
Statistical Decision-Tree Models for Parsing*

D a v i d M . M a g e r m a n
Bo l t B e r a n e k and N e w m a n Inc.
70 Fawc e t t S t ree t , R o o m 1 5 / 1 4 8

C a m b r i d g e , M A 02138, U S A
magerman@bbn, com

A b s t r a c t

Syntactic natural language parsers have
shown themselves to be inadequate for pro-
cessing highly-ambiguous large-vocabulary
text, as is evidenced by their poor per-
formance on domains like the Wall Street
Journal, and by the movement away
from parsing-based approaches to text-
processing in general. In this paper, I de-
scribe SPATTER, a statistical parser based
on decision-tree learning techniques which
constructs a complete parse for every sen-
tence and achieves accuracy rates far bet-
ter than any published result. This work
is based on the following premises: (1)
grammars are too complex and detailed to
develop manually for most interesting do-
mains; (2) parsing models must rely heav-
ily on lexical and contextual information
to analyze sentences accurately; and (3)
existing n-gram modeling techniques are
inadequate for parsing models. In exper-
iments comparing SPATTER with IBM's
computer manuals parser, SPATTER sig-
nificantly outperforms the grammar-based
parser. Evaluating SPATTER against the
Penn Treebank Wall Street Journal corpus
using the PARSEVAL measures, SPAT-
TER achieves 86% precision, 86% recall,
and 1.3 crossing brackets per sentence for
sentences of 40 words or less, and 91% pre-
cision, 90% recall, and 0.5 crossing brackets
for sentences between 10 and 20 words in
length.

This work was sponsored by the Advanced Research
Projects Agency, contract DABT63-94-C-0062. It does
not reflect the position or the policy of the U.S. Gov-
ernment, and no official endorsement should be inferred.
Thanks to the members of the IBM Speech Recognition
Group for their significant contributions to this work.

1 I n t r o d u c t i o n

Parsing a natural language sentence can be viewed as
making a sequence of disambiguation decisions: de-
termining the part-of-speech of the words, choosing
between possible constituent structures, and select-
ing labels for the constituents. Traditionally, disam-
biguation problems in parsing have been addressed
by enumerating possibilities and explicitly declaring
knowledge which might aid the disambiguation pro-
cess. However, these approaches have proved too
brittle for most interesting natural language prob-
lems.

This work addresses the problem of automatically
discovering the disambiguation criteria for all of the
decisions made during the parsing process, given the
set of possible features which can act as disambigua-
tors. The candidate disambiguators are the words in
the sentence, relationships among the words, and re-
lationships among constituents already constructed
in the parsing process.

Since most natural language rules are not abso-
lute, the disambiguation criteria discovered in this
work are never applied deterministically. Instead, all
decisions are pursued non-deterministically accord-
ing to the probability of each choice. These proba-
bilities are estimated using statistical decision tree
models. The probability of a complete parse tree
(T) of a sentence (S) is the product of each decision
(dl) conditioned on all previous decisions:

P(T[S) = H P(dildi-ldi-2""dlS)"
diET

Each decision sequence constructs a unique parse,
and the parser selects the parse whose decision se-
quence yields the highest cumulative probability. By
combining a stack decoder search with a breadth-
first algorithm with probabilistic pruning, it is pos-
sible to identify the highest-probability parse for any
sentence using a reasonable amount of memory and
time.

276

The claim of this work is that statistics from
a large corpus of parsed sentences combined with
information-theoretic classification and training al-
gorithms can produce an accurate natural language
parser without the aid of a complicated knowl-
edge base or grammar. This claim is justified by
constructing a parser, called SPATTER (Statistical
PATTErn Recognizer), based on very limited lin-
gnistic information, and comparing its performance
to a state-of-the-art grammar-based parser on a
common task. It remains to be shown that an accu-
rate broad-coverage parser can improve the perfor-
mance of a text processing application. This will be
the subject of future experiments.

