
Compi l ing H P S G type constraints into definite clause programs

T h i l o G ~ t z and W a l t D e t m a r M e u r e r s *
SFB 340, Univers i t£ t Tf ib ingcn

Kle ine Wilhelmstrat~e 113

72074 Tf ib ingen

G e r m a n y
~tg, dm}©sf s. nphil, uni-tuebingen, de

A b s t r a c t

We present a new approach to HPSG pro-
cessing: compiling HPSG grammars ex-
pressed as type constraints into definite
clause programs. This provides a clear
and computationally useful correspondence
between linguistic theories and their im-
plementation. The compiler performs off-
line constraint inheritance and code opti-
mization. As a result, we are able to effi-
ciently process with HPSG grammars with-
out haviog to hand-translate them into def-
inite clause or phrase structure based sys-
tems.

1 I n t r o d u c t i o n

The HPSG architecture as defined in (Pollard and
Sag, 1994) (henceforth HPSGII) is being used by
an increasing number of linguists, since the formally
well-defined framework allows for a rigid and ex-
plicit formalization of a linguistic theory. At the
same time, the feature logics which provide the for-
mal foundation of HPSGII have been used as basis
for several NLP systems, such as ALE (Carpenter,
1993), CUF (DSrre and Dorna, 1993), Troll (Gerde-
mann and King, 1993) or TFS (Emele and Zajac,
1990). These systems are - at least partly - intended
as computational environments for the implementa-
tion of HPSG grammars.

HPSG linguists use the description language of
the logic to express their theories in the form of im-
plicative constraints. On the other hand, most of the
computational setups only allow feature descriptions
as extra constraints with a phrase structure or defi-
nite clause based language. 1 From a computational
point of view the latter setup has several advantages.
It provides access to the pool of work done in the

*The authors are listed alphabetically.
1One exception is the TFS system. However, the pos-

sibility to express recursive relations on the level of the
description language leads to serious control problems in
that system.

area of natural language processing, e.g., to efficient
control strategies for the definite clause level based
on tabelling methods like Earley deduction, or differ-
ent parsing strategies in the phrase structure setup.

The result is a gap between the description lan-
guage theories of HPSG linguists and the definite
clause or phrase structure based NLP systems pro-
vided to implement these theories. Most grammars
currently implemented therefore have no clear corre-
spondence to the linguistic theories they originated
from. To be able to use implemented grammars to
provide feedback for a rigid and complete formal-
ization of linguistic theories, a clear and computa-
tionMly useful correspondence has to be established.
This link is also needed to stimulate further devel-
opment of the computational systems. Finally, an
HPSGII style setup is also interesting to model from
a software engineering point of view, since it permits
a modular development and testing of the grammar.

The purpose of this paper is to provide the de-
sired link, i.e., to show how a HPSG theory formu-
lated as implicative constraints can be modelled on
the level of the relational extension of the constraint
language. More specifically, we define a compilation
procedure which translates the type constraints of
the linguistic theory into definite clauses runnable in
systems such as Troll, ALE, or CUF. Thus, we per-
form constraint inheritance and code optimization
off-line. This results in a considerable efficiency gain
over a direct on-line treatment of type constraints as,
e.g., in TFS.

The structure of the paper is as follows: A short
discussion of the logical setup for HPSGII provides
the necessary formal background and terminology.
Then the two possibilities for expressing a theory -
using the description language as in HPSGII or the
relational level as in the computational architectures
- are introduced. The third section provides a simple
picture of how HPSGII theories can be modelled
on the relational level. This simple picture is then
refined in the fourth section, where the compilation
procedure and its implementation is discussed. A
small example grammar is provided in the appendix.

85

2 B a c k g r o u n d

2.1 The H P S G I I a r ch i t ec tu re

A HPSG grammar consists of two components: the
declaration of the structure of the domain of linguis-
tic objects in a signature (consisting of the type hi-
erarchy and the appropriateness conditions) and the
formulation of constraints on that domain. The sig-
nature introduces the structures the linguist wants
to talk about. The theory the linguist proposes dis-
tinguishes between those objects in a domain which
are part of the natural language described, and those
which are not.

