
O P T I M I Z I N G THE C O M P U T A T I O N A L L E X I C A L I Z A T I O N OF
LARGE GRAMMARS

Christian JACQUEMIN
Institut de Recherche en Informatique de Nantes (IR/N)

IUT de Nantes - 3, rue du MarEchal Joffre
F-441M1 NANTES Cedex 01 - FRANCE

a--mail : jaequemin@ irin.iut-nantas.univ-nantas.fr

Abstract
The computational lexicalization of a

grammar is the optimization of the links
between lexicalized rules and lexical items in
order to improve the quality of the bottom-up
filtering during parsing. This problem is
N P-comple te and untractable on large
grammars. An approximation algorithm is
presented. The quality of the suboptimal
solution is evaluated on real-world grammars as
well as on randomly generated ones.

Introduction

Lexicalized grammar formalisms and more
specifically Lexical ized Tree Adjoining
Grammars (LTAGs) give a lexical account of
phenomena which cannot be considered as
purely syntactic (Schabes et al, 1990). A
formalism is said to be lexicalized if it is
composed of structures or rules associated with
each lexical item and operations to derive new
structures from these elementary ones. The
choice of the lexical anchor of a rule is
supposed to be determined on purely linguistic
grounds. This is the linguistic side of
lexicalization which links to each lexical head a
set of minimal and complete structures. But
lexicalization also has a computational aspect
because parsing algorithms for lexicalized
grammars can take advantage of lexical links
through a two-step strategy (Schabes and Joshi,
1990). The first step is the selection of the set
of rules or elementary structures associated

with the lexical items in the input sentence ~. In
t he second step, the parser uses the rules
filtered by the first step.

The two kinds of anchors corresponding to
these two aspects of lexicalization can be
considered separately :
• The linguistic anchors are used to access the

grammar, update the data, gather together
items with similar structures, organize the
grammar into a hierarchy...

• The computational anchors are used to
select the relevant rules during the first step
of parsing and to improve computational
and conceptual tractability of the parsing
algorithm.

Unlike linguistic lexicalization, computational
anchoring concerns any of the lexical items
found in a rule and is only motivated by the
quality of the induced filtering. For example,
the systematic linguistic anchoring of the rules
describing "Nmetal alloy" to their head noun
"alloy" should be avoided and replaced by a
more distributed lexicalization. Then, only a
few rules "Nmetal alloy" will be activated when
encountering the word "alloy" in the input.

In this paper, we investigate the problem of
the o p t i m i z a t i o n of c o m p u t a t i o n a l
lexicalization. We study how to choose the
computational anchors of a lexicalized
grammar so that the distribution of the rules on
to the lexical items is the most uniform possible

The computational anchor of a rule should not be
optional (viz included in a disjunction) to make sure
that it will be encountered in any string derived from
this rule.

196

with respec t to rule weights . Al though
introduced with reference to LTAGs, this
opt imizat ion concerns any por t ion of a
grammar where rules include one or more
potential lexical anchors such as Head Driven
Phrase Structure Grammar (Pollard and Sag,
1987) or Lexicalized Context-Free Grammar
(Schabes and Waters, 1993).

This algorithm is currently used to good
effect in FASTR a unification-based parser for
terminology extract ion from large corpora
(Jacquemin, 1994). In this framework, terms
are represented by rules in a lexical ized
constraint-based formalism. Due to the large
size o f the grammar, the quali ty o f the
lexicalization is a determining factor for the
computational tractability of the application.
FASTR is applied to automatic indexing on
industrial data and lays a strong emphasis on
the handling of term variations (Jacquemin and
Royaut6, 1994).

The remainder of this paper is organized as
follows. In the following part, we prove that the
problem of the Lexicalization of a Grammar is
NP-complete and hence that there is no better
a lgor i thm known to so lve it than an
exponential exhaustive search. As this solution
is untractable on large data, an approximation
a lgor i thm is p r e s e n t e d which has a
computational-time complexity proportional to
the cubic size of the grammar. In the last part,
an evaluation of this algorithm on real-world
grammars of 6,622 and 71,623 rules as well as
on randomly generated ones confirms its
computational tractability and the quality of
the lexicalization.

