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A b s t r a c t  

This paper describes a modular connectionist model 
of the acquisition of receptive inflectional morphology. 
The model takes inputs in the form of phones one 
at a time and outputs the associated roots and in- 
flections. Simulations using artificial language stimuli 
demonstrate the capacity of the model to learn suffix- 
ation, prefixation, infixation, circumfixation, mutation, 
template, and deletion rules. Separate network mod- 
ules responsible for syllables enable to the network to 
learn simple reduplication rules as well. The model also 
embodies constraints against association-line crossing. 

I n t r o d u c t i o n  

For many natural languages, a major problem for a 
language learner, whether human or machine, is the 
system of bound morphology of the language, which 
may carry much of the functional load of the grammar. 
While the acquisition of morphology has sometimes 
been seen as the problem of learning how to transform 
one linguistic form into another form, e.g., by [Plunkett 
and Marchman, 1991] and [Rumelhart and McClelland, 
1986], from the learner's perspective, the problem is 
one of learning how forms map onto meanings. Most 
work which has viewed the acquisition of morphology in 
this way, e.g., [Cottrell and Plunkett, 1991], has taken 
tile perspective of production. But a human language 
learner almost certainly learns to understand polymor- 
phemic words before learning to produce them, and pro- 
duction may need to build on perception [Gasser, 1993]. 
Thus it seems reasonable to begin with a model of the 
acquisition of receptive morphology. 

In this paper, I will deal with that component of re- 
ceptive morphology which takes sequences of phones, 
each expressed as a vector of phonetic features, and 
identifies them as particular morphemes. This process 
ignores the segmentation of words into phone sequences, 
the morphological structure of words, and the the se- 
mantics of morphemes. I will refer to this task as root 
and inflection identification. It is assumed that children 
learn to identify roots and inflections through the pre- 
sentation of paired forms and sets of morpheme mean- 
ings. They show evidence of generalization when they 

are able to identify the root and inflection of a novel 
combination of familiar morphemes. 

At a minimum, a model of the acquisition of this ca- 
pacity should succeed on the full range of morphological 
rule types attested in the world's languages, it should 
embody known constraints on what sorts of rules are 
possible in human language, and it should bear a re- 
lationship to the production of morphologically com- 
plex words. This paper describes a psychologically 
motivated connectionist model (Modular Connection- 
ist Network for the Acquisition of Morphology, MC- 
NAM) which shows evidence of acquiring all of the basic 
rule types and which also experiences relative difficulty 
learning rules which seem not to be possible. In another 
paper [Gasser, 1992], I show how the representations 
that develop during the learning of root and inflection 
identification can support word production. Although 
still tentative in several respects, MCNAM appears to 
be the first computational model of the acquisition of 
receptive morphology to apply to this diversity of mor- 
phological rules. In contrast to symbolic models of lan- 
guage acquisition, it succeeds without built-in symbolic 
distinctions, for example, the distinction between stem 
and affix. 

The paper is organized as follows. I first provide a 
brief overview of the categories of morphological rules 
found in the world's languages. I then present the 
model and discuss simulations which demonstrate that 
it generalizes for most kinds of morphological rules. 
Next, focusing on template morphology, I show how the 
network implements the analogue of autosegments and 
how the model embodies one constraint on the sorts of 
rules that can be learned. Finally, I discuss augmenta- 
tion of the model with a hierarchical structure reflect- 
ing the hierarchy of metrical phonology; this addition 
is necessary for the acquisition of the most challenging 
type of morphological rule, reduplication. 

C a t e g o r i e s  o f  M o r p h o l o g i c a l  P r o c e s s e s  

For the sake of convenience, I will be discussing mor- 
phology in terms of the conventional notions of roots, 
inflections, and rules. However, a human language 
learner does not have direct access to the root for a 
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given form, so the problem of learning morphology can- 
not be one of discovering how to add to or modify a 
root. And it is not clear whether there is anything like 
a symbolic morphological rule in the brain of a language 
learner. 

The following kinds of inflectional or derivational 
morphological rules are a t tes ted in the world's lan- 
guages: aj~zation, by which a grammatical  morpheme 
is added to a root  (or stem), either before (prefixation), 
after (suJ~ation), both  before and after (eircumfixa- 
tion), or within (infixation); mutation, by which one 
or more root  segments themselves are modified; tem- 
plate rules, by which a word can be described as a 
combination of a root and a template  specifying how 
segments are to be intercalated between the root seg- 
ments; deletion, by which one or more segments are 
deleted; reduplication, by which a copy, or a systemat- 
ically and altered copy, of some portion of the root is 
added to it. Examples of each rule type are included in 
the description of the stimuli used in the simulations. 