One of the important points of this work is that
statistical models of natural language should not
be restricted to simple, context-insensitive models.
In a problem like parsing, where long-distance lex-
ical information is crucial to disambiguate inter-
pretations accurately, local models like probabilistic
context-free grammars are inadequate. This work
illustrates that existing decision-tree technology can
be used to construct and estimate models which se-
lectively choose elements of the context which con-
tribute to disambignation decisions, and which have
few enough parameters to be trained using existing
resources.

I begin by describing decision-tree modeling,
showing that decision-tree models are equivalent to
interpolated n-gram models. Then I briefly describe
the training and parsing procedures used in SPAT-
TER. Finally, I present some results of experiments
comparing SPATTER with a grammarian's rule-
based statistical parser, along with more recent re-
suits showing SPATTER applied to the Wall Street
Journal domain.

2 Decision-Tree Modeling
Much of the work in this paper depends on replac-
ing human decision-making skills with automatic
decision-making algorithms. The decisions under
consideration involve identifying constituents and
constituent labels in natural language sentences.
Grammarians, the human decision-makers in pars-
ing, solve this problem by enumerating the features
of a sentence which affect the disambiguation deci-
sions and indicating which parse to select based on
the feature values. The grammarian is accomplish-
ing two critical tasks: identifying the features which
are relevant to each decision, and deciding which
choice to select based on the values of the relevant
features.

Decision-tree classification algorithms account for
both of these tasks, and they also accomplish a

third task which grammarians classically find dif-
ficult. By assigning a probability distribution to the
possible choices, decision trees provide a ranking sys-
tem which not only specifies the order of preference
for the possible choices, but also gives a measure of
the relative likelihood that each choice is the one
which should be selected.

2.1 W h a t is a Decision Tree?

A decision tree is a decision-making device which
assigns a probability to each of the possible choices
based on the context of the decision: P(flh), where
f is an element of the future vocabulary (the set of
choices) and h is a history (the context of the de-
cision). This probability P(flh) is determined by
asking a sequence of questions ql q2 . . . qn about the
context, where the ith question asked is uniquely de-
termined by the answers to the i - 1 previous ques-
tions.

For instance, consider the part-of-speech tagging
problem. The first question a decision tree might
ask is:

1. What is the word being tagged?

If the answer is the, then the decision tree needs
to ask no more questions; it is clear that the deci-
sion tree should assign the tag f = determiner with
probability 1. If, instead, the answer to question 1 is
bear, the decision tree might next ask the question:

2. What is the tag of the previous word?

If the answer to question 2 is determiner, the de-
cision tree might stop asking questions and assign
the tag f = noun with very high probability, and
the tag f = verb with much lower probability. How-
ever, if the answer to question 2 is noun, the decision
tree would need to ask still more questions to get a
good estimate of the probability of the tagging deci-
sion. The decision tree described in this paragraph
is shown in Figure 1.

Each question asked by the decision tree is repre-
sented by a tree node (an oval in the figure) and the
possible answers to this question are associated with
branches emanating from the node. Each node de-
fines a probability distribution on the space of pos-
sible decisions. A node at which the decision tree
stops asking questions is a leaf node. The leaf nodes
represent the unique states in the decision-making
problem, i.e. all contexts which lead to the same
leaf node have the same probability distribution for
the decision.

2.2 Decision Trees vs. n-graxns

A decision-tree model is not really very different
from an interpolated n-gram model. In fact, they

277

I I

I P(aoun I bear, determiner)f0.8
P(vo~ I bear, determiner)--0.2 I -"

Figure I: Partially-grown decision tree for part-of-
speech tagging.

are equivalent in representational power. The main
differences between the two modeling techniques are
how the models are parameterized and how the pa-
rameters are estimated.

2.2.1 M o d e l P a r a m e t e r i z a t i o n

First, let's be very clear on what we mean by an
n-gram model. Usually, an n-gram model refers to a
Markov process where the probability of a particular
token being generating is dependent on the values
of the previous n - 1 tokens generated by the same
process. By this definition, an n-gram model has
IWI" parameters, where IWI is the number of unique
tokens generated by the process.