The P r o b l e m of the
Lex iea l i za t ion of a G r a m m a r

Given a lexicalized grammar, this part describes
the prob lem of the opt imizat ion o f the
computational lexicalization. The solution to
this p rob lem is a lexical izat ion funct ion
(henceforth a lexicalization) which associates to
each grammar rule one of the lexical items it
includes (its lexical anchor). A lexicalization is
optimized to our sense if it induces an optimal
preprocessing of the grammar. Preprocessing is

intended to activate the rules whose lexical
anchors are in the input and make all the
possible filtering of these rules before the
p r o p e r p a r s i n g a l g o r i t h m . M a i n l y ,
preprocess ing discards the rules se lected
through lexicalization including at least one
lexical item which is not found in the input.

The first step of the optimization of the
lexicalization is to assign a weight to each rule.
The weight is assumed to represent the cost of
the c o r r e s p o n d i n g ru le du r ing the
preprocessing. For a given lexicalization, the
weight of a lexical item is the sum of the
weights of the rules linked to it. The weights
are chosen so that a uniform distribution of the
rules on to the lexical items ensures an optimal
preprocessing. Thus, the problem is to find an
anchoring which achieves such a uniform
distribution.

The weights depend on the physica l
constraints o f the system. For example, the
weight is the number of nodes if the memory
size is the critical point. In this case, a uniform
distribution ensures that the rules linked to an
item will not require more than a given
memory space. The weight is the number of
terminal or non- te rmina l nodes i f the
computat ional cost has to be minimized.
Experimental measures can be performed on a
test set o f rules in order to determine the most
accurate weight assignment.

Two simplifying assumptions are made :
° The weight of a rule does not depend on the

lexical item to which it is anchored.
• The weight o f a rule does not depend on the

other rules simultaneously activated.
The second assumption is essential for settling
a tractable problem. The first assumption can
be avoided at the cost o f a more complex
representation. In this case, instead of having a
unique weight, a rule must have as many
weights as potential lexical anchors. Apart from
this modification, the algorithm that will be
presented in the next part remains much the
same than in the case of a single weight. If the
first assumption is removed, data about the
f requency o f the i tems in corpora can be
accounted for. Assigning smaller weights to
rules when they are anchored to rare items will

197

make the algorithm favor the anchoring to
these items. Thus, due to their rareness, the
corresponding rules will be rarely selected.

I l lus t ra t ion Terms, compounds and more
generally idioms require a lexicalized syntactic
representation such as LTAGs to account for
the syntax of these lexical entries (Abeill6 and
Schabes, I989). The grammars chosen to
illustrate the problem of the optimization of the
lexicalization and to evaluate the algorithm
consist of idiom rules such as 9 :

9 = {from time to time, high time,
high grade, high grade steel}

Each rule is represented by a pair (w i, Ai) where
w i is the weight and A i the set o f potential
anchors. I f we choose the total number of
words in an idiom as its weight and its non-
empty words as its potential anchors, 9 is
represented by the following grammar :

G 1 = {a = (4, {time}), b = (2, {high, time}),
c = (2, {grade, high}),
d = (3, {grade, high,steel}) }

We call vocabulary, the union V of all the sets
of potential anchors A i. Here, V = {grade, high,
steel, t ime}. A lexical izat ion is a function ~.
associating a lexical anchor to each rule.

Given a t h r e s h o l d O, the membersh ip
p rob lem cal led the Lex ica l i za t ion o f a
Grammar (LG) is to find a lexicalization so that
the weight of any lexical item in V is less than
or equal to 0. If 0 > 4 in the preceding
example, LG has a solution g :

g(a) = time, ~.(b) = ~(c) = high,
;t(d) = steel

If 0 < 3, LG has no solution.

Definition of the LG Problem

G = {(w i, Ai) } (wie Q+, A i finite sets)

V= {Vi} =k.)A i ;Oe 1~+

(1) L G - { (V, G, O, ~.) l where :t : G ---> V is a
total function anchoring the rules so that
(V(w, A)e G) 2((w, A))eA

and (W e V) ~ w < 0 }
Z((w, A)) = v

The associated optimization problem is to
determine the lowest value Oop t of the threshold
0 so that there exists a solution (V, G, Oop t,/q.) to
LG. The solution o f the optimization problem
for the preceding example is 0op t = 4.