T h e  M o d e l  

The approach to language acquisition exemplified in 
this paper differs from traditional symbolic approaches 
in tha t  the focus is on specifying the sort of mechanism 
which has the capacity to learn some aspect of language, 
rather than the knowledge which this seems to require. 
Given the basic problem of what  it means to learn re- 
ceptive morphology, the goal is to begin with a very 
simple architecture and augment it as necessary. In 
this paper, I first describe a version' of the model which 
is modular  with respect to the identification of root and 
inflections. The advantages of this version over the sim- 
pler model in which these tasks are shared by the same 
hidden layer is described in a separate paper [Gasser, 
1994]. Later  I discuss a version of the model which in- 
corporates modulari ty at the level of the syllable and 
metrical foot; this is required to learn reduplication. 

The model described here is connectionist. There 
are several reasons why one might want to investigate 
language acquisition from the perspective of connec- 
tionism. For the purposes of this paper, the most im- 
portant  is the hope that  a connectionist network, or a 
device making use of a related statistical approach to 
learning, may have the capacity to learn a task such 
as word recognition without pre-wired symbolic knowl- 
edge. Tha t  is, such a model would make do without 
pre-existing concepts such as r o o t  and affix or distinc- 
tions such as regular vs. irregular morphology. If suc- 
cessful, this model would provide a simpler account of 
the acquisition of morphology than one which begins 
with symbolic knowledge and constraints. 

Words takes place in time, and a psychologically 
plausible account of word recognition must take this 
fact into account. Words are often recognized long be- 
fore they finish; hearers seem to be continuously com- 
paring the contents of a linguistic short- term memory 
with the phonologicM representations in their mental 

lexicons [Marslen-Wilson and Tyler, 1980]. Thus the 
task at hand requires a short- term memory of some sort. 
Of the various ways of representing short- term memory 
in connectionist networks [Port, 1990], the most flexible 
approach makes use of recurrent connections on hidden 
units. This has the effect of turning the hidden layer 
into a short-term memory which is not bounded by a 
fixed limit on the length of the period it can store. The 
model to be described here is one of the simpler possible 
networks of this type, a version of the s i m p l e  recur -  
ren t  n e t w o r k  due to [Elman, 1990]. 

The Version 1 network is shown in Figure 1 Each box 
represents a layer of connectionist processing units and 
each arrow a complete set of weighted connections be- 
tween two layers. The network operates as follows. A 
sequence of phones is presented to the input layer one 
at a time. Tha t  is, each tick of the network's clock rep- 
resents the presentation of a single phone. Each phone 
unit represents a phonetic feature, and each word con- 
sists of a sequence of phones preceded by a boundary 
"phone" consisting of 0.0 activations. 

Figure h MCNAM: Version 1 

An input phone pat tern  sends activation to the net- 
work's hidden layers. Each hidden layer also receives 
activation from the pat tern that  appeared there on the 
previous time step. Thus each hidden unit is joined by a 
time-delay connection to each other hidden unit within 
its layer. It is the two previous hidden-layer pat terns 
which represent the system's short- term memory of the 
phonological context. At the beginning of each word se- 
quence, the hidden layers are reinitialized to a pat tern 
consisting of 0.0 activations. 

Finally the output  units are activated by the hidden 
layers. There are at least three output  layers. One 
represents simply a copy of the current input phone. 
Training the network to auto-associate its current in- 
put  aids in learning the root and inflection identifica- 
tion task because it forces the network to learn to dis- 
tinguish the individual phones at the hidden layers, a 
prerequisite to using the short- term memory effectively. 
The second layer of output  units represents the root 
"meaning". For each root  there is a single output  unit. 
Thus while there is no real semantics, the association 
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between the input phone sequence and the "meaning" 
is an arbi t rary one. The remaining groups of output  
units represent the inflection "meaning"; one group is 
shown in the figure. There is a layer of units for each 
separate inflectional category (e.g., tense and aspect) 
and a unit for each separate inflection within its layer. 
One of the hidden layers connects to the root output  
layer, the other to the inflection output  layers. 