However, here let's define an n-gram model more
loosely as a model which defines a probability distri-
bution on a random variable given the values of n - 1
random variables, P(flhlh2.. . hn-1). There is no
assumption in the definition that any of the random
variables F or Hi range over the same vocabulary.
The number of parameters in this n-gram model is
IFI I'[IH, I.

Using this definition, an n-gram model can be
represented by a decision-tree model with n - 1
questions. For instance, the part-of-speech tagging
model P(tilwiti_lti_2) can be interpreted as a 4-
gram model, where HI is the variable denoting the
word being tagged, Ha is the variable denoting the
tag of the previous word, and Ha is the variable de-
noting the tag of the word two words back. Hence,
this 4-gram tagging model is the same as a decision-
tree model which always asks the sequence of 3 ques-
tions:

1. What is the word being tagged?

2. What is the tag of the previous word?

3. What is the tag of the word two words back?

But can a decision-tree model be represented by
an n-gram model? No, but it can be represented
by an interpolated n-gram model. The proof of this
assertion is given in the next section.

2.2.2 M o d e l E s t i m a t i o n

The standard approach to estimating an n-gram
model is a two step process. The first step is to count
the number of occurrences of each n-gram from a
training corpus. This process determines the empir-
ical distribution,

Count(hlhz . . . hn-l f)
P(flhlh2.. . hn-1)= Count(h lh2 . . . hn-1)

The second step is smoothing the empirical distri-
bution using a separate, held-out corpus. This step
improves the empirical distribution by finding statis-
tically unreliable parameter estimates and adjusting
them based on more reliable information.

A commonly-used technique for smoothing is
deleted interpolation. Deleted interpolation es-
timates a model P(f[hlh2.. . hn-1) by us-
ing a linear combination of empirical models
P(f]hklhk=... hk.,), where m < n and
k,-x < ki < n for all i < m. For example, a model
[~(fihlh2h3) might be interpolated as follows:

P(.flhl h2hs) =
AI (hi h2hs)P(.fJhl h2h3) +

:~2(h~h2h3)P(flhlh2) + As(hlh2h3)P(Ylhzh3) +
)~(hlhuha)P(flh2hs) + As(hzhshs)P(f]hlh2) +
)~ (hi h2h3)P(.flhl) + A~ (hi h2ha)P(.flh2) +
AS (hlh2hs)P(flh3)

where ~'~)q(hlh2h3) = 1 for all histories hlhshs.
The optimal values for the A~ functions can be
estimated using the forward-backward algorithm
(Baum, 1972).

A decision-tree model can be represented by an
interpolated n-gram model as follows. A leaf node in
a decision tree can be represented by the sequence of
question answers, or history values, which leads the
decision tree to that leaf. Thus, a leaf node defines
a probability distribution based on values of those
questions: P(flhklhk2 ... ha.,), where m < n and
ki-1 < ki < n, and where hk~ is the answer to one
of the questions asked on the path from the root to
the leaf. ~ But this is the same as one of the terms
in the interpolated n-gram model. So, a decision

1Note that in a decision tree, the leaf distribution is
not affected by the order in which questions are asked.
Asking about hi followed by h2 yields the same future
distribution as asking about h2 followed by hi.

278

tree can be defined as an interpolated n-gram model
where the At function is defined as:

1 if hk~hk2. . , h~. is aleaf,
Ai(hk~hk2... hk,) = 0 otherwise.

2 .3 Decision-Tree Algor i thms

The point of showing the equivalence between n-
gram models and decision-tree models is to make
clear that the power of decision-tree models is not
in their expressiveness, but instead in how they can
be automatically acquired for very large modeling
problems. As n grows, the parameter space for an
n-gram model grows exponentially, and it quickly
becomes computationally infeasible to estimate the
smoothed model using deleted interpolation. Also,
as n grows large, the likelihood that the deleted in-
terpolation process will converge to an optimal or
even near-optimal parameter setting becomes van-
ishingly small.

On the other hand, the decision-tree learning al-
gorithm increases the size of a model only as the
training data allows. Thus, it can consider very large
history spaces, i.e. n-gram models with very large n.
Regardless of the value of n, the number of param-
eters in the resulting model will remain relatively
constant, depending mostly on the number of train-
ing examples.

