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Abstract 1 

We examine the consis tency problem for 
descriptions of trees based on remote dominance, 
and present a consistency-checking algorithm 
which is polynomial in the number of nodes in 
the description, despite disjunctions inherent in 
the theory of trees. The resulting algorithm 
allows for descriptions which go beyond sets of 
atomic formulas  to allow certain types of 
disjunction and negation. 

INTRODUCTION 
In Marcus, Hindle & Fleck (1983), the authors 
proposed an approach to syntactic tree structures 
which took the primary structural relation to be 
remote  dominance  ra ther  than immedia te  
dominance. Recently, researchers have shown a 
revived interest in variants of Marcus et al.'s D- 
Theory,  most likely due to the availability of 
approaches and techniques developed in the 
study of feature structures and their underlying 
logics. For example,  both Rogers & Vijay- 
Shanker (1992) and Cornell  (1992) present 
formal treatments of many notions which Marcus 
et al. (1983) t reated only informally and 
incomple te ly .  F u r t h e r m o r e ,  work on the 
psycholinguistic implications of this approach 
has continued apace (Weinberg 1988; Gorrell 
1991; Marcus & Hindle 1990), making all the 
more necessary sustained foundational work in 
the theory of descript ion-based tree-building 
applications (parsers, generators, etc.) 

This paper addresses one particular problem 
that arises in this approach to tree building. As 
with feature-structures,  the essential operation 
here is the combination of two collections of 
partial information about the syntactic structure 
of an expression. It may happen that the two 

1 Many thanks to Dick Oehrle, Ed Stabler, Drew 
Moshier and Mark 3ohnson for comments, discussion 
and encouragement. Theirs the gratitude, mine the 
fault. 

collections to be combined contain contradictory 
information. For example one might contain the 
assertion that "node 7 dominates node 12" while 
the other claims that "node 12 precedes node 7". 
No tree s t ruc ture  can sat isfy both these 
constraints .  The  opera t ion  of descr ip t ion  
combination is thus not simple set union, but, 
like unification, involves taking a least upper 
bound in a semi-lat t ice where lub's are not 
everywhere defined. 

Both Rogers & Vijay-Shanker (1992) and 
Cornell (1992) propose to solve the D-Theoretic 
consis tency problem by using essent ia l ly  
Tableau-based approaches. This  can lead to 
combina to r i a l  exp los ion  in the face of 
disjunctions inherent in the theory of trees. But 
as it happens, proof techniques designed to 
handle general disjunctions are more powerful 
than we need; the disjunctions that arise from 
the theory of trees are of a restricted kind which 
can be handled by strictly polynomial means. We 
will see that we can efficiently handle richer 
not ions of descr ip t ion than those in the 
"classical" D-Theory of Marcus, et al. (1983). 

D-THEORYANDTREETHEORY 

DESCRIPTION LANGUAGE 

We will make use of the following description 
language ,,~. Define the set of basic relation 
names, R, as: 

b - - " b e l o w "  (i.e., dominated-by) 
d - -  "dominates" 
e - -  "equals" 
f --"follows" (i.e., preceded-by) 
p - -  "precedes" 

We define an algebra on relation names as 
follows. 

($1 V $2)(x,y) =def the collection of relation 
names in either $1 or S2. 

(S1 A $2)(x,y) =def the collection of relation 
names in both $1 and $2. 

S'(xoI) --def the collection of relation names 
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not in S. 

We then define the full set of compound relation 
name expressions R* as the closure of the basic 
relation names under A, V and '. A formula of 

is then an element of R* applied to a pair of 
node names .  We will of ten refer  to the 
compound relation name expression in a formula 
S(x ,31  ) as a constraint on the pair x, 31. 
Semantically, we treat S(x,31 ) as satisfiable if we 
can assign the denotata of the pair x, 31 to at 
least one of the relations denoted by members of 
S. On this semantics, if S(x,31 ) is satisfiable and 
S ~< T, then T(x,31 ) is satisfiable as well. Clearly 
the empty constraint  (x,31) is never satisfiable. 
(Atoms of the form e(x,31 ) are satisfiable if and 
only if x and 31 denote identical members of the 
domain of discourse. Atoms of the form b(x,31) 
and f(x,31) are to be considered equivalent to 
d(31,x ) and p(31,x), respectively.) 