For each input phone, the network receives a tar- 
get consisting of the correct phone, root, and inflection 
outputs for the current word. The phone target  is iden- 
tical to the input phone. The root and inflection tar- 
gets, which are constant throughout  the presentation of 
a word, are the patterns associated with the root and 
inflection for the input word. 

The network is trained using the backpropagation 
learning algorithm [Rumelhart et al., 1986], which ad- 
justs the weights on the network's connections in such a 
way as to minimize the error, that  is, the difference be- 
tween the network's outputs  and the targets. For each 
morphological rule, a separate network is trained on a 
subset of the possible combinations of root and inflec- 
tion. At various points during training, the network 
is tested on unfamiliar words, tha t  is, novel combina- 
tions of roots and inflections. The performance of the 
network is the percentage of the test roots and inflec- 
tions for which its output  is correct at the end of each 
word sequence. An output  is considered "correct" if it 
is closer to the correct root (or inflection) than to any 
other. The network is evaluated at the end of the word 
because in general it may need to wait that  long to have 
enough information to identify both root and inflection. 

Experiments 
G e n e r a l  P e r f o r m a n c e  o f  t h e  M o d e l  
In all of the experiments reported on here, the stim- 
uli presented to the network consisted of words in an 
artificial language. The phoneme inventory of the lan- 
guage was made up 19 phones (24 for the mutation 
rule, which nasalizes vowels). For each morphological 
rule, there were 30 roots, 15 each of CVC and CVCVC 
patterns of phones. Each word consisted of either two 
or three morphemes, a root and one or two inflections 
(referred to as "tense" and "aspect" for convenience). 
Examples of each rule, using the root vibun: (1) suf- 
fix: present-vibuni, past-vibuna; (2) prefix: present-  
ivibun, past-avibun; (3) infix: present-vikbun, pas t -  
vinbun; (4) circumfix: present-ivibuni, past-avibuna; 
(5) mutation: present-vibun, past-viban; (6) deletion: 
present-vibun, past-vibu; (7) template: present-vaban, 
past-vbaan; (8) two-suffix: present perfect-vibunak, 
present progressive-vibunas, past perfect-vibunik, past 
progressive-vibunis; (9) two-prefix: present perfect-  
kavibun, present progressive-kivibun, past perfect -  
savibuu, past progressive-sivibun; (10) prefix-suffix: 
present perfect-avibune, present progressive-avibunu, 
past perfect-ovibune, past progressive-ovibunu. No ir- 
regular forms were included. 

For each morphological rule there were either 60 (30 
roots x 2 tense inflections) or 120 (30 roots x 2 tense 
inflections x 2 aspect inflections) different words. From 
these 2/3 were selected randomly as training words, and 
the remaining 1/3 were set aside as test words. For each 
rule, ten separate networks with different random initial 
weights were trained and tested. Training for the tense- 
only rules proceeded for 150 epochs (repetitions of all 
training patterns);  training for the tense-aspect rules 
lasted 100 epochs. Following training the performance 
of the network on the test pat terns was assessed. 

Figure ??. shows the mean performance of the net- 
work on the test pat terns for each rule following train- 
ing. Note that  chance performance for the roots was 
.033 and for the inflections .5 since there were 30 roots 
and 2 inflections in each category. For all tasks, in- 
cluding both root and inflection identification the net- 
work performs well above chance. Performance is far 
from perfect for some of the rule types, but  further im- 
provement is possible with optimization of the learning 
parameters.  

Interestingly, template rules, which are problematic 
for some symbolic approaches to morphology processing 
and acquisition, are among the easiest for the network. 
Thus it is informative to investigate further how the 
network solved this task. For the particular template 
rule, the two forms of each root shared the same initial 
and final consonant. This tended to make root identi- 
fication relatively easy. With respect to inflections, the 
pat tern is more like infixation than prefixation or suffix- 
ation because all of ' the segments relevant to the tense, 
tha t  is, t h e / a / s ,  are between the first and last segment. 
But inflection identifation for the template is consider- 
ably higher than for infixation, probably because of the 
redundancy: the present tense is characterized by an 
/ a /  in second position and a consonant in third posi- 
tion, the past tense by a consonant in second position 
and a n / a / i n  third position. 

