
ON DETERMINING THE CONSISTENCY OF PARTIAL
DESCRIPTIONS OF TREES

Thomas L. Cornell
Cognitive Science Program

University of Arizona
Tucson, AZ 85721

cornell@ccit.arizona.edu

Abstract 1

We examine the consis tency problem for
descriptions of trees based on remote dominance,
and present a consistency-checking algorithm
which is polynomial in the number of nodes in
the description, despite disjunctions inherent in
the theory of trees. The resulting algorithm
allows for descriptions which go beyond sets of
atomic formulas to allow certain types of
disjunction and negation.

INTRODUCTION
In Marcus, Hindle & Fleck (1983), the authors
proposed an approach to syntactic tree structures
which took the primary structural relation to be
remote dominance ra ther than immedia te
dominance. Recently, researchers have shown a
revived interest in variants of Marcus et al.'s D-
Theory, most likely due to the availability of
approaches and techniques developed in the
study of feature structures and their underlying
logics. For example, both Rogers & Vijay-
Shanker (1992) and Cornell (1992) present
formal treatments of many notions which Marcus
et al. (1983) t reated only informally and
incomple te ly . F u r t h e r m o r e , work on the
psycholinguistic implications of this approach
has continued apace (Weinberg 1988; Gorrell
1991; Marcus & Hindle 1990), making all the
more necessary sustained foundational work in
the theory of descript ion-based tree-building
applications (parsers, generators, etc.)

This paper addresses one particular problem
that arises in this approach to tree building. As
with feature-structures, the essential operation
here is the combination of two collections of
partial information about the syntactic structure
of an expression. It may happen that the two

1 Many thanks to Dick Oehrle, Ed Stabler, Drew
Moshier and Mark 3ohnson for comments, discussion
and encouragement. Theirs the gratitude, mine the
fault.

collections to be combined contain contradictory
information. For example one might contain the
assertion that "node 7 dominates node 12" while
the other claims that "node 12 precedes node 7".
No tree s t ruc ture can sat isfy both these
constraints . The opera t ion of descr ip t ion
combination is thus not simple set union, but,
like unification, involves taking a least upper
bound in a semi-lat t ice where lub's are not
everywhere defined.

Both Rogers & Vijay-Shanker (1992) and
Cornell (1992) propose to solve the D-Theoretic
consis tency problem by using essent ia l ly
Tableau-based approaches. This can lead to
combina to r i a l exp los ion in the face of
disjunctions inherent in the theory of trees. But
as it happens, proof techniques designed to
handle general disjunctions are more powerful
than we need; the disjunctions that arise from
the theory of trees are of a restricted kind which
can be handled by strictly polynomial means. We
will see that we can efficiently handle richer
not ions of descr ip t ion than those in the
"classical" D-Theory of Marcus, et al. (1983).

D-THEORYANDTREETHEORY

DESCRIPTION LANGUAGE

We will make use of the following description
language ,,~. Define the set of basic relation
names, R, as:

b - - " b e l o w " (i.e., dominated-by)
d - - "dominates"
e - - "equals"
f --"follows" (i.e., preceded-by)
p - - "precedes"

We define an algebra on relation names as
follows.

($1 V $2)(x,y) =def the collection of relation
names in either $1 or S2.

(S1 A $2)(x,y) =def the collection of relation
names in both $1 and $2.

S'(xoI) --def the collection of relation names

163

not in S.

We then define the full set of compound relation
name expressions R* as the closure of the basic
relation names under A, V and '. A formula of

is then an element of R* applied to a pair of
node names . We will of ten refer to the
compound relation name expression in a formula
S(x ,31) as a constraint on the pair x, 31.
Semantically, we treat S(x,31) as satisfiable if we
can assign the denotata of the pair x, 31 to at
least one of the relations denoted by members of
S. On this semantics, if S(x,31) is satisfiable and
S ~< T, then T(x,31) is satisfiable as well. Clearly
the empty constraint (x,31) is never satisfiable.
(Atoms of the form e(x,31) are satisfiable if and
only if x and 31 denote identical members of the
domain of discourse. Atoms of the form b(x,31)
and f(x,31) are to be considered equivalent to
d(31,x) and p(31,x), respectively.)