A description is a finite set of formulas. If a 
description contains only formulas with a basic 
relation name, we will call it classical, since this 
is the type of description considered in Marcus 
et al. (1983). 

AXIOMS 

Note that such structures are not guaranteed to 
be trees. Therefore we make use of the following 
fragment of an axiomatization of tree structures, 
which we will assume in the background of all 
that follows, and formalize in the next section. 

Strictness. Dominance and precedence are strict 
part ial  orders ,  i .e.,  t ransit ive and irreflexive 
relations. 

Equality. We assume that equality is reflexive, 
and that we can freely substi tute equals for 
equals. 

Exhaustiveness. Every pair  of nodes in a tree 
s tand in at least one of the five possible 
relations. I.e. R(x,31 ) for all x and 31. 

Inheritance. All nodes inherit  the precedence 
properties of their ancestors. So if p(x,31 ) and 
d(31,z), then p(x,z) as well. 

A number of familiar properties of trees follow 
from the above system. Inheritance assures both 
the non- tang l ing  of tree branches  and the 
impossibili ty of upward branching ( 'V-shaped')  
c o n f i g u r a t i o n s .  I n h e r i t a n c e ,  T r a n s i t i v i t y ,  
Substitution of equals and Exhaustiveness jointly 
derive the property of Exclusiueness, which states 
that every pair of nodes is related in at most one 
way. (Note that it is Exclusiveness which assures 
the soundess of our use of A.) A less familiar 
property,  which we will make some use of, is 

roughly paral le l  to Inhe r i t ance ;  Upwards  
Inheritance states that if x dominates  31 and 31 
precedes (follows) z, then x domina t e s  or 
precedes (follows) z. 

Note that this system is not meant to be an 
axiomatic definition of t rees ;  it lacks a 
Rootedness condition, and it allows infinite and 
densely ordered structures.  It is specif ical ly 
adapted to the satisfiabilit31 problem, rather than 
the oalidit31 p r o b l e m .  It  is r e l a t i v e l y  
straightforward to show that,  f rom any finite 
atomic dE-description satisfying these conditions, 
we can construct a finite tree or a precedence 
ordered finite forest of finite trees (which can be 
extended to a finite tree by the addition of a 
root node). So this system is complete as far as 
satisfiability is concerned. Briefly, if a set of 
formulas satisfies all of the above constraints,  
then we can (1) construct a new description over 
the quotient node-space modulo e; (2) list the 
dominance chains; (3) add a root if necessary; 
(4) noting that the dominance maximal elements 
under the root must  be total ly precedence 
ordered (they must be ordered and they cannot 
be dominance ordered or they would not be 
maximal) ,  we number  them accordingly;  (5) 
apply the same procedure  to the dominance  
ideals generated by each of the root's daughters. 
From the resulting numbering we can construct a 
"tree domain" straightforwardly. The Inheritance 
property assures us that dominance chains are 
non-tangled, so that the ideal generatred by any 
node will be disjoint from the ideal generated by 
any node precedence-ordered with respect to the 
first.  There fo re  no node will receive two 
numbers ,  and, by Exhaustiveness,  every node 
will receive a number. 

DEDUCTION WITH DESCRIPTIONS 

There is a strong formal  parallel among the 
axioms of Transi t ivi ty,  Substitution of Equals, 
and Inheritance: each allows us to reason from a 
pair of a tomic formulas  to a single a tomic 
formula.  Thus they allow us to reason from 
classical descriptions to (slightly larger) classical 
descriptions. Let us refer to these axioms as 
9enerators. The reason for adopt ing dE as a 
description language, rather  than the simpler 
language of Marcus et al. (1983), is that we can 
now treat the No Upward Branching property ("if 
x and z both dominate 31 then x dominates z or 
z dominates  x or they are equal ," )  and the 
Upwards Inher i tance  proper ty  as generators .  
They allow us to reason from pairs of atomic 
formulas (e.g., d(x,31 ) and P(31,z)) to compound 
formulas (e.g., dp(x,z)). This means that we can 
express the consequences of any pair of atomic 