HPSGII gives a closed world interpretation to the
type hierarchy: every object is of exactly one min-
imal (most specific) type. This implies that every
object in the denotation of a non-minimal type is
also described by at least one of its subtypes. Our
compilation procedure will adhere to this interpre-
tation.

2.2 The theor ies of H P S G I I : Di rec t ly
cons t ra in ing t h e doma in

A HPSGII theory consists of a set of descriptions
which are interpreted as being true or false of an
object in the domain. An object is admissible with
respect to a certain theory iff it satisfies each of the
descriptions in the theory and so does each of its
substructures. The descriptions which make up the
theory are also called constraints, since these de-
scriptions constrain the set of objects which are ad-
missible with respect to the theory.

Figure 1 shows an example of a constraint, the
head-feature principle of HPSGII. Throughout the
paper we will be using HPSG style AVM notation
for descriptions.

phrase - . . *

DTRS headed-strut

SYNSEM]LOC[CAT[HEAD

DTRSIH AD DTRISYNSE I' OClC l" '

Figure 1: The Head-Feature Principle of HPSGII

The intended interpretation of this constraint is that
every object which is being described by type phrase
and by [DTI~S h~aded-str~c] also has to be described by
the consequent, i.e. have its head value shared with
that of its head-daughter.

In the HPSG II architecture any description can be
used as antecedent of an implicative constraint. As
shown in (Meurers, 1994), a complex description can
be expressed as a type by modifying the signature
and/or adding theory statements. In the following,
we therefore only deal with implicative constraints
with type antecedents, the type definitions.

2.3 Theories in constraint logic
programming: express ing def inite
clause relat ions

As mentioned in the introduction, in most computa-
tional systems for the implementation of HPSG the-
ories a grammar is expressed using a relational ex-
tension of the description language 2 such as definite
clauses or phrase structure rules. Figure 2 schemat-
ically shows the embedding of HPSG II descriptions
in the definition of a relation.

relo (D1 D~) : - tell(E1,. . . , Ej),

re/n(Fl , Fh).

Figure 2: Defining relation relo

The HPSG description language is only used to
specify the arguments of the relations, in the exam-
ple noted as D, E, and F. The organization of the
descriptions, i.e. their use as constraints to narrow
down the set of described objects, is taken over by
the relational level. This way of organizing descrip-
tions in definite clauses allows efficient processing
techniques of logic programming to be used.

The question we are concerned with in the follow-
ing is how a HPSG II theory can be modelled in such
a setup.

3 M o d e l l i n g H P S G I I t h e o r i e s o n a
r e l a t i o n a l l e v e l : a s i m p l e p i c t u r e

There are three characteristics of HPSGII theories
which we need to model on the relational level: one
needs to be able to

1. express constraints on any kind of object,

2. use the hierarchical structure of the type hier-
archy to organize the constraints, and

3. check any structure for consistency with the
theory.

A straightforward encoding is achieved by express-
ing each of these three aspects in a set of relations.
Let us illustrate this idea with a simple example. As-
sume the signature given in figure 3 and the HPSGII

2 For the logical foundations of relational extensions of
arbitrary constraint languages see (HShfeld and Smolka,
1988).

86

style theory of figure 4.

T /-=

b c

Figure 3: An example signature

o _

b --. [Q°I

Figure 4: An example theory in a HPSGII setup

First, we define a relation to express the con-
straints immediately specified for a type on the ar-
gument of the relation:

• a o,,) :- T , v p , G) .

• b b :-

• c ° o n , (c) .

For every type, the relation specifies its only argu-
ment to bear the type information and the conse-
quents of the type definition for that type. Note
that the simple type assignment [G a] leads to a call
to the relation atvp~ imposing all constraints for type
a, which is defined below.

Second, a relation is needed to capture the hier-
archical organization of constraints:

• ;

• ah i , ~ (~) : - a,o,,,([~]), (bh , ,~(~) ; chi , r ([~)).

• bhi , r (]~]) : - bco, , , (~) .