A description is a finite set of formulas. If a
description contains only formulas with a basic
relation name, we will call it classical, since this
is the type of description considered in Marcus
et al. (1983).

AXIOMS

Note that such structures are not guaranteed to
be trees. Therefore we make use of the following
fragment of an axiomatization of tree structures,
which we will assume in the background of all
that follows, and formalize in the next section.

Strictness. Dominance and precedence are strict
part ial orders , i .e., t ransit ive and irreflexive
relations.

Equality. We assume that equality is reflexive,
and that we can freely substi tute equals for
equals.

Exhaustiveness. Every pair of nodes in a tree
s tand in at least one of the five possible
relations. I.e. R(x,31) for all x and 31.

Inheritance. All nodes inherit the precedence
properties of their ancestors. So if p(x,31) and
d(31,z), then p(x,z) as well.

A number of familiar properties of trees follow
from the above system. Inheritance assures both
the non- tang l ing of tree branches and the
impossibili ty of upward branching ('V-shaped')
c o n f i g u r a t i o n s . I n h e r i t a n c e , T r a n s i t i v i t y ,
Substitution of equals and Exhaustiveness jointly
derive the property of Exclusiueness, which states
that every pair of nodes is related in at most one
way. (Note that it is Exclusiveness which assures
the soundess of our use of A.) A less familiar
property, which we will make some use of, is

roughly paral le l to Inhe r i t ance ; Upwards
Inheritance states that if x dominates 31 and 31
precedes (follows) z, then x domina t e s or
precedes (follows) z.

Note that this system is not meant to be an
axiomatic definition of t rees ; it lacks a
Rootedness condition, and it allows infinite and
densely ordered structures. It is specif ical ly
adapted to the satisfiabilit31 problem, rather than
the oalidit31 p r o b l e m . It is r e l a t i v e l y
straightforward to show that, f rom any finite
atomic dE-description satisfying these conditions,
we can construct a finite tree or a precedence
ordered finite forest of finite trees (which can be
extended to a finite tree by the addition of a
root node). So this system is complete as far as
satisfiability is concerned. Briefly, if a set of
formulas satisfies all of the above constraints,
then we can (1) construct a new description over
the quotient node-space modulo e; (2) list the
dominance chains; (3) add a root if necessary;
(4) noting that the dominance maximal elements
under the root must be total ly precedence
ordered (they must be ordered and they cannot
be dominance ordered or they would not be
maximal) , we number them accordingly; (5)
apply the same procedure to the dominance
ideals generated by each of the root's daughters.
From the resulting numbering we can construct a
"tree domain" straightforwardly. The Inheritance
property assures us that dominance chains are
non-tangled, so that the ideal generatred by any
node will be disjoint from the ideal generated by
any node precedence-ordered with respect to the
first. There fo re no node will receive two
numbers , and, by Exhaustiveness, every node
will receive a number.

DEDUCTION WITH DESCRIPTIONS

There is a strong formal parallel among the
axioms of Transi t ivi ty, Substitution of Equals,
and Inheritance: each allows us to reason from a
pair of a tomic formulas to a single a tomic
formula. Thus they allow us to reason from
classical descriptions to (slightly larger) classical
descriptions. Let us refer to these axioms as
9enerators. The reason for adopt ing dE as a
description language, rather than the simpler
language of Marcus et al. (1983), is that we can
now treat the No Upward Branching property ("if
x and z both dominate 31 then x dominates z or
z dominates x or they are equal ,") and the
Upwards Inher i tance proper ty as generators .
They allow us to reason from pairs of atomic
formulas (e.g., d(x,31) and P(31,z)) to compound
formulas (e.g., dp(x,z)). This means that we can
express the consequences of any pair of atomic

164

b(x,y) b(x,z)

d(x,y) bde(x,z)

e(x,y) b(x,z)

f(x,y) bf(x,z)

p(x,y) bp(x,z)

R(x,z)

]
f(x,z)

p(x,z)

b(x,z) fix,z) p(x,z)

d(x,z) df(x,z) ' dp(x,z)

~(x,z) fix,z) i p(x,z)
f(x,z) f(x,z) R(x,z)

p(x,z) R(x,z)

Figure 1. Generator Table.

formulas as a formula of d~, though possibly a
compound formula. They are exhibited in Figure
1. Cells corresponding to axioms in the theory
are boxed.

