having either strong or 
weak stress, and we employ a purely lexical, con- 
text independent mapping, a pronunciation dictio- 
nary a, to tell us which syllables in a word receive 
which level of stress. We base our experiments on 
a binary-valued symbol set E1 = {W, S} and on a 
ternary-valued symbol set E2 = {W, S, P},  where 
'W' indicates weak stress, 'S' indicates strong stress, 

1 We use the ll6,000-entry CMU Pronouncing Dictio- 
nary version 0.4 for all experiments in this paper. 
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Figure 2: A 5-gram model viewed as a first-order 
Markov chain 

and 'P '  indicates a pause. Abstractly the dictionary 
maps words to sequences of symbols from {primary, 
secondary, unstressed}, which we interpret by down- 
sampling to our binary sys tem--pr imary  stress is 
strong, non-stress is weak, and secondary stress ('2') 
we allow to be either weak or strong depending on 
the experiment we are conducting. 

We represent a sentence as the concatenation of 
the stress sequences of its constituent words, with 
• 'P '  symbols (for the N2 experiments) breaking the 
stream where natural pauses occur. 

Traditional approaches to lexicai language mod- 
eling provide insight on our  analogous problem, in 
which the input is a stream of syllables rather than 
words and the values are drawn from a vocabu- 
lary N of stress levels. We wish to create a model 
that  yields approximate values for probabilities of 
the form p(sklso, s l , . . . ,  Sk-1), where si E ~ is the 
stress symbol at syllable i in the text. A model with 
separate parameters for each history is prohibitively 
large, as the number of possible histories grows ex- 
ponentially with the length of the input; and for 
the same reason it is impossible to train on limited 
data. Consequently we parti t ion the history space 
into equivalence classes, and the stochastic n-gram 
approach that  has served lexicai language modeling 
so well treats two histories as equivalent if they end 
in the same n - 1 symbols. 

As Figure 2 demonstrates, an n-gram model is 
simply a stationary Markov chain of order k = n - 
1, or equivalently a first-order Markov chain whose 
states are labeled with tuples from Ek. 

To gauge the regularity and compressibility of the 
training data  we can calculate the entropy rate of the 
stochastic process as approximated by our model, an 
upper bound on the expected number of bits needed 
to encode each symbol in the best possible encod- 
ing. Techniques for computing the entropy rate of 
a stationary Markov chain are well known in infor- 
mation theory (Cover and Thomas, 1991). If {Xi} 
is a Markov chain with stationary distribution tt 

and transition matr ix  P,  then its entropy rate is 
H ( X )  = - ~.i,j I'tiPij logpij.  

The probabilities in P can be trained by ac- 
cumulating, for each ( sx , s2 , . . . , sk )  E E k, the 
k-gram count in C ( s l , s z , . . . , s k )  in the training 
data, and normalizing by the (k - 1)-gram count 
C(sl, s 2 , .  . . ,  s l , - 1 ) .  

The stationary distribution p satisfies p P  = #, 
or equivalently #k = ~ j  #jPj,k (Parzen, 1962). In 
general finding p for a large state space requires an 
eigenvector computation,  but  in the special case of 
an n-gram model it can be shown that  the value in p 
corresponding to the state (sl, s 2 , . . . ,  sk) is simply 
the k-gram frequency C(sl ,  s 2 , . . . ,  sk ) /N ,  where N 
is the number of symbols in the data. 2 We therefore 
can compute the entropy rate of a stress sequence 
in time linear in both the amount  of data  and the 
size of the state space. This efficiency will enable us 
to experiment with values of n as large as seven; for 
larger values the amount  of training data,  not time, 
is the limiting factor. 

3 Methodology 

The training procedure entails simply counting the 
number of occurrences of each n-gram for the train- 
ing data  and computing the stress entropy rate by 
the method described. As we treat  each sentence as 
an independent event, no cross-sentence n-grams are 
kept: only those that  fit between sentence bound- 
aries are counted. 

3.1 T h e  m e a n i n g  o f  s t r e s s  e n t r o p y  r a t e  

We regard these experiments as computing the en- 
tropy rate of a Markov chain, estimated from train- 
ing data, that  approximately models the emission of 
symbols from a random source. The entropy rate 
bounds how compressible the training sequence is, 
and not precisely how predictable unseen sequences 
from the same source would be. To measure the effi- 
cacy of these models in prediction it would be neces- 
sary to divide the corpus, train a model on one sub- 
set, and measure the entropy rate of the other with 
respect to the trained model. Compression can take 
place off-line, after the entire training set is read, 
while prediction cannot "cheat" in this manner. 