L e m m a LG is in NP.

It is evident that checking whether a given
lexicalization is indeed a solution to LG can be
done in polynomial time. The relation R
defined by (2) is polynomially decidable :

(2) R(V, G, O, 2.) "-- [if ~.: V-~G and (We V)

w < 0 then true else false]
2((w, a)) = v

The weights of the items can be computed
through matrix products : a matrix for the
grammar and a matrix for the lexicalization.
The size of any lexicalization ~ is linear in the
size of the grammar. As (V, G, O, &)e LG if and
only if [R(V, G, 0, ~.)] is true, LG is in NP. •

Theorem LG is NP-complete.

Bin Packing (BP) which is NP-comple te is
polynomial- t ime Karp reducible to LG. BP
(Baase, 1986) is the problem defined by (3) :

(3) B P "-- { (R, {R I Rk}) I where
R = { r 1 r n } is a set of n pos i t ive
rational numbers less than or equal to 1
and {R 1 Rk} is a partition of R (k bins
in which the rjs are packed) such that

(Vi~{1 k}) , ~ r < 1.
re Ri

First, any instance of BP can be represented as
an instance of LG. Let (R, {R 1 Rk}) be an

instance o f B P it is t ransformed into the
instance (V, G, 0, &) of LG as follows :

(4) V = {v I vk} a set of k symbols, O= 1,
G = {(r v V) (rn, V)}
and (Vie {1 k}) (Vje {1 n})

~t((rj, v)) = V i ¢~ rje R i

For all i~{I k} andjs{1 n}, we
consider the assignment of rj to the bin R i of
BP as the anchoring of the rule (rj, V) to the
item v i o f LG. If(R, {R 1 Rk})eBP then :

198

(5) (VIE{1 k}) 2_, r < 1
r E Ri

¢~ (Vie { I k}) ~_~ r _ I

A((r, v)) = vi

Thus (V, G, 1,/q.)~LG. Conversely, given a
solution (V, G, 1, Z) of LG, let R i "- {rye R I
Z((ry, V)) = vi} for all ie { 1 k}. Clearly
{R 1 Rk} is a partition of R because the
lexicalization is a total function and the
preceding formula ensures that each bin is
correctly loaded. Thus (R, {R I Rk})EBP. It
is also simple to verify that the transformation
from B P to L G can be performed in
polynomial time. []

The optimization of an N P - c o m p l e t e
problem is NP-complete (Sommerhalder and
van Westrhenen, 1988), then the optimization
version of LG is NP-complete.

An Approximation Algorithm
for L G

This part presents and evaluates an n3-time
approximation algorithm for the LG problem
which yields a suboptimal solution close to the
optimal one. The first step is the 'easy'
anchoring of rules including at least one rare
lexical item to one of these items. The second
step handles the 'hard' lexicalization of the
remaining rules including only common items
found in several other rules and for which the
decis ion is not s t ra ightforward. The
discrimination between these two kinds of items
is made on the basis of their global weight G W
(6) which is the sum of the weights of the rules
which are not yet anchored and which have this
lemma as potential anchor. Vx and Gx are
subsets of V and G which denote the items and
the rules not yet anchored. The ws and 0 are
assumed to be integers by multiplying them by
their lowest common denominator if necessary.

(6) (Vw V Z) GW(v) = ~_~ w
(w , A) e G x , v E A

Step 1 : 'Easy' Lexiealization of Rare Items
This first step of the optimization algorithm is

also the first step of the exhaustive search. The
value of the minimal threshold Omi n given by
(7) is computed by dividing the sum of the rule
weights by the number of lemmas (['xl stands
for the smallest integer greater than or equal to
x and [V;tl stands for the size of the set Vx)"

(7) 0,m. n = (w, A) E G~t W where I V~.I ~ 0

lEvi
All the rules which include a lemma with a
global weight less than or equal to Orain are
anchored to this lemma. When this linking is
achieved in a non-deterministic manner, Omi . is
recomputed. The algorithm loops on this
lexicalization, starting it from scratch every
time, until Omi . remains unchanged or until all
the rules are anchored. The output value of 0,,i,
is the minimal threshold such that LG has a
solution and therefore is less than or equal to
0o_ r After Step 1, either each rule is anchored /J

or all the remaining items in Va. have a global
weight strictly greater than Omin. The algorithm
is shown in Figure 1.