For doing formal deductions we will employ
a sequent calculus adapted to our description
language ~ . We assume that sequents are pairs
of finite sets of formulas, and we can make the
further restriction that formulas on the right of
the sequent arrow ("succedents") contain at most
a single member. The axioms of the calculus we
employ are exhibited in Figure 2, and the
connective rules in Figure 3.

Structural Axioms: F,A --. A

Generator Axioms: F, Sl(x,y),S2(y,z) --- S3(x,z)
for all instances of the generators

Exhaustiveness: --. R(x,y) for all x, y

Figure 2. D-The0ry Axioms.

A sequent [F --, A] is in terpre ted as an
implication from conjunctions to disjunctions: if
everything in F is true, then something in A
must be true. It follows that [--*A] is invariably
true, and [F--,] is invariably false. A sequent
calculus proof is a tree (written right side up,
with its root on the bottom) labeled with
sequents. The theorem to be proved labels its
root, the leaves are labeled with axioms, and all
the local subtrees must be accepted by some
inference rule. A proof that a description F0 is
inconsistent is a proof of the sequent [F0--*].
Note that

r - - , (x,~)

F-- ,

is a valid inference, essentially since (x,y) and
the empty succedent both express the empty
disjunction.

RA

LV

r , S l (x ,y) - . A
LA ($2 ~< S1)

F, S2(x,y) --, A

F --* Sl(x,y) r --* S2(x,y)

F --* (S I A S2)(x,y)

F, S l (x ,y) - , A r , SZ(x.y) --, A

r , (s a v se) (x ,y) --, z~

r - . Sa(x,y)
Rv ($2 <<. S1)

r - . S2(x,y)

F --* S(x,y)
L'

r , s ' ~ , y) ~

r , s (x , y) -~
R'

F -, S'(x,y)

Figure 3. D-Theory Inference Rules.

TWO ALGORITHMS
Suppose we are given an input description F0 to
check for satisfiability. If it is unsatisfiable, then
it contradicts one of the axioms of the tree
theory: Exhaustiveness, Reflexivity of Equals,
lrreflexivity of Dominance and Precedence, and
the Generators. A complete consistency checker
must be able to exhaust the consequences of
these axioms for F0, monitoring for the false
formula (x,~/).

Both algorithms take as input a description
and an integer indicating the number of node-
names constrained by the description. In the
Prolog imp lemen ta t i ons that fo l low, the
description is expected to be a list of constraints
in normal order, that is, with the first argument
lexicographically less than or equal to the
second. Thus, assuming we are using integers as
node names, the normal order form of d (2 , 1)
will be b (1 ,2) . Furthermore, the description is
assumed to be sorted by its node-pairs. This will
a l low us to use e f f i c i e n t o r d e r e d - s e t
manipulations.

For any given set of nodes of size N, we can
construct a description which is a filter for
violat ions of Reflexivi ty, l r ref lexivi ty and
Exhaustiveness. We construct F N to contain for
every pair of nodes x,, xj, i , j <~ N, e(x,,xj) if i =j,
and e ' (x ,x i) (i.e., b d f p (x , x i)) if i # j . We can

165

e(1,3),d(1,2),p(2,3)--,dp(l,3) d(l ,2),p(2,3),e(1,3)~e(l ,3)
RA

e(1,3), d(1,2),p(2,3) ~ (1,3)

e(1,3), d(l,2), p(2,3) ---,

V

LV

Figure 4. {d(1,3), e(1,3), p(2,3)} is Inconsistent.