But we claim that  our results predict how effective 
prediction would be, for the small state space in our 
Markov model and the huge amount  of training data  
translate to very good state coverage. In language 
modeling, unseen words and unseen n-grams are a 
serious problem, and are typically combatted with 
smoothing techniques such as the backoff model and 
the discounting formula offered by Good and Tur- 
ing. In our case, unseen "words" never occur, for 

2This ignores edge effects, for ~--~s C(sl, s2 , . . . ,  sa) = 
N - k + 1, but this discrepancy is negligible when N is 
very large. 
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Lis ten to me close ly I'll en deav or to ex plain / 
S W S S S W S W S W S W S P 

what sep ar ates a char la tan from a Char le magne 
W S W 2 W S W W S W S W 2 P 

Figure 1: A song lyric exemplifies a highly regular stress s t ream (from the musical Pippin by Stephen 
Schwartz.) 

the tiniest of realistic training sets will cover the bi- 
nary or ternary vocabulary. Coverage of the n-gram 
set is complete for our prose training texts for n as 
high as eight; nor do singleton states (counts that  
occur only once), which are the bases of Turing's es- 
t imate  of the frequency of untrained states in new 
data,  occur until n = 7. 

3.2 Lexicallzing stress 

Lexical stress is the "backbone of speech rhythm" 
and the pr imary  tool for its analysis. (Baum, 1952) 
While the precise acoustical prominences of sylla- 
bles within an utterance are subject to certain word- 
external hierarchical constraints observed by Halle 
(Halle and Vergnaud, 1987) and others, lexical stress 
is a local property. The stress pat terns of individ- 
ual words within a phrase or sentence are generally 
context independent. 

One source of error in our method is the ambiguity 
for words with multiple phonetic transcriptions that  
differ in stress assignment.  Highly accurate tech- 
niques for part-of-speech labeling could be used for 
stress pat tern  disambiguation when the ambiguity 
is purely lexical, but often the choice, in both pro- 
duction and perception, is dialectal. It  would be 
straightforward to divide among all alternatives the 
count for each n-gram that  includes a word with 
multiple stress patterns,  but in the absence of reli- 
able frequency information to weight each pat tern 
we chose simply to use the pronunciation listed first 
in the dictionary, which is judged by the lexicogra- 
pher to be the most  popular.  Very little accuracy 
is lost in making this assumption. Of the 115,966 
words in the dictionary, 4635 have more than one 
pronunciation; of these, 1269 have more than one 
distinct stress pattern;  of these, 525 have different 
pr imary  stress placements. This smallest class has a 
few common words (such as "refuse" used as a noun 
and as a verb), but  most  either occur infrequently in 
text (obscure proper nouns, for example),  or have a 
pr imary  pronunciation that  is overwhelmingly more 
common than the rest. 

4 E x p e r i m e n t s  

The efficiency of the n-gram training procedure al- 
lowed us to exploit a wealth of da ta - -ove r  60 mil- 
lion syl lables-- f rom 38 million words of Wall Street 
Journal text. We discarded sentences not completely 

covered by the pronunciation dictionary, leaving 36.1 
million words and 60.7 million syllables for experi- 
mentation.  

Our first experiments used the binary ~1 alpha- 
bet. The max imum entropy rate possible for this 
process is one bit per syllable, and given the unigram 
distribution of stress values in the da ta  (55.2% are 
primary),  an upper bound of slightly over 0.99 bits 
can be computed. Examining the 4-gram frequencies 
for the entire corpus (Figure 3a) sharpens this sub- 
stantially, yielding an entropy rate est imate of 0.846 
bits per syllable. Most frequent among the 4-grams 
are the patterns WSWS and SWSW, consistent with 
the principle of binary alternation mentioned in sec- 
tion 1. 

The 4-gram est imate matches quite closely with 
the estimate of 0.852 bits that  can be derived from 
the distribution of word stress pat terns excerpted 
in Figure 3b. But both measures overestimate the 
entropy rate by ignoring longer-range dependencies 
that  become evident when we use larger values of n. 
For n = 6 we obtain a rate of 0.795 bits per syllable 
over the entire corpus. 