Step 2 : 'Hard' Lexicalization of Common
Items During this step, the algorithm
repeatedly removes an item from the remaining
vocabulary and yields the anchoring of this
item. The item with the lowest global weight is
handled first because it has the smallest
combination of anchorings and hence the
probability of making a wrong choice for the
lexicalization is low. Given an item, the
candidate rules with this item as potential
anchor are ranked according to :
1 The highest priority is given to the rules

whose set of potential anchors only includes
the current item as non-anchored item.

2 The remaining candidate rules taken first
are the ones whose potential anchors have
the highest global weights (items found in
several other non-anchored rules).

The algorithm is shown in Figure 2. The
output of Step 2 is the subopt imal
computational lexicalization Z of the whole
grammar and the associated threshold 0s,,bopr

Both steps can be optimized. Useless
computation is avoided by watching the capital

199

of weight C defined by (8) with 0 - 0m/~ during
Step 1 and 0 - Osubopt during Step 2 :

(8) c=o.lvxl- w
(w, A) ~ Gx

C corresponds to the weight which can be lost
by giving a weight W(m) which is strictly less
than the current threshold 0. Every time an
anchoring to a unit m is completed, C is
reduced from 0- W(t~). If C becomes negative
in either of both steps, the algorithm will fail to
make the lexicalization of the grammar and
must be started again from Step 1 with a higher
value for 0.

Input

Output

Stepl

V,G

0m/,,, V;t, G;t, 2 : (G - Ga) ---> (V - V a)

I -[-'Gw Omi,, ~- (w,A)~

IVl
repeat

G ; t ~ G ; Vx<--- V;

for each ve V such as GW(v)<Omi,, do

for each (w, A)~ G such as w A
and ~((w, A)) not yet defined do

~((w, A)) ~ v ;

G x ~ - G x - { (w , A) } ;

update GW(v) ;

end

v~ ~ v ~ - {v} ;

end

if((O'mi n <-- 0,,~
and ((Vve Va) GW(v) > Omin))

or G~ = 0)

then exit repeat ;

Omi n ~-- O'mi n ;

until(false) ;

Figure 1: Step 1 of the approximation algorithm.

Input

Output

Step2

O~, V, G, V,~, G~,
~.: (G-GO ~ (V - V ~

O~.~p t, A. : G ---> V

O,.~pt ~ Omi,, ;

repeat

;; anchoring the rules with only m as
;; free potential anchor (t~ e V x with
;; the lowest global weight)

~J~--vi;

GaI ~- { (w,A)~G~tlAnV~= {t~} };

if (~ w < 0~bo~,)
(w, A) ~ Go, 1

then 0m/n ~ Omin + 1 ; goto Stepl ;

for each (w, A)~ G~, 1 do

X((w, A)) ~- ~ ;

G;t~--G~t-{ (w,A) } ;

end

Gt~,2 ~-- {(w, A)eG;~ ; A n V z D {t~} };

W(~) ~ ~ w ;
:t((w, A)) = ~Y

;; ranking 2 G~, 2 and anchoring

f o r (i ~ 1; i_< [GruEl; i~ - i + 1) d o

(w, A) <--- r -l(i) ;; t lh ranked by r

if(W(t~) + W > Omin)

then exit for ;

w (~) ~ w (~) + w ;

~((w, A)) ~ ~ ;

G~ ~ G~t-{(w, A)} ;

end

v ~ - v ~ - {~} ;

until (G~t = 0) ;

Figure 2: Step 2 of the approximation algorithm.

2 The ranking function r: Gt~ 2 --> { 1 [G~2 [} is
such that r((w, A)) > r((w', A3

• min ~W(v') v ~ A ~n~v~- t~ W(v) > v' E A' ,~ V~-

200

Example 3 The algorithm has been applied to
a test grammar G 2 obtained from 41 terms with
11 potential anchors. The algorithm fails in
making the lexicalization of G 2 with the
minimal threshold Omin = 12, but achieves it
with Os,,bopt = 13. This value of Os,,bop t Can be
compared with the optimal one by running the
exhaustive search. There are 232 (= 4 109)
possible lexicalizations among which 35,336
are optimal ones with a threshold of 13. This
result shows that the approximation algorithm
brings forth one of the optimal solutions which
only represent a proportion of 8 10 -6 of the
possible lexicalizations. In this case the optimal
and the suboptimal threshold coincide.