Each hierarchy relation of a type references the con-
straint relation and makes sure that the constraints
below one of the subtypes are obeyed.

Finally, a relation is defined to collect all con-
straints on a type:

• atyp~(~) :- This,-(ri-1 a).
• bt,p~(E~]) :- Thief([-i~b).

* ctvpe([~]) :- Thier(r-~c).

aA disjunction of the immediate subtypes of T.

Compared to the hierarchy relation of a type which
collects all constraints on the type and its subtypes,
the last kind of relation additionally references those
constraints which are inherited from a supertype.
Thus, this is the relation that needs to be queried to
check for grammaticality.

Even though the simple picture with its tripartite
definition for each type yields perspicuous code, it
falls short in several respects. The last two kinds
of relations (reltype and relhier) just perform inheri-
tance of constraints. Doing this at run-time is slow,
and additionally there are problems with multiple
inheritance.

A further problem of the encoding is that the value
of an appropriate feature which is not mentioned
in any type definition may nonetheless be implicitly
constrained, since the type of its value is constrained.
Consider for example the standard HPSG encoding
of list structures. This usually involves a type he_list
with appropriate features HD and TL, where under
HD we encode an element of the list, and under TL
the tail of the list. Normally, there will be no extra
constraints on ne_list. But in our setup we clearly
need a definite clause

he_list

ne_listcon,(HD) :- Ttvp~([~), listtyp¢(~]).
.TL

since the value of the feature HD may be of a type
which is constrained by the grammar. Consequently,
since he_list is a subtype of list, the value of TL needs
to be constrained as well.

4 C o m p i l i n g H P S G t y p e c o n s t r a i n t s

i n t o d e f i n i t e c l a u s e s

After this intuitive introduction to the problem, we
will now show how to automatically generate definite
clause programs from a set of type definitions, in
a way that avoids the problems mentioned for the
simple picture.

4.1 The a lgo r i t hm

Before we can look at the actual compilation proce-
dure, we need some terminology.

Defini t ion (type interaction)

Two types interact i f they have a common subtype.

Note that every type interacts with itself.

Defini t ion (defined type)

A defined type is a type that occurs as antecedent of
an implicational constraint in the grammar.

Defini t ion (constrained type)

A constrained type is a type that interacts with a
defined type.

87

Whenever we encounter a structure of a constrained
type, we need to check that the structure conforms
to the constraint on that type. As mentioned in
section 2.1, due to the closed world interpretation of
type hierarchies, we know that every object in the
denotation of a non-minimal type t also has to obey
the constraints on one of the minimal subtypes of t.
Thus, if a type t has a subtype t ' in common with
a defined type d, then t ~ is a constrained type (by
virtue of being a subtype of d) and t is a constrained
type (because it subsumes t').

D e f i n i t i o n (hiding type)

The set of hiding types is the smallest set s.t. i f t is
no t a constrained type and subsumes a type to tha t
has a feature f appropriate s.t. approp(to,f) is a con-
strained type or a hiding type, then t is a hiding type.

The type ne_list that we saw above is a hiding type.

D e f i n i t i o n (hiding feature)

I f t is a constrained or hiding type, then f is a hiding
feature on t iff approp(t,f) is a constrained or hiding
type.

D e f i n i t i o n (simple type)

A simple type is a type that is neither a constrained
n o r a hiding type.

When we see a structure of a simple type, we don' t
need to apply any constraints, neither on the top
node nor on any substructure.

Parti t ioning the types in this manner helps us
to construct definite clause programs for type con-
straint grammars. For each type, we compute a
unary relation that we just give the same name as
the type. Since we assume a closed world interpre-
tat ion of the type hierarchy, we really only need to
compute proper definitions for minimal types. The
body of a definition for a non-minimal type is just
a disjunction of the relations defining the minimal
subtypes of the non-minimal type.

When we want to compute the defining clause for
a minimal type, we first of all check what sort of
type it is. For each simple type, we just introduce
a unit clause whose argument is just the type. For
a constrained type t, first of all we have to perform
constraint inheritance from all types that subsume t.
Then we transform that constraint to some internal
representation, usually a feature structure (FS). We
now have a schematic defining clause of the form

t(FS) :- ?.