To gain a bet ter  understanding of the way in which 
the network solves a template  morphology task, a fur- 
ther  experiment was conducted. In this experiment, 
each root consisted of a sequence of three consonants 
from the set /p ,  b, m, t, d, s, n, k, g/. There were 
three tense morphemes, each characterized by a partic- 
ular template. The present template was ClaC2aCaa, 
the past template aCtC2aaC3, and the future template 
aClaC2Caa. Thus the three forms for the root pmn 
were pamana, apmaan, and apamna. The network 
learns to recognize the tense templates very quickly; 
generalization is over 90% following only 25 epochs of 
training. This task is relatively easy since the vowels 
appear  in the same sequential positions for each tense. 
More interesting is the performance of the root identi- 
fication part  of the network, which must learn to rec- 
ognize the commonali ty among sequences of the same 
consonants even though, for any pair of forms for a 
given root, only one of the three consonants appears 
in the same position. Performance reaches 72% on the 
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Figure 2: Performance on Test Words Following Training 

test  words following 150 epochs. 
To be t t e r  visualize the problem, it helps to exam- 

ine what  happens  in hidden-layer space for the root  
layer as a word is processed. This 15-dimensional space 
is impossible to observe directly, but  we can get an 
idea of the most significant movements through this 
space through the use of principal  component  analysis, 
a technique which is by now a familiar way of analyz- 
ing the  behavior  of recurrent  networks [Elman, 1991, 
Port ,  1990]. Given a set of d a t a  vectors, principal  com- 
ponent analysis yields a set of or thogonal  vectors, or 
components,  which are ranked in terms of how much of 
the variance in the d a t a  they account for. 

Principal  components  for the  root  identification hid- 
den layer vectors were ext rac ted  for a single network 
following 150 repet i t ions  of the t empla te  t ra ining pat-  
terns. The pa ths  through the space defined by the first 
two components  of the root  identification hidden layer 
as the  three forms of the root  pds are presented to the 
network are shown in Figure  3. Points  marked in the 
same way represent  the  same root  consonant.  1 W h a t  we 
see is tha t ,  as the root  hidden layer processes the word, 
it  passes through roughly similar regions in hidden-layer 
space as it  encounters the consonants of the  root,  inde- 

1Only two points appear for the first root consonant be- 
cause the first two segments of the past and future forms of 
a given root are the same. 

pendent  of their  sequential position. In a sense these 
regions correspond to the  autosegments  of autosegmen- 
tal  phonological and morphological  analyses. 

C o n s t r a i n t s  o n  M o r p h o l o g i c a l  P r o c e s s e s  

In the  previous sections, I have described how mod- 
ular simple recurrent  networks have the capaci ty  to 
learn to recognize morphological ly complex words re- 
sult ing from a variety of morphological  processes. But  
is this approach too powerful? Can these networks 
learn rules of types  tha t  people cannot?  While  it  is 
not  completely clear what  rules people can and can- 
not  learn, some evidence in this direction comes from 
examining large numbers of languages.  One possible 
constraint  on morphological  rules comes from autoseg- 
mental  analyses: the association lines tha t  join one t ier  
to another  should not cross. Ano the r  way of s ta t ing 
the constraint  is to say tha t  the relative posi t ion of two 
segments within a morpheme remains the same in the 
different forms of the  word. 

Can a recognition network learn a rule which vio- 
lates this constraint  as readily as a comparable  one 
which does not? To test  this, separa te  networks were 
t rained to learn the following two templa te  morphology 
rules, involving three forms: (1) present:  CzaC2aCaa, 
past:  aCiC2aaC3, future: aClaC2C3a (2) present: 
ClaC2Caaa, past:  aC1C2aCaa, future: aClaC3aC2. 
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Both rules produce the three forms of each root using 
the three root consonants and sequences of t h r e e a ' s .  
In each case each of the three consonants appears  in 
the same position in two of the three forms. The  sec- 
ond rule differs from the first in tha t  the order of the 
three consonants is not constant; the second and third 
consonant of the present and past  forms reverse their 
relative positions in the future form. In the te rms of a 
linguistic analysis, the root consonants would appear  in 
one order in the underlying representation of the root 
(preserved in the present and past  forms) but  in the 
reverse order in the future form. The underlying order 
is preserved in all three forms for the first rule. I will 
refer to the first rule as the "favored" one, the second 
as the "disfavored" one. 