A
e(1,3), d(1,2),p(2,3) --. e(1,3), p(1,2),p(2,3) --.

e(1,3), dp(1,2), p(2,3)
LV

f(1,3),d(1,2),p(2,3)~ f(1,3),p(1,2),p(2,3)~
Lv

f(1,3), dp(1,2), p(2,3) --,

el(l ,3), dp(1,2), p(2,3) --,

Figure 5. {ef(1,3),dp(1,2), p(2,3)} is Inconsistent (A RA-LV Proof).

determine that a description F0 violates either
Reflexivity, lrreflexivity or Exhaustiveness simply
by taking its pointwise meet F0 I"1 FN .2 If a
description is in violation of the Exhaustiveness
condition, then it contains some formula S(x,21)
with some part of S not given in R*. In that
case, taking its meet with anything ~< R(x,21) will
prune away the offending part. Similarly, if a
constraint on a reflexive pair of nodes S(x,x)
fails to have eE S, then taking its meet with
e(x,x) will yield (x,x). Finally, taking the meet
of S(x,y), x # 2t, with e'(x,21) will yield (x,21) if
S = e; in arty case it will have the useful effect of
pruning e out of S. Therefore both algorithms
begin by constructing F N and then taking its
meet with the input description. This has the
extra side effect that any pair of nodes x and 21
not explicitly constrained in the input will now
be explicitly constrained.

EXTEND : TOP-DOWN BACKTRACKING
SEARCH FOR CONSISTENT MAXIMAL
EXTENSIONS

Given that we have begun by taking F0 I-I F N, we
have only the generators left to check F0 against.
We can think of the generator table as defining
a function from pairs of atomic formulas to
consequences. To use it we must first have
atomic formulas.

Def'n: A description r ' is a maximal extension of
a description F if, for every formula S(x,y) in

2 We can assume that any pair of nodes x, y not
explicitly constrained in the input is implicitly
constrained by R(x,y). Of course, (RAe')= e', so this
assumption just amounts to setting unmentioned pairs
of (distinct) nodes to e'(x,y).

FRFN, r ' contains s(x,y) for some sES.

An obvious solution is to enumerate the maximal
extensions of F0 F'I F N and feed them to the
generators. If any such extension passes the
generators, then it is satisfiable, and therefore it
is a witness to the satisfiability of F0. If the
extension is unsatisfiable, then it must violate at
least one of the generators. Because a maximal
extension is a total assignment of node-pairs to
relations, a single application of a well-chosen
generator will suffice to derive a contradiction.
And so a single pass through the complete set of
applicable generators should be sufficient to
decide if a given maximal ex tens ion is
consistent.

Thus , if the input descr ip t ion F0 is
inconsistent, then there is a proof of F0--, in
which every branch of the proof ends in a sub-
proof like that in Figure 4. There we have the
simple description {d(1,2),e(1,3),p(2,3)}, which
gives us d p (1 , 3) , by a generator (Upwards
Inheritance, in this case), and e (1 , 3) , by a
s t ructural axiom. Combin ing these by an
invocation of RA we get the false formula (1,3).
The roots of these sub-proofs can be combined
using LV until we eventually build up the input
description on the left, proving F 0 - ' , as in
Figure 5.

The fo l lowing f ragment of a Prolog
implementation of max_extension/3 can be seen
as implementing a backwards chaining search for
such a "RA-LV" proof. The input to both extend
and to close (see below, next section) is assumed
to be an ~-descr ipt ion together with an integer
giving the number of node-names subject to the
description. The node-count is used to construct
the appropriate F N for this description. Note

166

that, aside from implementing pointwise /-1,
merge descs/3 checks for the derivation of an
empty constraint, and fails if that happens. The
real work is then done by extend/3, which is a
recurs ion on an Agenda. The agenda is
initialized to the input description. As individual
constraints are narrowed, they are added to the
agenda so as to imp lemen t cons t ra in t
propagation.

max_axtension(DO, N, Extension) :-
it reflexive_rule(N, Filter_N),
merge._descs(DO, Filter_N, D1),
Agenda = D1,
extend(Agenda, D1, Extension).

extend([], X, X).
extend([COICs], D0, X) :-

consequences(CO, D0, Conseqs),
meet_rule(Conseqs, DO, D1, NewCons),
merge_descs(NewCons, Cs, Agenda1),
extend(Agenda1, D1, X).