The leaf distributions in decision trees are empiri-
cal estimates, i.e. relative-frequency counts from the
training data. Unfortunately, they assign probabil-
ity zero to events which can possibly occur. There-
fore, just as it is necessary to smooth empirical n-
gram models, it is also necessary to smooth empirical
decision-tree models.

The decision-tree learning algorithms used in this
work were developed over the past 15 years by
the IBM Speech Recognition group (Bahl et al.,
1989). The growing algorithm is an adaptation of
the CART algorithm in (Breiman et al., 1984). For
detailed descriptions and discussions of the decision-
tree algorithms used in this work, see (Magerman,
1994).

An important point which has been omitted from
this discussion of decision trees is the fact that only
binary questions are used in these decision trees. A
question which has k values is decomposed into a se-
quence of binary questions using a classification tree
on those k values. For example, a question about a
word is represented as 30 binary questions. These
30 questions are determined by growing a classifi-
cation tree on the word vocabulary as described in
(Brown et al., 1992). The 30 questions represent 30
different binary partitions of the word vocabulary,

and these questions are defined such that it is possi-
ble to identify each word by asking all 30 questions.
For more discussion of the use of binary decision-tree
questions, see (Magerman, 1994).

3 S P A T T E R P a r s i n g

The SPATTER parsing algorithm is based on inter-
preting parsing as a statistical pattern recognition
process. A parse tree for a sentence is constructed
by starting with the sentence's words as leaves of
a tree structure, and labeling and extending nodes
these nodes until a single-rooted, labeled tree is con-
structed. This pattern recognition process is driven
by the decision-tree models described in the previous
section.

3.1 S P A T T E R Represen ta t i on

A parse tree can be viewed as an n-ary branching
tree, with each node in a tree labeled by either a
non-terminal label or a part-of-speech label. If a
parse tree is interpreted as a geometric pattern, a
constituent is no more than a set of edges which
meet at the same tree node. For instance, the noun
phrase, "a brown cow," consists of an edge extending
to the right from "a," an edge extending to the left
from "cow," and an edge extending straight up from
"brown".

Figure 2: Representation of constituent and labeling
of extensions in SPATTER.

In SPATTER, a parse tree is encoded in terms
of four elementary components, or features: words,
tags, labels, and extensions. Each feature has a fixed
vocabulary, with each element of a given feature vo-
cabulary having a unique representation. The word
feature can take on any value of any word. The tag
feature can take on any value in the part-of-speech
tag set. The label feature can take on any value in
the non-terminal set. The extension can take on any
of the following five values:

r i g h t - the node is the first child of a constituent;

l e f t - the node is the last child of a constituent;

up - the node is neither the first nor the last child
of a constituent;

unary - the node is a child of a unary constituent;

279

root - the node is the root of the tree.

For an n word sentence, a parse tree has n leaf
nodes, where the word feature value of the ith leaf
node is the ith word in the sentence. The word fea-
ture value of the internal nodes is intended to con-
tain the lexical head of the node's constituent. A
deterministic lookup table based on the label of the
internal node and the labels of the children is used
to approximate this linguistic notion.

The SPATTER representation of the sentence

(S (N Each_DD1 code_NN1
(Tn used_VVN

(P by_II (N the_AT PC_NN1))))
(V is_VBZ listed_VVN))

is shown in Figure 3. The nodes are constructed
bottom-up from left-to-right, with the constraint
that no constituent node is constructed until all of its
children have been constructed. The order in which
the nodes of the example sentence are constructed
is indicated in the figure.

14

10

E a c h

| 4 t2

,~i~4 l ~ t O d

mind ~¢ tho PC ~- I i ~ o d

Figure 3: Treebank analysis encoded using feature
values.

3.2 Training SPATTER's models

SPATTER consists of three main decision-tree
models: a part-of-speech tagging model, a node-
extension model, and a node-labeling model.

Each of these decision-tree models are grown using
the following questions, where X is one of word, tag,
label, or extension, and Y is either left and right:

• What is the X at the current node?