164 



b(x,y) b(x,z) 

d(x,y) bde(x,z) 

e(x,y) b(x,z) 

f(x,y) bf(x,z) 

p(x,y) bp(x,z) 

R(x,z) 

] 
f(x,z) 

p(x,z) 

b(x,z) fix,z) p(x,z) 

d(x,z) df(x,z) ' dp(x,z) 

~(x,z) fix,z) i p(x,z) 
f(x,z) f(x,z) R(x,z) 

p(x,z) R(x,z) 

Figure 1. Generator Table. 

formulas as a formula of d~, though possibly a 
compound formula. They are exhibited in Figure 
1. Cells corresponding to axioms in the theory 
are boxed. 

For doing formal deductions we will employ 
a sequent calculus adapted to our description 
language ~ .  We assume that sequents are pairs 
of finite sets of formulas, and we can make the 
further restriction that formulas on the right of 
the sequent arrow ("succedents") contain at most 
a single member. The axioms of the calculus we 
employ are exhibited in Figure 2, and the 
connective rules in Figure 3. 

Structural Axioms: F,A --. A 

Generator Axioms: F, Sl(x,y),S2(y,z) --- S3(x,z) 
for all instances of the generators 

Exhaustiveness: --. R(x,y) for all x, y 

Figure 2. D-The0ry Axioms. 

A sequent  [F --, A] is in terpre ted  as an 
implication from conjunctions to disjunctions: if 
everything in F is true, then something in A 
must be true. It follows that [--*A] is invariably 
true, and [F--,] is invariably false. A sequent 
calculus proof is a tree (written right side up, 
with its root on the bottom) labeled with 
sequents. The theorem to be proved labels its 
root, the leaves are labeled with axioms, and all 
the local subtrees must be accepted by some 
inference rule. A proof that a description F0 is 
inconsistent is a proof of the sequent [F0--*]. 
Note that 

r - - ,  (x,~) 

F-- ,  

is a valid inference, essentially since (x,y) and 
the empty succedent both express the empty 
disjunction. 

RA 

LV 

r ,  S l (x ,y)  - .  A 
LA ($2 ~< S1) 

F, S2(x,y) --, A 

F --* Sl(x,y) r --* S2(x,y) 

F --* ( S I A  S2)(x,y) 

F, S l (x ,y)  - ,  A r ,  SZ(x.y) --, A 

r , ( s a  v se ) (x ,y )  --, z~ 

r - .  Sa(x,y)  
Rv  ($2 <<. S1 ) 

r - .  S2(x,y) 

F --* S(x,y)  
L' 

r , s ' ~ , y ) ~  

r , s ( x , y )  -~ 
R' 

F -,  S'(x,y) 

Figure 3. D-Theory Inference Rules. 

TWO ALGORITHMS 
Suppose we are given an input description F0 to 
check for satisfiability. If it is unsatisfiable, then 
it contradicts one of the axioms of the tree 
theory: Exhaustiveness, Reflexivity of Equals, 
lrreflexivity of Dominance and Precedence, and 
the Generators. A complete consistency checker 
must be able to exhaust the consequences of 
these axioms for F0, monitoring for the false 
formula (x,~/). 

Both algorithms take as input a description 
and an integer indicating the number of node- 
names constrained by the description. In the 
Prolog imp lemen ta t i ons  that  fo l low,  the 
description is expected to be a list of constraints 
in normal order, that is, with the first argument 
lexicographically less than or equal to the 
second. Thus, assuming we are using integers as 
node names, the normal order form of d ( 2 , 1 )  
will be b (1 ,2 ) .  Furthermore, the description is 
assumed to be sorted by its node-pairs. This will 
a l low us to use e f f i c i e n t  o r d e r e d - s e t  
manipulations. 