Next, we compute the missing right-hand side
(RHS) with the following algorithm.

1. Compute HF, the set of hiding features on the
type of the current node, then insert these fea-
tures with appropriate types in the structure

P':<.}
/ARG2 list I e_list /HD T /
/ARG3 iist~ I.TL ,i,tJ
LGOALS list.]

(FS) if they're not already there. For each node
under a feature in HF, apply step 2.

2. Let t be the type on the current node and X its
tag (a variable).

(a) If t is a constrained type, enter t(X) into
RHS (if it 's not already there).

(b) Elseif t is a hiding type, then check if its
hiding features and the hiding features of
all its hiding subtypes are identical. If they
are identical, then proceed as in step 1. If
not, enter t(X) into RHS.

(c) Else (t is a simple type) do nothing at all.

For hiding types, we do exactly the same thing, ex-
cept that we don ' t have any structure to begin with.
But this is no problem, since the hiding features get
introduced anyway.

4.2 A n e x a m p l e

A formal proof of correctness of this compiler is given
in (GStz, 1995) - here, we will t ry to show by ex-
ample how it works. Our example is an encodin~
of a definite relation in a type constraint se tup2
append_c appends an arbi t rary list onto a list of con-
stants.

T

cons tan t

Figure 5: The signature for the append_c example

We will stick to an AVM style notat ion for our ex-
amples, the actual program uses a s tandard feature
term syntax. List are abbreviated in the s tandard
HPSG manner, using angled brackets.

append_c -*

[A O1
ARG 2

ARG3
GOALS e_listJ

"ARG 1

ARG2

ARG3
V

GOALS

15q oo.,,..,i 5q ¢
[]
IE]I[EI

ARG 1 [~]

ARG2

ARG3

Figure 6: A constraint on append_c

Note that the set of constrained types is {append_c,

4This sort of encoding was pioneered by (Ait-Kaci,
1984), but see also (King, 1989) and (Carpenter, 1992).

8 8

T} and the set of hiding types is {list, ne_list}. Con-
verting the first disjunct of append_c into a feature
structure to start our compilation, we get something
like

'append_c I ARG1 v--a[]e-list]
append_c(ARG2 121 list

ARG3
.GOALS e_list.I

: - ? .

Since the values of the features of append_c are of
type list, a hiding type, those features are hiding
features and need to be considered. Yet looking at
node [-i7, the algorithm finds e_list, a simple type,
and does nothing. Similarly with node [~]. On node
~] , we find the hiding type list. Its one hiding sub-
type, ne_list, has different hiding features (list has no
features appropriate at all). Therefore, we have to
enter this node into the RHS. Since the same node
appears under both ARG1 and ARG2, we're done
and have

[1 append_c
ARG1 e_list

append_c(I ARG3ARG2 ~__lisq):-]Jst(~).

LGOALS e_list j

which is exactly what we want. It means that a
structure of type append_c is well-formed if it unifies
with the argument of the head of the above clause
and whatever is under ARG2 (and AR.G3) is a well-
formed list. Now for the recursive disjunct, we start
out with

append_el

"append_c
rne_list

ARGI E] l [] constant
[] .st

ARG2 [~] list
rne-list t]

he.list -append_c]

GOALS[] HD ~] ARG2 L.~J|

[] 4,: mJ

: - ? .

Node E] bears a hiding type with no subtypes.
Therefore we don't enter that node in the RHS, but
proceed to look at its features. Node [] bears a sim-
ple type and we do nothing, but node [] is again a
list and needs to be entered into the RHS. Similarly
with nodes [] and ['~. append_c on node [] is a con-
strained type and [] also has to go onto the RHS.

The final result then is

append_c(

"append_c
me-list constant]

ARG2 [~] list
me-list t]

rne_list
/ rapP:-d_c "1
/ IARG1 r31 |

._

l i s t (~) , list([~]), list([~]), append_c(~]).