Meet_rule/4, in the second clause of extend~3,
differs from merge_descs/3 only in (a) sorting its
first argument and (b) deriving both the merged
description (D1) and a list of those consequences
which actually had some effect on DO. Both
merge_descs/3 and meet_rule/ ' [are based on
routines for ordered set union from O'Keefe
(1990). The main difference is that ordering is
defined on the node-pairs of the constraint,
rather than on the term expressing the constraint
as a whole; equali ty is defined so that two
constraints are equal if they constrain the same
node pair, and if two formulas are 'equal' in this
sense, then the output contains the meet of their
respective relation names expressions. The truly
new consequences derived by meet_rule/4 are
then added to the remaining agenda (Cs) with
another call to merge_descs/3. (If NewCons were
merely appended to Cs, we could have two
constraints on the same pair of nodes in the
agenda at once, either of which may be less
tightly constrained than the result of merging the
two instances.)

Extend/3 thus both consumes items off the
agenda (CO) and adds new items (NewCons).
However, each new consequence, if it is truly
novel, represents the narrowing of a constraint;
since each pair starts with a maximum of four
options, clearly we will eventually run out of
options to remove; NewCons will be empty, the
remaining agenda will eventually be consumed,
and the program will halt.

The core of ex tend/3 is consequences/3,
which determines for any given constraint what
consequences it has when paired with each of the

constraints in the description. Consequences/3
has two clauses; the first handles compound
formulas, while the second handles atomic
formulas. The second clause of consequences/3
invokes the Splitting Rule, which implements
LV.

Note that , instead of exhaus t ing the
consequences of the Split t ing Rule and then
applying the Generator Rule, we apply the
Generator Rule whenever we can. This is
because it can act to prune away options from
its c o n s e q u e n t s , thus m i n i m i z i n g the
combinatorial explosion lurking behind the
Splitting Rule. Furthermore, if an application of
the Generator Rule does lead to the discovery of
an inconsistency, then the program backtracks to
its last application of the Splitt ing Rule, in
effect pruning away from its search tree all
further consequences of its inconsistent choice.

consequences(C. _D, Consequences) :-
compound_formula(C),
splittingrule(C, Consequences).

consequences(C, D, Consequences) :-
atomic_formula(C),
generator_rule(D, C, Consequences).

atomic_formula([_]:(_~_)).
compound_formula(L,_L.]:(_,_)).

splitting_rule(C, [Assumption]) :-
C = Rels:Nodes,
member(R, Rels),
Assumption = [R]:Nodes.

The heart of consequences/3 is the Generator
Rule, implemented as generator_rule/3. It scans
the current description for formulas which form
a connected pair with its second argument. Note
that in all our examples, we have carefully
presented inputs to the generators as Sx(x,3) ,
Sz(y,z). Such a combination can be looked up
directly in the generator table. However, note
that St(x,y) , S2(z,y) is no less a connected pair.
In order to match it to the generator table,
though, we need to invert the second member,
g iving Sz ' l (y ,z) . T h i s is d o n e by
connected order/4, which succeeds, returning the
connected form o f the formulas, if they have a
connected form, and fails otherwise. If it
succeeds, then there is art entry in the generator
table which gives the consequence of that
connected pair. This consequence (XZ) is then
placed in normal order (C3), and added to the
output list of consequences.