• What is the X at the node to the Y?

• What is the X at the node two nodes to the Y?

• What is the X at the current node's first child
from the Y?

• What is the X at the current node's second
child from the Y?

For each of the nodes listed above, the decision tree
could also ask about the number of children and span
of the node. For the tagging model, the values of the
previous two words and their tags are also asked,
since they might differ from the head words of the
previous two constituents.

The training algorithm proceeds as follows. The
training corpus is divided into two sets, approx-
imately 90% for tree growing and 10% for tree
smoothing. For each parsed sentence in the tree
growing corpus, the correct state sequence is tra-
versed. Each state transition from si to 8i+1 is an
event; the history is made up of the answers to all of
the questions at state sl and the future is the value
of the action taken from state si to state Si+l. Each
event is used as a training example for the decision-
tree growing process for the appropriate feature's
tree (e.g. each tagging event is used for growing
the tagging tree, etc.). After the decision trees are
grown, they are smoothed using the tree smoothing
corpus using a variation of the deleted interpolation
algorithm described in (Magerman, 1994).

3.3 Parsing with S P A T T E R

The parsing procedure is a search for the highest
probability parse tree. The probability of a parse
is just the product of the probability of each of the
actions made in constructing the parse, according to
the decision-tree models.

Because of the size of the search space, (roughly
O(ITI"INJ"), where [TJ is the number of part-of-
speech tags, n is the number of words in the sen-
tence, and [NJ is the number of non-terminal labels),
it is not possible to compute the probability of every
parse. However, the specific search algorithm used
is not very important, so long as there are no search
errors. A search error occurs when the the high-
est probability parse found by the parser is not the
highest probability parse in the space of all parses.

SPATTER's search procedure uses a two phase
approach to identify the highest probability parse of

280

a sentence. First, the parser uses a stack decoding
algorithm to quickly find a complete parse for the
sentence. Once the stack decoder has found a com-
plete parse of reasonable probability (> 10-5), it
switches to a breadth-first mode to pursue all of the
partial parses which have not been explored by the
stack decoder. In this second mode, it can safely
discard any partial parse which has a probability
lower than the probability of the highest probabil-
ity completed parse. Using these two search modes,
SPATTER guarantees tha t it will find the highest
probabili ty parse. The only limitation of this search
technique is that , for sentences which are modeled
poorly, the search might exhaust the available mem-
ory before completing both phases. However, these
search errors conveniently occur on sentences which
SPATTER is likely to get wrong anyway, so there
isn't much performance lossed due to the search er-
rors. Experimentally, the search algorithm guaran-
tees the highest probabili ty parse is found for over
96% of the sentences parsed.

4 Experiment Results

In the absence of an NL system, SPATTER can be
evaluated by comparing its top-ranking parse with
the t reebank analysis for each test sentence. The
parser was applied to two different domains, IBM
Computer Manuals and the Wall Street Journal.

4.1 I B M C o m p u t e r M a n u a l s

The first experiment uses the IBM Computer Man-
uals domain, which consists of sentences extracted
from IBM computer manuals. The training and test
sentences were annotated by the University of Lan-
caster. The Lancaster t reebank uses 195 part-of-
speech tags and 19 non-terminal labels. This tree-
bank is described in great detail in (Black et al.,
1993).

The main reason for applying SPATTER to this
domain is tha t IBM had spent the previous ten
years developing a rule-based, unification-style prob-
abilistic context-free grammar for parsing this do-
main. The purpose of the experiment was to esti-
mate SPATTER's ability to learn the syntax for this
domain directly from a treebank, instead of depend-
ing on the interpretive expertise of a grammarian.

The parser was trained on the first 30,800 sen-
tences from the Lancaster treebank. The test set
included 1,473 new sentences, whose lengths range
from 3 to 30 words, with a mean length of 13.7
words. These sentences are the same test sentences
used in the experiments reported for IBM's parser
in (Black et al., 1993). In (Black et al., 1993),

IBM's parser was evaluated using the 0-crossing-
brackets measure, which represents the percentage
of sentences for which none of the constituents in
the parser 's parse violates the consti tuent bound-
aries of any consti tuent in the correct parse. After
over ten years of grammar development, the IBM
parser achieved a 0-crossing-brackets score of 69%.
On this same test set, S P A TTER scored 76%.