This is almost what we want, but not quite. Con-
sider node ~] . Clearly it needs to be checked, but
what about nodes ~] , [] and E]? They are all em-
bedded under node [] which is being checked any-
way, so listing them here in the RHS is entirely re-
dundant. In general, if a node is listed in the RHS,
then no other node below it needs to be there as
well. Thus, our result should really be

append_c(

"append_c
rne-list constant]

ARG2 r~1 list
me-list t]

rne-list
I r append-e 1
IHD GOALS I I
| LAFtG3 16~J
LTL e_list

:_

appendoc([~]).

Our implementation of the compiler does in fact
perform this pruning as an integrated part of the
compilation, not as an additional step.

It should be pointed out that this compilation re-
sult is quite a dramatic improvement on more naive
on-line approaches to t tPSG processing. By reason-
ing with the different kinds of types, we can dras-
tically reduce the number of goals that need to be
checked on-line. Another way of viewing this would
be to see the actual compilation step as being much
simpler (just check every possible feature) and to
subsequently apply program transformation tech-
niques (some sophisticated form of partial evalua-
tion). We believe that this view would not simplify
the overall picture, however.

89

4.3 I m p l e m e n t a t i o n and Extens ions

The compiler as described in the last section has
been fully implemented under Quintus Prolog. Our
interpreter at the moment is a simple left to right
backtracking interpreter. The only extension is to
keep a list of all the nodes that have already been
visited to keep the same computation from being
repeated. This is necessary since although we avoid
redundancies as shown in the last example, there are
still cases where the same node gets checked more
than once.

This simple extension also allows us to process
cyclic queries. The following query is allowed by our
system.

me_list ~]
Query> [~] [THD

Figure 7: A permitted cyclic query

An interpreter without the above-mentioned exten-
sion would not terminate on this query.

The computationally oriented reader will now
wonder how we expect to deal with non-termination
anyway. At the moment, we allow the user to specify
minimal control information.

• The user can specify an ordering on type expan-
sion. E.g., if the type hierarchy contains a type
sign with subtypes word and phrase, the user
may specify that word should always be tried
before phrase.

• The user can specify an ordering on feature ex-
pansion. E.g., HD should always be expanded
before TL in a given structure.

Since this information is local to any given structure,
the interpreter does not need to know about it, and
the control information is interpreted as compiler
directives.

5 C o n c l u s i o n a n d O u t l o o k

We have presented a compiler that can encode
HPSG type definitions as a definite clause program.
This for the first time offers the possibility to ex-
press linguistic theories the way they are formulated
by linguists in a number of already existing compu-
tational systems.

The compiler finds out exactly which nodes of a
structure have to be examined and which don't. In
doing this off-line, we minimize the need for on-line
inferences. The same is true for the control informa-
tion, which is also dealt with off-line. This is not to
say that the interpreter wouldn't profit by a more
sophisticated selection function or tabulation tech-
niques (see, e.g., (DSrre, 1993)). We plan to apply
Earley deduction to our scheme in the near future
and experiment with program transformation tech-
niques and bottom-up interpretation.

Our work addresses a similar problem as Carpen-
ter's work on resolved feature structures (Carpen-
ter, 1992, ch. 15). However, there are two major
differences, both deriving form the fact that Car-
penter uses an open world interpretation. Firstly,
our approach can be extended to handle arbitrar-
ily complex antecedents of implications (i.e., arbi-
trary negation), which is not possible using an open
world approach. Secondly, solutions in our approach
have the so-called subsumption monotonicity or per-
sistence property. That means that any structure
subsumed by a solution is also a solution (as in Pro-
log, for example). Quite the opposite is the case in
Carpenter's approach, where solutions are not guar-
anteed to have more specific extensions. This is un-
satisfactory at least from an HPSG point of view,
since HPSG feature structures are supposed to be
maximally specific.

A c k n o w l e d g m e n t s

The research reported here was carried out in the
context of SFB 340, project B4, funded by the
Deutsche Forschungsgemeinschaft. We would like to
thank Dale Gerdemann, Paul John King and two
anonymous referees for helpful discussion and com-
ments.