Since we had several thousand times more data  
than is needed to make reliable est imates of stress 
entropy rate for values of n less than 7, it was prac- 
tical to subdivide the corpus according to some cri- 
terion, and calculate the stress entropy rate for each 
subset as well as for the whole. We chose to divide at 
the sentence level and to part i t ion the 1.59 million 
sentences in the da ta  based on a likelihood measure 
suitable for testing the hypothesis from section 1. 

A lexical t r igram backoff-smoothed language 
model was trained on separate da ta  to est imate the 
language perplexity of each sentence in the corpus. 
Sentence perplexity PP(S) is the inverse of sentence 

1 

probabili ty normalized for length, 1/P(S)r~7, where 
P(S) is the probabil i ty of the sentence according to 
the language model and ISI is its word count. This 
measure gauges the average "surprise" after reveal- 
ing each word in the sentence as judged by the tri- 
gram model. The question of whether more probable 
word sequences are also more rhythmic can be ap- 
proximated by asking whether sentences with lower 
perplexity have lower stress entropy rate. 

Each sentence in the corpus was assigned to one 
of one hundred bins according to its perp lex i ty - -  
sentences with perplexity between 0 and 10 were as- 
signed to the first bin; between 10 and 20, the sec- 
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W'u'4W: 0.78~ WSk'-~: 6.91~ SWt,/W: 2.96~ SSWW: 3.94~ 
~ S :  2 .94~ WSWS: 11.00~ S~F~S: 7 .80~ SSWS: 8.59~ 
I~SW: 6 .97~ WSSW: 6.16~ SWSW: 11.21~ SSSW: 6.25~ 
k'WSS: 3.71~ WSSS: 6.06~ SWSS: 8.48~ SSSS: 6.27~ 

S 45.87~ 
SW 18.94~ 
W 9.54~ 

(b) s ~ r ~  s .74~  
ws 5.14~ 
WSW 4.54~ 

Figure 3: (a) The corpus frequencies of all binary stress 4-grams (based on 60.7 million syllables), with 
secondary stress mapped to "weak" (W). (b) The corpus frequencies of the top six lexical stress patterns. 

Wail Sb'eet Jouinal sylaldes per tmtd, by perpledty bin 

Wan Street Journal sentences 
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Figure 4: The amount  of training data, in syllables, 
in each perplexity bin. The bin at perplexity level pp 
contains all sentences in the corpus with perplexity 
no less than pp and no greater than pp + 10. The 
smallest count (at bin 990) is 50662. 

ond; and so on. Sentences with perplexity greater 
than 1000, which numbered roughly 106 thousand 
out of 1.59 million, were discarded from all exper- 
iments, as 10-unit bins at that  level captured too 
little data  for statistical significance. A histogram 
showing the amount  of training data  (in syllables) 
per perplexity bin is given in Figure 4. 

It is crucial to detect and understand potential 
sources of bias in the methodology so far. It is clear 
that  the perplexity bins are well trained, but not yet 
that  they are comparable with each other. Figure 5 
shows the average number of syllables per word in 
sentences that  appear in each bin. That  this func- 
tion is roughly increasing agrees with our intuition 
that  sequences with longer words are rarer. But it 
biases our perplexity bins at the extremes. Early 
bins, with sequences that  have a small syllable rate 
per word (1.57 in the 0 bin, for example), are pre- 
disposed to a lower stress entropy rate since primary 
stresses, which occur roughly once per word, are 
more frequent. Later bins are also likely to be prej- 
udiced in that  direction, for the inverse reason: The 

Figure 5: The average number of syllables per word 
for each perplexity bin. 

increasing frequency of multisyllabic words makes 
it more and more fashionable to transit  t o  a weak- 
stressed syllable following a primary stress, sharpen- 
ing the probability distribution and decreasing en- 
tropy. 

This is verified when we run the stress entropy 
rate computation for each bin. The results for n- 
gram models of orders 3 through 7, for the case 
in which secondary lexical stress is mapped to the 
"weak" level, are shown in Figure 6. 

All of the rates calculated are substantially less 
than a bit, but  this only reflects the stress regu- 
larity inherent in the vocabulary and in word se- 
lection, and says nothing about word arrangement. 
The atomic elements in the text stream, the words, 
contribute regularity independently. To determine 
how much is contributed by the way they are glued 
together, we need to remove the bias of word choice. 