For any given set of nodes of size N, we can 
construct a description which is a filter for 
violat ions of Reflexivi ty,  l r ref lexivi ty  and 
Exhaustiveness. We construct F N to contain for 
every pair of nodes x,, xj, i , j  <~ N, e(x,,xj) if i =j,  
and e ' (x ,x i )  (i.e., b d f p ( x , x i ) )  if i # j .  We can 
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e(1,3),d(1,2),p(2,3)--,dp(l,3) d( l ,2),p(2,3),e(1,3)~e(l ,3) 
RA 

e(1,3), d(1,2),p(2,3) ~ (1,3) 

e(1,3), d(l,2), p(2,3) ---, 

V 

LV 

Figure 4. {d(1,3), e(1,3), p(2,3)} is Inconsistent. 

A 
e(1,3), d(1,2),p(2,3) --. e(1,3), p(1,2),p(2,3) --. 

e(1,3), dp(1,2), p(2,3) 
LV 

f(1,3),d(1,2),p(2,3)~ f(1,3),p(1,2),p(2,3)~ 
Lv  

f(1,3), dp(1,2), p(2,3) --, 

el(l ,3),  dp(1,2), p(2,3) --, 

Figure 5. {ef(1,3),dp(1,2), p(2,3)} is Inconsistent (A RA-LV Proof). 

determine that a description F0 violates either 
Reflexivity, lrreflexivity or Exhaustiveness simply 
by taking its pointwise meet F0 I"1 FN .2 If a 
description is in violation of the Exhaustiveness 
condition, then it contains some formula S(x,21) 
with some part of S not given in R*. In that 
case, taking its meet with anything ~< R(x,21) will 
prune away the offending part. Similarly, if a 
constraint on a reflexive pair of nodes S(x,x) 
fails to have eE S, then taking its meet with 
e(x,x) will yield (x,x). Finally, taking the meet 
of S(x,y), x # 2t, with e'(x,21) will yield (x,21) if 
S = e; in arty case it will have the useful effect of 
pruning e out of S. Therefore both algorithms 
begin by constructing F N and then taking its 
meet with the input description. This has the 
extra side effect that any pair of nodes x and 21 
not explicitly constrained in the input will now 
be explicitly constrained. 

EXTEND : TOP-DOWN BACKTRACKING 
SEARCH FOR CONSISTENT MAXIMAL 
EXTENSIONS 

Given that we have begun by taking F0 I-I F N, we 
have only the generators left to check F0 against. 
We can think of the generator table as defining 
a function from pairs of atomic formulas to 
consequences. To use it we must first have 
atomic formulas. 

Def'n: A description r '  is a maximal extension of 
a description F if, for every formula S(x,y) in 

2 We can assume that any pair of nodes x, y not 
explicitly constrained in the input is implicitly 
constrained by R(x,y). Of course, (RAe')= e', so this 
assumption just amounts to setting unmentioned pairs 
of (distinct) nodes to e'(x,y). 

FRFN, r '  contains s(x,y) for some sES.  

An obvious solution is to enumerate the maximal 
extensions of F0 F'I F N and feed them to the 
generators. If any such extension passes the 
generators, then it is satisfiable, and therefore it 
is a witness to the satisfiability of F0. If the 
extension is unsatisfiable, then it must violate at 
least one of the generators. Because a maximal 
extension is a total assignment of node-pairs to 
relations, a single application of a well-chosen 
generator will suffice to derive a contradiction. 
And so a single pass through the complete set of 
applicable generators should be sufficient to 
decide if a given maximal  ex tens ion  is 
consistent. 

Thus ,  if the input descr ip t ion  F0 is 
inconsistent, then there is a proof of F0--, in 
which every branch of the proof ends in a sub- 
proof like that in Figure 4. There we have the 
simple description {d(1,2),e(1,3),p(2,3)}, which 
gives us d p ( 1 , 3 ) ,  by a generator  (Upwards 
Inheritance, in this case), and e ( 1 , 3 ) ,  by a 
s t ructural  axiom. Combin ing  these by an 
invocation of RA we get the false formula (1,3).  
The roots of these sub-proofs can be combined 
using LV until we eventually build up the input 
description on the left, proving F 0 - ' ,  as in 
Figure 5. 