Time-Complexity of the Approximation
Algorithm A grammar G on a vocabulary V
can be represented by a] G l x]V I-matrix of
Boolean values for the set of potential anchors
and a lx I G l-matrix for the weights. In order
to evaluate the complexity of the algorithms as
a function of the size of the grammar, we
assume that I V I and I GI are of the same order
of magnitude n. Step 1 of the algorithm
corresponds to products and sums on the
preceding matrixes and takes O(n 3) time. The
worst-case time-complexity for Step 2 of the
algorithm is also O(n 3) when using a naive
O(n 2) algorithm to sort the items and the rules
by decreasing priority. In all, the time required
by the approximation algorithm is proportional
to the cubic size of the grammar.

This order of magnitude ensures that the
algorithm can be applied to large real-world
grammars such as terminological grammars.
On a Spare 2, the lexicalization of a
terminological grammar composed of 6,622
rules and 3,256 words requires 3 seconds (real
time) and the lexicalization of a very large
terminological grammar of 71,623 rules and
38,536 single words takes 196 seconds. The
two grammars used for these experiment were
generated from two lists of terms provided by
the documentation center INIST/CNRS.

3 The exhausitve grammar and more details about this
example and the computations of the following
section are in (Jacquemin, 1991).

Evaluation of the
Approximation Algorithm

Bench Marks on Artificial Grammars In
order to check the quality of the lexicalization
on different kinds of grammars, the algorithm
has been tested on eight randomly generated
grammars of 4,000 rules having from 2 to 10
potential anchors (Table 1). The lexicon of the
first four grammars is 40 times smaller than the
grammar while the lexicon of the last four ones
is 4 times smaller than the grammar (this
proportion is close to the one of the real-world
grammar studied in the next subsection). The
eight grammars differ in their distribution of
the items on to the rules. The uniform
distribution corresponds to a uniform random
choice of the items which build the set of
potential anchors while the Gaussian one
corresponds to a choice taking more frequently
some items. The higher the parameter s, the
flatter the Gaussian distribution.

The last two columns of Table 1 give the
minimal threshold Omi n after Step 1 and the
suboptimal threshold Osul, op , found by the
approximation algorithm. As mentioned when
presenting Step 1, the optimal threshold Ooe t is
necessarily greater than or equal to Omin after
Step 1. Table 1 reports that the suboptimal
threshold Os,,t, opt is not over 2 units greater than
Omin after Step 1. The suboptimal threshold
yielded by the approximation algorithm on
these examples has a high quality because it is
at worst 2 units greater than the optimal one.

A Comparison with Linguistic Lexicalization
on a Real-World Grammar This evaluation
consists in applying the algorithm to a natural
language grammar composed of 6,622 rules
(terms from the domain of metallurgy
provided by INIST/CNRS) and a lexicon of
3,256 items. Figure 3 depicts the distribution of
the weights with the natural linguistic
lexicalization. The frequent head words such as
a l loy are heavily loaded because of the
numerous terms in N - a l l o y with N being a
name of metal. Conversely, in Figure 4 the
distribution of the weights from the
approximation algorithm is much more

201

uniform. The maximal weight of an item is 241
with the linguistic lexicalization while it is only
34 with the opt imized lexicalization. The

threshold after Step 1 being 34, the suboptimal
threshold y ie lded by the approx imat ion
algorithm is equal to the optimal one.

Lexicon size Distribution of the On~ n On~n Osubopt
items on the rules before Step 1 after Step I suboptimal threshold

100 uniform 143 143 143
100 Gaussian (s = 30) 141 143 144
100 Gaussian (s = 20) 141 260 261
100 Gaussian (s = 10) 141 466 468

1,000 uniform 15 15 16
1,000 Gaussian (s = 30) 14 117 118
1,000 Gaussian (s = 20) 15 237 238
1,000 Gaussian (s = 10) 14 466 467

Table 1: Bench marks of the approximation algorithm on eight randomly generated grammars.