4.2 W a l l S t r e e t J o u r n a l

The experiment is intended to illustrate SPATTER's
ability to accurately parse a highly-ambiguous,
large-vocabulary domain. These experiments use
the Wall Street Journal domain, as annotated in the
Penn Treebank, version 2. The Penn Treebank uses
46 part-of-speech tags and 27 non-terminal labels. 2

The WSJ portion of the Penn Treebank is divided
into 25 sections, numbered 00 - 24. In these exper-
iments, SPATTER was trained on sections 02 - 21,
which contains approximately 40,000 sentences. The
test results reported here are from section 00, which
contains 1920 sentences, s Sections 01, 22, 23, and
24 will be used as test da ta in future experiments.

The Penn Treebank is already tokenized and sen-
tence detected by human annotators, and thus the
test results reported here reflect this. SPATTER
parses word sequences, not tag sequences. Further-
more, SPATTER does not simply pre-tag the sen-
tences and use only the best tag sequence in parsing.
Instead, it uses a probabilistic model to assign tags
to the words, and considers all possible tag sequences
according to the probabili ty they are assigned by the
model. No information about the legal tags for a
word are extracted from the test corpus. In fact, no
information other than the words is used from the
test corpus.

For the sake of efficiency, only the sentences of 40
words or fewer are included in these experiments. 4
For this test set, SPATTER takes on average 12

2This treebank also contains coreference information,
predicate-argument relations, and trace information in-
dicating movement; however, none of this additional in-
formation was used in these parsing experiments.

SFor an independent research project on coreference,
sections 00 and 01 have been annotated with detailed
coreference information. A portion of these sections is
being used as a development test set. Training SPAT-
TER on them would improve parsing accuracy signifi-
cantly and skew these experiments in favor of parsing-
based approaches to coreference. Thus, these two sec-
tions have been excluded from the training set and re-
served as test sentences.

4SPATTER returns a complete parse for all sentences
of fewer then 50 words in the test set, but the sentences
of 41 - 50 words required much more computation than
the shorter sentences, and so they have been excluded.

281

seconds per sentence on an SGI R4400 with 160
megabytes of RAM.

To evaluate SPATTER's performance on this do-
main, I am using the PARSEVAL measures, as de-
fined in (Black et al., 1991):

Precision

no. of correct constituents in SPATTER parse

no. of constituents in SPATTER parse

Recall

no. of correct constituents in SPATTER parse

no. of constituents in treebank parse

Crossing Brackets no. of constituents which vio-
late constituent boundaries with a constituent
in the treebank parse.

The precision and recall measures do not consider
constituent labels in their evaluation of a parse, since
the treebank label set will not necessarily coincide
with the labels used by a given grammar. Since
SPATTER uses the same syntactic label set as the
Penn Treebank, it makes sense to report labelled
precision and labelled recall. These measures are
computed by considering a constituent to be correct
if and only if it's label matches the label in the tree-
bank.

Table 1 shows the results of SPATTER evaluated
against the Penn Treebank on the Wall Street Jour-
nal section 00.

Comparisons
Avg. Sent. Length
Treebank Constituents
Parse Constituents
Tagging Accuracy
Crossings Per Sentence
Sent. with 0 Crossings
Sent. with 1 Crossing
Sent. with 2 Crossings
Precision
Recall
Labelled Precision
Labelled Recall

1759 1114 653
22.3 16.8 15.6
17.58 1 3 . 2 1 12.10
17.48 1 3 . 1 3 12.03
96.5% 96.6% 96.5%
1.33 0.63 0.49

55.4% 69.8% 73.8%
69.2% 83.8% 86.8%
80.2% 92.1% 95.1%
86.3% 89.8% 90.8%
85.8% 89.3% 90.3%
84.5% 88.1% 89.0%
84.0% 87.6% 88.5%

Table 1: Results from the WSJ Penn Treebank ex-
periments.