The  fo l lowing f ragment  of a Prolog  
implementation of max_extension/3 can be seen 
as implementing a backwards chaining search for 
such a "RA-LV" proof. The input to both extend 
and to close (see below, next section) is assumed 
to be an ~-descr ipt ion together with an integer 
giving the number of node-names subject to the 
description. The node-count is used to construct 
the appropriate F N for this description. Note 
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that, aside from implementing pointwise /-1, 
merge descs/3 checks for the derivation of an 
empty constraint, and fails if that happens. The 
real work is then done by extend/3, which is a 
recurs ion on an Agenda. The agenda is 
initialized to the input description. As individual 
constraints are narrowed, they are added to the 
agenda  so as to imp lemen t  cons t ra in t  
propagation. 

max_axtension( DO, N, Extension ) :- 
it reflexive_rule( N, Filter_N ), 
merge._descs( DO, Filter_N, D1 ), 
Agenda = D1, 
extend( Agenda, D1, Extension ). 

extend( [], X, X ). 
extend( [COICs], D0, X ) :- 

consequences( CO, D0, Conseqs ), 
meet_rule( Conseqs, DO, D1, NewCons ), 
merge_descs( NewCons, Cs, Agenda1 ), 
extend( Agenda1, D1, X ). 

Meet_rule/4,  in the second clause of extend~3, 
differs from merge_descs/3 only in (a) sorting its 
first argument and (b) deriving both the merged 
description (D1) and a list of those consequences 
which actually had some effect on DO. Both 
merge_descs/3 and meet_rule/ ' [  are based on 
routines for ordered set union from O'Keefe 
(1990). The main difference is that ordering is 
defined on the node-pairs  of the constraint, 
rather than on the term expressing the constraint 
as a whole; equali ty is defined so that two 
constraints are equal if they constrain the same 
node pair, and if two formulas are 'equal' in this 
sense, then the output contains the meet of their 
respective relation names expressions. The truly 
new consequences derived by meet_rule/4 are 
then added to the remaining agenda (Cs) with 
another call to merge_descs/3. (If NewCons were 
merely appended to Cs, we could have two 
constraints on the same pair of nodes in the 
agenda at once, either of which may be less 
tightly constrained than the result of merging the 
two instances.) 

Extend/3 thus both consumes items off the 
agenda (CO) and adds new items (NewCons). 
However,  each new consequence,  if it is truly 
novel, represents the narrowing of a constraint; 
since each pair  starts with a maximum of four 
options, clearly we will eventually run out of 
options to remove; NewCons will be empty, the 
remaining agenda will eventually be consumed, 
and the program will halt. 

The core of ex tend/3  is consequences/3,  
which determines for any given constraint what 
consequences it has when paired with each of the 

constraints in the description. Consequences/3 
has two clauses; the first handles compound 
formulas,  while the second handles  atomic 
formulas. The second clause of consequences/3 
invokes the Splitting Rule, which implements 
LV. 

Note that ,  instead of exhaus t ing  the 
consequences of the Split t ing Rule and then 
applying the Generator  Rule, we apply the 
Generator  Rule whenever we can. This  is 
because it can act to prune away options from 
its c o n s e q u e n t s ,  thus  m i n i m i z i n g  the 
combinatorial  explosion lurking behind the 
Splitting Rule. Furthermore, if an application of 
the Generator Rule does lead to the discovery of 
an inconsistency, then the program backtracks to 
its last application of the Splitt ing Rule, in 
effect pruning away from its search tree all 
further consequences of its inconsistent choice. 

consequences( C. _D, Consequences ) :- 
compound_formula( C ), 
splittingrule( C, Consequences ). 

consequences( C, D, Consequences ) :- 
atomic_formula( C ), 
generator_rule( D, C, Consequences ). 

atomic_formula([_]:(_~_) ). 
compound_formula(L,_L.]:(_,_) ). 

splitting_rule( C, [Assumption] ) :- 
C = Rels:Nodes, 
member( R, Rels ), 
Assumption = [R]:Nodes. 