Number of
items

(log scale)

3000

1000

100

10

15 30
Weight

45 60 75 90 105 120 135 150 165 180 195 210 225 240

Figure 3: Distribution of the weights of the lexical items with the lexicalization on head words.

Number of
items

(log scale)

1000

100

10

,,,, ,,,,,,,,,,111
1 2 3 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30 32 34 36

Weight

Figure 4: Distribution of the weights of the lexical items with the optimized lexicalization.

2 0 2

Conclusion

As ment ioned in the in t roduct ion, the
improvement of the lexicalization through an
optimization algorithm is currently used in
FASTR a parser for terminological extraction
through NLP techniques where terms are
represented by lexicalized rules. In this
framework as in top-down parsing with LTAGs
(Schabes and Joshi, 1990), the first phase of
parsing is a filtering of the rules with their
anchors in the input sentence. An unbalanced
distribution of the rules on to the lexical items
has the major computational drawback of
selecting an excessive number of rules when
the input sentence includes a common head
word such as "'alloy" (127 rules have "alloy"
as head). The use of the op t imized
lexicalization allows us to filter 57% of the
rules selected by the linguistic lexicalization.
This reduction is comparable to the filtering
induced by linguistic lexicalization which is
around 85% (Schabes and Joshi, 1990).
Correlatively the parsing speed is multiplied by
2.6 confirming the computational saving of the
optimization reported in this study.

There are many directions in which this
work could be refined and extended. In
particular, an optimization of this optimization
could be achieved by testing different weight
assignments in correlation with the parsing
a lgo r i t hm. Thus , the c o m p u t a t i o n a l
l ex ica l iza t ion would fas ten both the
preprocessing and the parsing algorithm.

Acknowledgments

I would like to thank Alain Colmerauer for his
valuable comments and a long discussion on a
draft version of my PhD dissertation. I also
gratefully acknowledge Chantal Enguehard
and two anonymous reviewers for their remarks
on earlier drafts. The experiments on industrial
data were done with term lists from the
documentation center INIST/CNRS.

REFERENCES

Abeill6, Anne, and Yves Schabes. 1989. Parsing
Idioms in Tree Adjoining Grammars. In

Proceedings, 4 th Conference of the
European Chapter of the Association for
Computational Linguistics (EACL'89),
Manchester, UK.

Baase, Sara. 1978. Computer Algorithms.
Addison Wesley, Reading, MA.

Jacquemin, Christian. 1991. Transformations
des noms composds. PhD Thesis in
Computer Science, Universit6 of Paris 7.
Unpublished.

Jacquemin, Christian. 1994. FASTR : A
unification grammar and a parser for
terminology extraction from large corpora.
In Proceedings, IA-94, Paris, EC2, June
1994.

Jacquemin, Christian and Jean Royaut6. 1994.
Retrieving terms and their variants in a
lexicalized unification-based framework. In
Proceedings, 17 th Annual International
ACM SIGIR Conference (SIGIR'94), Dublin,
July 1994.

Pollard, Carl and Ivan Sag. 1987. Information-
Based Syntax and Semantics. Vol 1:
Fundamentals. CSLI, Stanford, CA.

Schabes, Yves, Anne Abeill6, and Aravind K.
Joshi. 1988. Parsing strategies with
'lexicalized' grammars: Application to tree
adjoining grammar. In Proceedings, 12 th
International Conference on Computational
Linguistics (COLING'88), Budapest ,
Hungary.

Schabes, Yves and Aravind K. Joshi. 1990.
Parsing s trategies with ' l ex ica l ized '
grammars: Application to tree adjoining
grammar. In Masaru Tomita, editor, Current
Issues in Parsing Technologies. Kluwer
Academic Publishers, Dordrecht.

Schabes, Yves and Richard C. Waters. 1993.
Lexicalized Context-Free Grammars. In
Proceedings, 31 st Meeting of the
Association for Computational Linguistics
(ACL'93), Columbus, Ohio.

Sommerhalder, Rudolph and S. Christian van
Wes t rhenen . 1988. The Theory of
Computability: Programs, Machines,
Effectiveness and Feasibility. Addison-
Wesley, Reading, MA.

203