If C2 is an unconnec ted atom, or a
compound formula, it is skipped. Note that
skipping compound formulas does not affect the

1 6 7

completeness of the algori thm. Every agenda
item leads a dual life: as an agenda item, and as
a member of the current descript ion. The
ignored compound formula will eventually be
subjected to the Splitting Rule, the result being
placed on the agenda. It will then eventually be
paired with C2's entry in the description by the
Generator Rule. The only difference will be in
which formula is the left antecedent and which
the right; but that doesn't matter, since they'll be
converted to connected form in any case, and
their result will be converted to normal order. 3

generator_rule(~, _C, [1).
generator_rule([C21Rest], C1, [C3lConseqs]) :-

atomic._formula(C2),
connected_order(C1, C2, XY, YZ),
gen(XY, YZ, XZ),
normal_order(XZ, C3),
generator_rule(Rest, C1, Conseqs).

generator_rule([C21Rest], C1, Conseqs) :-
atomic_formula(C2),
\+ connected_order(C1, C2),
generator_rule(Rest, C1, Conseqs).

generator__rule([C2JRest], C1, Conseqs) :-
compound_formula(C2),
generator_rule(Rest, C1, Conseqs).

Every rule applied in this procedure is based on
a rule in the associated sequent calculus. The
Splitting Rule is just LV; the Meet Rule is RA;
and the Generator Rule is just the application of
an axiom. So there can be little doubt that the
algorithm is a sound implementation of a search
for a LV-RA proof of F0 --,. That it is complete
follows f rom the fact that consistent maximal
extensions are Hintikka sets. In particular, every
genera tor F , A , B - - * C has the same truth
c o n d i t i o n s as the se t of f o r m u l a s
F U {',AV'~BVC}. So a maximal extension is a
Hintikka set if it contains either -,A or "~B or C
for every generator. The exhaustiveness of our
search assures this: every pair of constraints is
checked at least once to see if it matches a

3 In fact, every connected pair has two connected
forms: Sl(x,y), S2(y,z) and T~(z,y), Tl(y,z).
Unsurprisingly, in this case the output of the
generator table for T2 and T: will be the inverse of
what it is for S~ and $2. In either case, the output will
be placed in normal order before being entered into
the description, so we have the required
commutativity,

generator. If it does not then the extension must
contain either ",A or -~B. If it does, then the
extension contains A and B, and so it must also
contain C, or be found inconsistent by the Meet
Rule/RA.

However, completeness is purchased at the
cost of the complexit ies of exhaustive search.
Note that the Splitting Rule is the only source of
non-de te rmin ism in the program. All of the
routines whose defini t ions were left out are
deterministic. The ordered set manipulat ions are
linear in the size of the combined input lists; the
sort called by the Meet Rule is just a variant of
merge-sort , and so of N logN complexity; the
many inversions which may have to be done are
linear in the length of the constraint list, which
is bounded from above by 4, so they can be
treated as constant time operations. It is only the
Splitting Rule that causes us trouble. The second
algorithm attempts to address this problem.

CLOSE : P O L Y N O M I A L S E A R C H F O R A
L v - R A P R O O F

The basic design problem t o be solved is that
the generator table accepts only atomic formulas
as inpu t s , whi le the d e s c r i p t i o n whose
consistency is at issue may contain any number
of compound formulas . Extend solved this
problem by 'b r inging the descr ipt ion to the
genera to rs , ' Close solves this p rob lem by
'bringing the generators to the description. '

F igu re 6 r e p r e s e n t s a p r o o f tha t
{dp(1 ,2) ,b f (1 ,B) ,dp(2 ,3)} is inconsistent. Here
the leaves are almost entirely drawn from the
genera tor axioms. Only the r igh tmos t leaf
invokes a structural axiom. The initial stages of
the proof involve combining generators by means
of RV and LV until the two antecedent atoms
match a pair of compound atoms found in the
input descript ion (in this case dp(1,2) and
dp(2,3)) . Then this 'compound generator ' is fed
into the RA rule together with the corresponding
structural axiom, generating our inconsistency.