For this reason we settled on a model size, n = 6, 
and performed a variety of experiments with both 
the original corpus and with a control set tha t  con- 
tained exactly the same bins with exactly the same 
sentences, but mixed up. Each sentence in the 
control set was permuted with a pseudorandom se- 
quence of swaps based on an insensitive function of 
the original; that  is to say, identical sentences in the 
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Figure 6: n-gram stress entropy rates for ~z, weak 
secondary stress 

corpus were shuffled the same way and sentences 
differing by only one word were shuffled similarly. 
This allowed us to keep steady the effects of mul- 
tiple copies of the same sentence in the same per- 
plexity bin. More importantly, these tests hold ev- 
erything constant--dict ion,  syllable count, syllable 
rate per word--except  for syntax, the arrangement 
of the chosen words within the sentence. Compar- 
ing the unrandomized results with this control ex- 
periment allows us, therefore, to factor out every- 
thing but word order. In particular, subtracting the 
stress entropy rates of the original sentences from 
the rates of the randomized sentences gives us a fig- 
ure, relative entropy, that  estimates how many bits 
we save by knowing the proper word order given the 
word choice. The results for these tests for weak 
and strong secondary stress are shown in Figures 7 
and 8, including the difference curves between the 
randomized-word and original entropy rates. 

The consistently positive difference function 
demonstrates that  there is some extra stress regu- 
larity to be had with proper word order, about a 
hundredth of a bit on average. The difference is 
small indeed, but its consistency over hundreds of 
well-trained data  points puts the observation on sta- 
tistically solid ground. 

The negative slopes of the difference curves sug- 
gests a more interesting conclusion: As sentence per- 
plexity increases, the gap in stress entropy rate be- 
tween syntactic sentences and randomly permuted 
sentences narrows. Restated inversely, using entropy 
rates for randomly permuted sentences as a baseline, 
sentences with higher sequence probability are rela- 
tively more rhythmical in the sense of our definition 
from section 1. 

To supplement the ~z binary vocabulary tests we 
ran the same experiments with ~2 = {0, 1, P},  in- 

troducing a pause symbol to examine how stress be- 
haves near phrase boundaries. Commas, dashes, 
semicolons, colons, ellipses, and all sentence- 
terminating punctuation in the text, which were re- 
moved in the E1 tests, were mapped to a single pause 
symbol for E~. Pauses in the text arise not only 
from semantic constraints but also from physiologi- 
cal limitations. These include the "breath groups" 
of syllables that influence both vocalized and writ- 
ten production. (Ochsner, 1989). The results for 
these experiments are shown in Figures 9 and 10. 
Expectedly, adding the symbol increases the confu- 
sion and hence the entropy, but the rates remain less 
than a bit. The maximum possible rate for a ternary 
sequence is log 2 3 ~ 1.58. 

The experiments in this section were repeated 
with a larger perplexity interval that  partit ioned 
the corpus into 20 bins, each covering 50 units of 
perplexity. The resulting curves mirrored the finer- 
grain curves presented here. 

5 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

We have quantified lexical stress regularity, mea- 
sured it in a large sample of written English prose, 
and shown there to be a significant contribution from 
word order that  increases with lexical perplexity. 

This contribution was measured by comparing the 
entropy rate of lexical stress in natural sentences 
with randomly permuted versions of the same. Ran- 
domizing the word order in this way yields a fairly 
crude baseline, as it produces asyntactic sequences 
in which, for example, single-syllable function words 
can unnaturally clash. To correct for this we modi- 
fied the randomization algorithm to permute only 
open-class words and to fix in place determiners, 
particles, pronouns, and other closed-class words. 
We found the entropy rates to be consistently mid- 
way between the fully randomized and unrandom- 
ized values. But even this constrained randomiza- 
tion is weaker than what we'd like. Ideally we should 
factor out semantics as well as word choice, compar- 
ing each sentence in the corpus with its grammatical 
variations. While this is a difficult experiment to do 
automatically, we're hoping to approximate it using 
a natural language generation system based on link 
grammar under development by the author. 

Also, we're currently testing other data  sources 
such as the Switchboard corpus of telephone speech 
(Godfrey, Holliman, and McDaniel, 1992) to mea- 
sure the effects of rhythm in more spontaneous and 
grammatically relaxed texts. 
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Figure 10: 6-gram entropy rates and difference curve for E2, strong secondary stress 
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