R e f e r e n c e s

Hassan Ait-Kaci. 1984. A lattice theoretic approach
to computation based on a calculus of partially or-
dered type structures. Ph.D. thesis, University of
Pennsylvania.

Bob Carpenter. 1992. The logic of typed feature
s~ructures, volume 32 of Cambridge Tracts in The-
oretical Computer Science. Cambridge University
Press.

Bob Carpenter. 1 9 9 3 . ALE - the attribute
logic engine, user's guide, May. Laboratory for
Computational Linguistics, Philosophy Depart-
ment, Carnegie Mellon University, Pittsburgh, PA
15213.

Jochen DSrre and Michael Dorna. 1993. CUF -
a formalism for linguistic knowledge representa-
tion. In Jochen DSrre, editor, Computational as-
pects of constraint based linguistic descriptions I,
pages 1-22. DYANA-2 Deliverable R1.2.A, Uni-
versit~t Stuttgart, August.

Jochen DSrre. 1993. Generalizing earley deduction
for constraint-based grammars. In Jochen DSrre,
editor, Computational aspects of constraint based
linguistic descriptions I, pages 25-41. DYANA-
2 Deliverable R1.2.A, Universit~t Stuttgart, Au-
gust.

Martin C. Emele and R~mi Zajac. 1990. Typed
unification grammars. In Proceedings of the 13 'h

90

International Conference on Computational Lin-
guistics.

Dale Gerdemann and Paul John King. 1993.
Typed feature structures for expressing and com-
putationally implementing feature cooccurrence
restrictions. In Proceedings of 4. Fachtagung
der Sektion Computerlinguistik der Deutschen
Gesellschafl fffr Sprachwissenschaft, pages 33-39.

Thilo GStz. 1995. Compiling HPSG constraint
grammars into logic programs. In Proceedings of
the joint ELSNET/COMPULOG-NET/EAGLES
workshop on computational logic for natural lan-
guage processing.

M. HShfeld and Gert Smolka. 1988. Definite rela-
tions over constraint languages. LILOG technical
report, number 53, IBM Deutschland GmbH.

Paul John King. 1989. A logical formalism for head.
driven phrase structure grammar. Ph.D. thesis,
University of Manchester.

W. Detmar Meurers. 1994. On implementing
an HPSG theory - Aspects of the logical archi-
tecture, the formalization, and the implementa-
tion of head-driven phrase structure grammars.
In: Erhard W. Hinrichs, W. Detmar Meurers,
and Tsuneko Nakazawa: Partial- VP and Split-NP
Topicalization in German - An HPSG Analysis
and its Implementation. Arbeitspapiere des SFB
340 Nr. 58, Universit£t Tfibingen.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. Chicago: University
of Chicago Press and Stanford: CSLI Publica-
tions.

A p p e n d i x A. A small g r a m m a r

The following small example grammar, together
with a definition of an append type, generates sen-
tences like "John thinks cats run". It is a modified
version of an example from (Carpenter, 1992).

phrase --,

A

"CAT s

DTRI IAGR
LPHON

I AGR
, LPHO N

A RG I
GOALS (I ARG2

[ARG3

"CAT vp
AGR [~

r°AT
V DTRI IAGR

LPHON
T

.DTR2 [PHON

]

word ---}

V

V

V

V

"CAT
PHON
AGR

ICAT
:PHON
AGR

rCAT
~PHON
AGR

'CAT
PHON
~GR

'CAT
PHON
AGR

p] (john V raary }
singular

(cats V dogs)
plural

up
(runs V j u m p s) singular
(run v j u m p)
plural

""]
(knows v thinks)
singular

Here's an example query. Note that the feature
GOALS has been suppressed in the result.

Query> [PHON { john, runs)]

Result>

"phrase
CAT
PHON

DTR1

DTR2

[~ j o b . I ~] (r u . s))

"word t CAT np

AGR {~ingular
PHON)

"word

AGR
PHON

For the next query we get exactly the same result.

query> [DTR2 [FHON { runs

91