Figures 5, 6, and 7 illustrate the performance of
SPATTER as a function of sentence length. SPAT-
TER's performance degrades slowly for sentences up

to around 28 words, and performs more poorly and
more erratically as sentences get longer. Figure 4 in-
dicates the frequency of each sentence length in the
test corpus.

80

70

80

SO

40

30

20

10

0

iii

4 • II 10 12 14 l id 18 2 0 2 | 24 2 i l 2 8 : 1 0 : 1 2 34 : i l l 38 4 0

Senbmce Length

Figure 4: Frequency in the test corpus as a function
of sentence length for Wall Street Journal experi-
ments.

3.5

$

2.5

2

1.S

1

0.6

0

t
l ..

$ 8 10 12 14 18 15 2 0 2 2 2 4 2 8 ~Zll 'lO $ 2 : 1 4 ~ l ~8 4 0

Sentence Length

Figure 5: Number of crossings per sentence as a
function of sentence length for Wall Street Journal
experiments.

5 Conclusion

Regardless of what techniques are used for parsing
disambiguation, one thing is clear: if a particular
piece of information is necessary for solving a dis-
ambiguation problem, it must be made available to
the disambiguation mechanism. The words in the
sentence are clearly necessary to make parsing de-
cisions, and in some cases long-distance structural
information is also needed. Statistical models for

282

1 0 0 %

9 0 %

8 0 %

70%

6 0 %

5 0 %

4 0 %

3 0 %

2 0 %

1 0 %

0%

.

. '. : ', '. : : '. : ', ~ ~ ~ I ~ ~ : : : : : : : : : : ', '. ', ~ : : : : : : :

I II; il 1 0 1 2 1 4 1 1 1 8 | 0 2= J 4 t e 2 0 3 0 5 t $ 4 ~lll ~18 4 0

Sentence L ~ g t h

Figure 6: Percentage of sentence with 0, 1, and 2
crossings as a function of sentence length for Wall
Street Journal experiments.

100%

96%

90%

85%

00%

76%

- . - e m e m o n

I 8 l O 1 | 1 4 1(1 18 s*O | | | 4 | $ 1 8 =0 S | S4 =e $8 40

Sentence Length

Figure 7: Precision and recall as a function of sen-
tence length for Wall Street Journal experiments.

parsing need to consider many more features of a
sentence than can be managed by n-gram modeling
techniques and many more examples than a human
can keep track of. The SPATTER parser illustrates
how large amounts of contextual information can be
incorporated into a statistical model for parsing by
applying decision-tree learning algorithms to a large
annotated corpus.

R e f e r e n c e s

L. R. Bahl, P. F. Brown, P. V. deSouza, and R. L.
Mercer. 1989. A tree-based statistical language
model for natural language speech recognition.
IEEE ~Pransactions on Acoustics, Speech, and Sig-
nal Processing, Vol. 36, No. 7, pages 1001-1008.

L. E. Baum. 1972. An inequality and associated
maximization technique in statistical estimation
of probabilistic functions of markov processes. In-
equalities, Vol. 3, pages 1-8.

E. Black and et al. 1991. A procedure for quanti-
tatively comparing the syntactic coverage of en-
glish grammars. Proceedings o/ the February 1991
DARPA Speech and Natural Language Workshop,
pages 306-311.

E. Black, R. Garside, and G. Leech. 1993.
Statistically-driven computer grammars of english:
the ibm/lancaster approach. Rodopi, Atlanta,
Georgia.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. 1984. Ci~ssi]ication and Regression Trees.
Wadsworth and Brooks, Pacific Grove, California.

P. F. Brown, V. Della Pietra, P. V. deSouza,
J. C. Lai, and R. L. Mercer. 1992. "Class-based
n-gram models of natural language." Computa-
tional Linguistics, 18(4), pages 467-479.

D. M. Magerman. 1994. Natural Language Pars-
ing as Statistical Pattern Recognition. Doctoral
dissertation. Stanford University, Stanford, Cali-
fornia.

2 8 3