In the experiments testing the ease with which these 
two rules were learned, a set of thir ty roots was again 
generated randomly. Each root consisted of three con- 
sonants limited to the set: {p, b, m, t, d, n, k, g}. As 
before, the networks were trained on 2/3 of the possi- 
ble combinations of root and inflection (60 words in all) 
and tested on the remaining third (30 words). Separate  
networks were trained on the two rules. Mean results 
for 10 different networks for each rule are shown in Fig- 
ure 4. While the disfavored rule is learned to some ex- 
tent,  there is a clear advantage for the favored over the 
disfavored rule with respect to generalization for root 
identification. Since the inflection is easily recognized 

by the pa t te rn  of consonants and vowels, the order of 
the second and third root consonants is irrelevant to in- 
flection identification. Root  identification, on the other 
hand, depends crucially on the sequence of consonants. 
With  the first rule, in fact, it is possible to completely 
ignore the CV templates  and pay at tention only to the 
root consonants in identifying the root. With the sec- 
ond rule, however, the only way to be sure which root 
is intended is to keep track of which sequences occur 
with which templates .  With  the two possible roots fin 
and fnt ,  for example,  there would be no way of knowing 
which root appeared in a form not encountered during 
training unless the combination of sequence and tense 
had somehow been a t tended to during training. In this 
ease, the future of one root has the same sequence of 
consonants as the present and past  of the other. Thus, 
to the extent tha t  roots overlap with one another,  root 
identification with the disfavored rule presents a harder 
task to a network. Given the relatively small set of 
consonants in these experiments,  there is considerable 
overlap among the roots, and this is reflected in the 
poor  generalization for the disfavored rule. Thus for 
this word recognition network, a rule which apparently 
could not occur in human language is somewhat  more 
difficult than a comparable  one which could. 
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Redupl icat ion  
We have yet to deal with reduplication. The parsing of 
an unfamiliar word involving reduplication apparently 
requires the ability to notice the similarity between the 
relevant portions of the word. For the networks we have 
considered so far, recognition of reduplication would 
seem to be a difficult, if not an impossible, task. Con- 
sider the case in which a network has just heard the 
sequence tamkam. At this point we would expect a hu- 
man listener to be aware that  the two syllables rhymed, 
that  is, that  they had the same vowel and final conso- 
nant (rime). But at the point following the second m, 
the network does not have direct access to representa- 
tions for the two subsequences to be compared. If it 
has been trained to identify sequences like tamkara, it 
will at this point have a representation of the entire se- 
quence in its contextual short- term memory. However, 
this representation will not distinguish the two sylla- 
bles, so it is hard to see how they might be compared. 

To test whether  Version 1 of the model could handle 
reduplication, networks were trained to perform inflec- 
tion identification only. The stimuli consisted of two- 
syllable words, where the initial consonant (the onset) 
of each syllable came from the s e t / p ,  b, f, v, m, t, d, s, 
z, n, k, g, x, 7, xj/, the vowel from the s e t / i ,  e, u, o, a / ,  
and the final consonant, when there was one, from the 
s e t / n ,  s/.  Separate networks were trained to turn on 

their single output  unit when the onsets of the two syl- 
lables were the same and when the rimes were the same. 
The training set consisted of 200 words. In each case, 
half of the sequences satisfied the reduplication crite- 
rion. Results of the two experiments are shown in Fig- 
ure 5 by the lines marked "Seq". Clearly these networks 
failed to learn this relatively simple reduplication task. 
While these experiments do not prove conclusively that  
a recurrent network, presented with words one segment 
at a time, cannot learning reduplication, it is obvious 
that  this is a difficult task for these networks. 

In a sequential network, input sequences are realized 
as movements through state space. It appears, how- 
ever, tha t  recognition of reduplication requires the ex- 
plicit comparison of static representations of the sub- 
sequences in question, e.g., for syllables in the case of 
syllable reduplication. If a simple recurrent network is 
trained to identify, that  is, to distinguish, the syllables 
in a language, then the pat tern  appearing on the hid- 
den layer following the presentation of a syllable must 
encode all of the segments in the syllable. It is, in effect, 
a summary of the sequence that  is the syllable. 

It is a simple mat te r  to train a network to distinguish 
all possible syllables in a language. We t reat  the syl- 
lables as separate words in a network like the ones we 
have been dealing with, but  with no inflection module. 
A network of this type was trained to recognize all 165 
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Figure 5: Reduplication Rules, Sequential and Feedforward Networks Trained with Distributed Syllables 

possible syllables in the same artificial language used 
in the experiment with the sequential network. When 
presented to the network, each syllable sequence was 
followed by a boundary segment. 