Close, like extend, implements a backwards
chaining search for a proof of the relevant sort.
The code for the two algorithms has been made
almost identical, for the purposes of this paper.
The sole essent ia l d i f ference is that now
consequences /3 has only one clause, which
invokes the New Generator Rule. The input to
new_generator_rule/3 is the same as the input to
genera tor_ru le /3 : the current descr ip t ion , a
constraint looking to be the left antecedent of a
generator, and the output consequences. Like the
old rule, the new rule searches the current
description for a connected formula (now not

1 6 8

RV bf(l ,3) ,d(l ,2) ,d(2,3) --, d(l ,3) bf(1,3),p(l,2),d(2,3) --* p(l ,3) RV
LV bf(1,3),d(1,2),d(2,3) --. dp(1,3) bf(1,3),p(1,2),d(2,3) --. dp(1,3)

bf(l ,a),dp(l ,2),d(2,3) --. dp(l ,3)

V
bf(1,3),p(1,2),p(2,3) ---, p(1,3)

Lv bf(1,3),d(1,2),p(2,3) -. @(1,3) bf(1,3),p(1,2),p(2,3) -, @(1,3)
bf(1,3),dp(1,2),p(2,3) -, dp(1,3)

V
A A

Lv bf(1,3),dp(1,2),d(Z,3) -, @(1,3) bf(1,3),dp(1,Z),p(2,3) --, @(1,3)
RA bf(1,3),dp(1,Z),dp(2,3) ~ dp(1,3) dp(1,2),dp(2,3),bf(1,3) -. bf(1,3)

dp(l ,2),bf(l ,3),dp(2,3) ---. (1,3)

Rv

Figure 6. A LV-RA Proof that {dp(1,2), bf(1,3), dp(2,3)} is Inconsistent.

necessarily atomic). From the resulting connected
pair it constructs a compound generator by
taking the cross product of the atomic relations
in the compound formulas (in a double loop
implemented in dis tr ibute/4 and dis t r ib_l /4) ,
feeding the atomic pairs so constructed to the
generator table (in distrib 1/4), and joining each
successive generator output. The result is a
compound generator whose consequent represents
the join of all the atomic generators that went
into its construction.

newgeneratorrule(U, _C, fl)-
new generator_rule([C21Rest], C1, [C31Cons]) :-

connected_order(C1, C2, $1 :(X,Y), S2:(Y,Z)),
distribute($1 :(X,Y), S2:(Y,Z), []:(X,Z), S3:(X,Z)),
normal_order(S3:(X,Z), C3),
new_generator_rule(Rest, C1, Cons).

new_generator_rule([C21Rest], C1, Cons) :-
\+ connected order(C1, C2),
new_generator_rule(Rest, C1, Cons).

distribute(~:_, _C2, Cons, Cons).
distribute([RIlS1]:XY, S2:YZ, S3a:XZ, S3:XZ) :-

distrib_J (S2:YZ, [RlJ:XY, S3a:XZ, S3b:XZ),
distribute($1 :XY, S2:YZ, S3b:XZ, S3:XZ).

distdb_l([].'.._, _C1, Cons, Cons).
dislrib_l([R21S2]:YZ, $1 :XY, S3a:XZ, S3:XZ) :-

gen($1 :XY. [R2]:YZ, S3b:XZ),
ord_union(S3a, S3b, $3c),
distrib 1 (S2:YZ, $1 :XY, S3c:XZ, S3:XZ).

On completion of the double loop, control works
its way back to consequences/3 and thence to the
Meet Rule, as usual.

Unlike extend, close is deterministic. Each
agenda item is compared to each item in the

cu r ren t d e sc r i p t i o n , and that is that .
Fur the rmore , the complexi ty of the New
Generator Rule is not much greater than before:
the double loop we have added can only be
executed a maximum of 4 x 4 -- 16 times, so we
have increased the complexity of the algorithm,
considered apart from the Splitting Rule, by at
most a constant factor. The question is: at what
cost?

Before we turn to the analysis of close,
however, note that its output is different from
that of extend. Extend re turns a maximal
extension, selected non-deterministically. Close
returns the input description, but with values
that could not be part of any solution removed.
Essentially, close returns the pointwise join of all
of F0's consistent maximal extensions.

This action, of jo in ing all the atomic
consequences of a pair of constraints, does not
preserve all of the information present in the
atomic consequences. Consider the following
description.