The heart of consequences/3 is the Generator 
Rule, implemented as generator_rule/3. It scans 
the current description for formulas which form 
a connected pair with its second argument. Note 
that in all our examples, we have carefully 
presented inputs to the generators as Sx(x,3) ,  
Sz(y,z). Such a combination can be looked up 
directly in the generator table. However, note 
that St(x,y) ,  S2(z,y) is no less a connected pair. 
In order to match it to the generator table, 
though, we need to invert the second member, 
g iving Sz ' l (y ,z ) .  T h i s  is d o n e  by 
connected order/4,  which succeeds, returning the 
connected form o f  the formulas, if they have a 
connected form, and fails otherwise.  If it 
succeeds, then there is art entry in the generator 
table which gives the consequence of that 
connected pair. This  consequence (XZ) is then 
placed in normal order (C3), and added to the 
output list of consequences. 

If C2 is an unconnec ted  atom, or a 
compound formula,  it is skipped. Note that 
skipping compound formulas does not affect the 
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completeness  of the algori thm. Every agenda 
item leads a dual life: as an agenda item, and as 
a member  of  the current  descript ion.  The  
ignored compound formula  will eventually be 
subjected to the Splitting Rule, the result being 
placed on the agenda. It will then eventually be 
paired with C2's entry in the description by the 
Generator  Rule. The  only difference will be in 
which formula  is the left antecedent and which 
the right; but that doesn't matter,  since they'll be 
converted to connected form in any case, and 
their result will be converted to normal order. 3 

generator_rule( ~, _C, [1 ). 
generator_rule( [C21Rest], C1, [C3lConseqs] ) :- 

atomic._formula( C2 ), 
connected_order( C1, C2, XY, YZ ), 
gen( XY, YZ, XZ ), 
normal_order( XZ, C3 ), 
generator_rule( Rest, C1, Conseqs ). 

generator_rule( [C21Rest], C1, Conseqs ) :- 
atomic_formula( C2 ), 
\+ connected_order( C1, C2 . . . .  ), 
generator_rule( Rest, C1, Conseqs ). 

generator__rule( [C2JRest], C1, Conseqs ) :- 
compound_formula( C2 ), 
generator_rule( Rest, C1, Conseqs ). 

Every rule applied in this procedure is based on 
a rule in the associated sequent calculus. The 
Splitting Rule is just LV; the Meet Rule is RA; 
and the Generator Rule is just the application of 
an axiom. So there can be little doubt that the 
algorithm is a sound implementation of a search 
for a LV-RA proof of F0 --,. That  it is complete 
follows f rom the fact that consistent maximal 
extensions are Hintikka sets. In particular, every 
genera tor  F , A , B - - *  C has the same truth 
c o n d i t i o n s  as the se t  of  f o r m u l a s  
F U {',AV'~BVC}. So a maximal  extension is a 
Hintikka set if it contains either -,A or "~B or C 
for every generator. The exhaustiveness of our 
search assures this: every pair of constraints is 
checked at least once to see if it matches a 

3 In fact, every connected pair has two connected 
forms: Sl(x,y), S2(y,z) and T~(z,y), Tl(y,z). 
Unsurprisingly, in this case the output of the 
generator table for T2 and T: will be the inverse of 
what it is for S~ and $2. In either case, the output will 
be placed in normal order before being entered into 
the description, so we have the required 
commutativity, 

generator. If it does not then the extension must 
contain either ",A or -~B. If it does, then the 
extension contains A and B, and so it must also 
contain C, or be found inconsistent by the Meet 
Rule/RA. 

However, completeness is purchased at the 
cost of the complexit ies of exhaustive search. 
Note that the Splitting Rule is the only source of 
non-de te rmin ism in the program.  All of the 
routines whose defini t ions were left out are 
deterministic. The ordered set manipulat ions are 
linear in the size of the combined input lists; the 
sort called by the Meet Rule is just a variant of 
merge-sort ,  and so of N logN complexity; the 
many inversions which may have to be done are 
linear in the length of the constraint list, which 
is bounded from above by 4, so they can be 
treated as constant time operations. It is only the 
Splitting Rule that causes us trouble. The second 
algorithm attempts to address this problem. 