The hidden-layer pat tern  appearing at the end of 
each syllable-plus-boundary sequence was then treated 
as a static representation of the syllable sequence for a 
second task. Previous work [Gasser, 1992] has shown 
that  these representations embody the structure of the 
input sequences in ways which permit  generalizations. 
In this case, the sort of generalization which interests 
us concerns the recognition of similarities between syl- 
lables with th,e same onsets or rimes. Pairs of these 
syllable representations, encoding the same syllables as 
those used to train the sequential network in the pre- 
vious experiment, were used as inputs to two simple 
feedforward networks, one trained to respond if its two 
input syllables had the same onset, the other trained 
to respond if the two inputs had the same rime, tha t  
is, the same rules trained in the previous experiment. 
Again the training set consisted of 200 pairs of syllables, 
the test set of 50 pairs in each case. Results of these 
experiments are shown in Figure 5 by the lines labeled 
"FF".  Although performance is far from perfect, it is 
clear that  these networks have made the appropriate 
generalization. This means that  the syllable represen- 
tations encode the structure of the syllables in a form 
which enables the relevant comparisons to be made. 

What  I have said so far about  reduplication, how- 
ever, falls far short of an adequate account. First, there 
is the problem of how the network is to make use of 
static syllable representations in recognizing reduplica- 

tion. Tha t  is, how is access to be maintained to the 
representation for the syllable which occurred two or 
more time steps back? For syllable representations to 
be compared directly, a portion of the network needs to 
run, in a sense, in syllable time. Tha t  is, rather  than 
individual segments, the inputs to the relevant portion 
of the network need to be entire syllable representa- 
tions. Combining this with the segment-level inputs 
tha t  we have made use of in previous experiments gives 
a hierarchical architecture like that  shown in Figure 6. 
In this network, word recognition, which takes place 
at the output  level, can take as its input both segment 
and syllable sequences. The segment portion of the net- 
work, appearing on the left in the figure, is identical to 
what we have seen thus far. (Hidden-layer modularity 
is omitted from the figure to simplify it.) The syllable 
portion, on the right, runs on a different "clock" from 
the segment portion. In the segment portion activation 
is passed forward and error backward each time a new 
segment is presented to the network. In the syllable 
portion this happens each time a new syllable appears. 
(The different update  clock is indicated by the dashed 
arrows in the figure.) Just  as the segment subnetwork 
begins with context-free segment representations, the 
syllable subnetwork takes as inputs context-free sylla- 
bles. This is achieved by replacing the context ( that  is, 
the recurrent input to the SYLLABLE layer) by a bound- 
axy pat tern at the beginning of each new syllable. 

There remains the question of how the network is 
to know when one syllable ends and another  begins. 
Unfortunately this interesting topic is beyond the scope 
of this project. 
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Figure 6: MCNAM: Version 2 

C o n c l u s i o n s  

Can connectionist networks which are more than unin- 
teresting implementations of symbolic models learn to 
generalize about morphological rules of different types? 
Much remains to be done before this question can be an- 
swered, but, for receptive morphology at least, the ten- 
tative answer is yes. In place of built-in knowledge, e.g, 
linguistic notions such as affix and tier and constraints 
such as the prohibition against association line crossing, 
we have processing and learning algorithms and partic- 
ular architectural features, e.g., recurrent connections 
on the hidden layer and modular hidden layers. Some 
of the linguistic notions may prove unnecessary alto- 
gether. For example, there is no place or state in the 
current model which corresponds to the notion affix. 
Others may be realized very differently from the way 
in which they are envisioned in conventional models. 
An autosegment, for example, corresponds roughly to a 
region in hidden-layer space in MCNAM. But this is a 
region which took on this significance only in response 
to the set of phone sequences and morphological targets 
which the network was trained on. 

Language is a complex phenomenon. Connectionists 
have sometimes been guilty of imagining naively that 
simple, uniform networks would handle the whole spec- 
trum of linguistic phenomena. The tack adopted in this 
project has been to start simple and augment the model 
when this is called for. MCNAM in its present form is 
almost certain to fail as a general model of morphol- 
ogy acquisition and processing, but these early results 
indicate that it is on the right track. In any case, the 
model yields many detailed predictions concerning the 
difficulty of particular morphological rules for partic- 
ular phonological systems, so an obvious next step is 
psycholinguistic experiments to test the model. 
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