F0 : {d(1,2), dp(1,3), dp(2,3)}

F0 is its own closure, and is consistent. However,
if we examine its maximal extensions, we note
that one of them

r3 : {d(1,2), p(1,3), d(2,3)}

is inconsistent. There is nothing in F0 to tell us
that one combination of the values it presents is
impossible. Note that this may not be essential
to proving incons is tency: for F0 to be
inconsistent, it would have to be the case that
all values in some constraint were ruled out in
all maximal extensions.

1 6 9

ANALYSIS OF CLOSE

We first argue that close is indeed finding a LV-
RA proof of F0 --,. Note that in our toy example
of Figure 6 only a single 'compound generator'
was required to derive the empty solution. In
general it may take several compound generators
to build a proof of F0--*. Each one functions to
remove some of the possibilities from a
constraint, until eventually no possibilities are
left. Thus we have a LV-RA proof of F0-, if
and only if we have a proof of FQ --, (x,y), for
some x and y. Let us call such a (not necessarily
unique) pair a critical pair in the proof of F0---,,
and its associated constraint in F0 a critical
constraint.

It is not at all obvious how to choose a
critical constraint beforehand, so close must
search for it. Every time it calls the New
Generator Rule and then calls the Meet Rule to
merge in its consequence, it constructs a
fragment of a LV-RA proof. We could then take
the constraint which it finally succeeds in
emptying out as the critical constraint, collect
the proof fragments having that constraint as
their succedent, and plug them together in the
order they were generated to supply us with a
LV-RA proof of F0 --*.

So close will find a LV-RA proof of F0-,, if
one exists. It is not clear, however, that such a
proof always exists when F0 is unsatisfiable.
Close is essentially a variant of the path-
consistency algorithms frequently discussed in
the Cons t r a in t Sa t i s fac t ion l i te ra ture
(IVlackworth, 1977; Allen, 1983). It is known that
path-consistency is not in general a strong
enough condition to ensure completeness. There
are, however, special cases where path-
consistency techniques are complete (Montanari,
1974).

So far, close appears to be complete, (two
years of work have failed to turn up a
counterexample) but it is unlikely to yield an
easy completeness proof. The algorithm
presented here is strongly reminiscent of the
algorithm in Allen (1983), which is demonstrably
incomplete for the temporal reasoning problems
to which he applied it. Therefore, if close is
complete for D-theory, it can only be due to a
property of the generator axioms, that is, to
properties of trees, as contrasted with properties
of temporal intervals. Standard approaches of
any generality will almost certainly generalize to
the temporal reasoning case.

REFERENCES
Allen, 2ames F. 1983. Maintaining Knowledge

about Temporal Intervals. Communications of
the ACM 26(11): 832-843.

Cornell, Thomas L. 1992. Description Theory,
Licensing Theory and Principle-Based Grammars
and Parsers. UCLA Ph.D. thesis.

Gorrell, P. 1991. Subcategorization and Sentence
Processing. In Berwick, R., S. Abney & C.
Tenney, eds. Principle-Based Parsing:
Computation and Psycholinguistics. Kluwer,
Dordrecht.

Mackworth, Alan K. 1977. Consistency in
Networks of Relations. Artificial Intelligence 8:
99-118.

Marcus, Mitchell P., & Donald Hindle. (1990).
Description Theory and In tonat ion
Boundaries. In G. T. M. Ahman (Ed.),
Cognitioe Models of Speech Processing (pp. 483-
512). Cambridge, MA: MIT Press.

Marcus, Mitchell P., Donald Hindle & Margaret
M. Fleck. 1983. D-Theory: Talking about
Talking about Trees. Proceedings of the 21st
Mtg. of the A CL.

Montanari, Ugo. 1974. Networks of Constraints:
Fundamental Properties and Applications to
Picture Processing. Information Sciences 7:
95-132.

O'Keefe, Richard A. 1990. The Craft of Prolog.
Cambridge, MA: MIT Press.

Rogers, 3ames & K. Vijay-Shanker. 1992.
Reasoning with Descriptions of Trees.
Proceedings of the 30th Mtg. of the ACL.

Weinberg, A. 1988. Locality Principles in Syntax
and in Parsing. MIT Ph.D. dissertation.

170