CLOSE : P O L Y N O M I A L  S E A R C H  F O R  A 
L v - R A  P R O O F  

The basic design problem t o  be solved is that 
the generator table accepts only atomic formulas 
as inpu t s ,  whi le  the d e s c r i p t i o n  whose  
consistency is at issue may contain any number 
of compound formulas .  Extend solved this 
problem by 'b r inging  the descr ipt ion to the 
genera to rs , '  Close solves this p rob lem by 
'bringing the generators to the description. '  

F igu re  6 r e p r e s e n t s  a p r o o f  tha t  
{dp(1 ,2 ) ,b f (1 ,B) ,dp(2 ,3 )}  is inconsistent. Here 
the leaves are almost entirely drawn from the 
genera tor  axioms.  Only the r igh tmos t  leaf 
invokes a structural axiom. The initial stages of 
the proof involve combining generators by means 
of RV and LV until the two antecedent atoms 
match a pair of compound atoms found in the 
input descript ion (in this case dp(1,2) and 
dp(2,3)) .  Then this 'compound generator '  is fed 
into the RA rule together with the corresponding 
structural axiom, generating our inconsistency. 

Close, like extend, implements  a backwards 
chaining search for a proof of the relevant sort. 
The code for the two algorithms has been made 
almost identical, for the purposes of this paper. 
The  sole essent ia l  d i f ference  is that  now 
consequences /3  has only one clause,  which 
invokes the New Generator Rule. The input to 
new_generator_rule/3 is the same as the input to 
genera tor_ru le /3 :  the current  descr ip t ion ,  a 
constraint looking to be the left antecedent of a 
generator, and the output consequences. Like the 
old rule, the new rule searches the current  
description for a connected formula  (now not 
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RV bf( l ,3) ,d( l ,2) ,d(2,3) --, d( l ,3)  bf(1,3),p(l,2),d(2,3) --* p( l ,3) RV 
LV bf(1,3),d(1,2),d(2,3) --. dp(1,3) bf(1,3),p(1,2),d(2,3) --. dp(1,3) 

bf( l ,a),dp( l ,2),d(2,3) --. dp(l ,3) 

V 
bf(1,3),p(1,2),p(2,3) ---, p(1,3) 

Lv bf(1,3),d(1,2),p(2,3) -. @(1,3) bf(1,3),p(1,2),p(2,3) -, @(1,3) 
bf(1,3),dp(1,2),p(2,3) -, dp(1,3) 

V 
A A 

Lv bf(1,3),dp(1,2),d(Z,3) -, @(1,3) bf(1,3),dp(1,Z),p(2,3) --, @(1,3) 
RA bf(1,3),dp(1,Z),dp(2,3) ~ dp(1,3) dp(1,2),dp(2,3),bf(1,3) -. bf(1,3) 

dp(l ,2),bf( l ,3),dp(2,3) ---. (1,3) 

Rv 

Figure 6. A LV-RA Proof that {dp(1,2), bf(1,3), dp(2,3)} is Inconsistent. 

necessarily atomic). From the resulting connected 
pair it constructs a compound generator by 
taking the cross product of the atomic relations 
in the compound formulas (in a double loop 
implemented in dis tr ibute/4 and dis t r ib_l /4) ,  
feeding the atomic pairs so constructed to the 
generator table (in distrib 1/4), and joining each 
successive generator output.  The result is a 
compound generator whose consequent represents 
the join of all the atomic generators that went 
into its construction. 

newgeneratorrule( U, _C, fl )- 
new generator_rule( [C21Rest], C1, [C31Cons] ) :- 

connected_order( C1, C2, $1 :(X,Y), S2:(Y,Z) ), 
distribute( $1 :(X,Y), S2:(Y,Z), []:(X,Z), S3:(X,Z) ), 
normal_order(S3:(X,Z), C3 ), 
new_generator_rule( Rest, C1, Cons ). 

new_generator_rule( [C21Rest], C1, Cons ) :- 
\+ connected order( C1, C2 . . . .  ), 
new_generator_rule( Rest, C1, Cons ). 

distribute( ~:_, _C2, Cons, Cons ). 
distribute( [RIlS1]:XY, S2:YZ, S3a:XZ, S3:XZ ) :- 

distrib_J (S2:YZ, [RlJ:XY, S3a:XZ, S3b:XZ ), 
distribute( $1 :XY, S2:YZ, S3b:XZ, S3:XZ ). 

distdb_l( [].'.._, _C1, Cons, Cons ). 
dislrib_l( [R21S2]:YZ, $1 :XY, S3a:XZ, S3:XZ ) :- 

gen( $1 :XY. [R2]:YZ, S3b:XZ ), 
ord_union( S3a, S3b, $3c ), 
distrib 1 ( S2:YZ, $1 :XY, S3c:XZ, S3:XZ ). 

On completion of the double loop, control works 
its way back to consequences/3 and thence to the 
Meet Rule, as usual. 

Unlike extend, close is deterministic. Each 
agenda item is compared to each item in the 

cu r ren t  d e sc r i p t i o n ,  and that  is that .  
Fur the rmore ,  the complexi ty  of the New 
Generator Rule is not much greater than before: 
the double loop we have added can only be 
executed a maximum of 4 x 4 -- 16 times, so we 
have increased the complexity of the algorithm, 
considered apart from the Splitting Rule, by at 
most a constant factor. The question is: at what 
cost? 

Before we turn to the analysis of close, 
however, note that its output is different from 
that of extend. Extend re turns  a maximal  
extension, selected non-deterministically.  Close 
returns the input description, but with values 
that could not be part of any solution removed. 
Essentially, close returns the pointwise join of all 
of F0's consistent maximal extensions. 

This  action, of jo in ing all the atomic 
consequences of a pair of constraints, does not 
preserve all of the information present in the 
atomic consequences. Consider the following 
description. 

F0 : {d(1,2), dp(1,3), dp(2,3)} 

F0 is its own closure, and is consistent. However, 
if we examine its maximal extensions, we note 
that one of them 

r3 : {d(1,2), p(1,3), d(2,3)} 

is inconsistent. There is nothing in F0 to tell us 
that one combination of the values it presents is 
impossible. Note that this may not be essential 
to proving  incons is tency:  for F0 to be 
inconsistent, it would have to be the case that 
all values in some constraint were ruled out in 
all maximal extensions. 
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ANALYSIS OF CLOSE 

We first argue that close is indeed finding a LV- 
RA proof of F0 --,. Note that in our toy example 
of Figure 6 only a single 'compound generator' 
was required to derive the empty solution. In 
general it may take several compound generators 
to build a proof of F0--*. Each one functions to 
remove some of the possibilities from a 
constraint, until eventually no possibilities are 
left. Thus we have a LV-RA proof of F0-, if 
and only if we have a proof of FQ --, (x,y), for 
some x and y. Let us call such a (not necessarily 
unique) pair a critical pair in the proof of F0---,, 
and its associated constraint in F0 a critical 
constraint. 

It is not at all obvious how to choose a 
critical constraint beforehand, so close must 
search for it. Every time it calls the New 
Generator Rule and then calls the Meet Rule to 
merge in its consequence, it constructs a 
fragment of a LV-RA proof. We could then take 
the constraint which it finally succeeds in 
emptying out as the critical constraint, collect 
the proof fragments having that constraint as 
their succedent, and plug them together in the 
order they were generated to supply us with a 
LV-RA proof of F0 --*. 

So close will find a LV-RA proof of F0-,, if 
one exists. It is not clear, however, that such a 
proof always exists when F0 is unsatisfiable. 
Close is essentially a variant of the path- 
consistency algorithms frequently discussed in 
the Cons t r a in t  Sa t i s fac t ion  l i te ra ture  
(IVlackworth, 1977; Allen, 1983). It is known that 
path-consistency is not in general a strong 
enough condition to ensure completeness. There 
are, however, special cases where path- 
consistency techniques are complete (Montanari, 
1974). 

So far, close appears to be complete, (two 
years of work have failed to turn up a 
counterexample) but it is unlikely to yield an 
easy completeness proof. The algorithm 
presented here is strongly reminiscent of the 
algorithm in Allen (1983), which is demonstrably 
incomplete for the temporal reasoning problems 
to which he applied it. Therefore, if close is 
complete for D-theory, it can only be due to a 
property of the generator axioms, that is, to 
properties of trees, as contrasted with properties 
of temporal intervals. Standard approaches of 
any generality will almost certainly generalize to 
the temporal reasoning case. 
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