
A L O G I C A L S E M A N T I C S
F O R N O N M O N O T O N I C S O R T S

A b s t r a c t

Suppose we have a feature system, and we wish
to add default values in a well-defined way. We
might start with Kasper-Rounds logic, and use
Reiter's example to form it into a default logic.
Giving a node a default value would be equiv-
alent to saying "if it is consistent for this node
to have that value, then it does." Then we
could use default theories to describe feature
structures. The particular feature structure
described would be the structure that supports
the extension of the default theory. This is, in
effect, what the theory of nonmonotonic sorts
gives you. This paper describes how that the-
ory derives from what is described above.

M a r k A . Y o u n g &~ B i l l R o u n d s

A r t i f i c i a l I n t e l l i g e n c e L a b o r a t o r y

T h e U n i v e r s i t y o f M i c h i g a n

1101 B e a l Ave .

A n n A r b o r , M I 48109

marky, rounds©engin, umich, edu

The original presentation of nonmonotonic sorts
provided only a description of their operation and
an informal description of their meaning. In this
paper, we present a logical basis for NSs and non-
monotonically sorted feature structures (NSFSs).
NSFSs are shown to be equivalent to default theo-
ries of default logic (Reiter 1980). In particular, we
show how nonmonotonic sort unification is equiv-
alent to finding the smallest default theory that
describes both NSFSs; and also how taking a solu-
tion for a NSFS is the same as finding an extension
for that theory.

I N T R O D U C T I O N

There have been many suggestions for incorporat-
ing defaults into unification-based grammar for-
malisms (Bouma 1990; Bouma 1992; Carpenter
1991; Kaplan 1987; Russell et al. 1992; Shieber
1986; Shieber 1987). Each of these proposes a
non-commutative, non-associative default unifica-
tion operation that combines one structure repre-
senting strict information with another represent-
ing default information. When presented with a
set of structures, the result depends on the order in
which the structures are combined. This runs very
much against the unification tradition, in which any
set has a unique most general satisfier (if a satisfier
exists at all).

A method that is free of these ordering effects
was presented in (Young 1992). The method of
nonmonotonic sorts (NSs) allows default labels to
be assigned at any time, and used only in the ab-
sence of conflicting information. NSs replace the
more tradit ional labels on feature structures to give
nonmonotonically sorted feature structures (NS-
FSs). These structures can be combined by an asso-
ciative and commutat ive unification operation. FSs
are rederived from NSFSs by taking a solut ion--an
operation defined in terms of information present
in the NSFS.

F E A T U R E S Y S T E M S

Unification-based grammar formalisms use formal
objects called feature structures to encode linguis-
tic information. We use a variant of the standard
definition. Each structure has a sort (drawn from
a finite set 8) , and a (possibly empty) set of at-
tributes (drawn from a finite set ~) .

D e f i n i t i o n 1 A feature structure is a tuple
(Q, r, 6, O) where

• Q is a finite set of nodes,

• r E Q is the root node,

• 6 : Q x Y r ---+ Q is a partial feature value function
that gives the edges and their labels, and

• (9 : Q ~ S is a sorting function that gives the
labels of the nodes.

This structure must be connected.

It is not unusual to require that these structures
also be acyclic. For some systems O is defined only
for sink nodes (PATR-II, for example). Fig. 1 shows
a standard textual representation for a FS.

We sometimes want to refer to substructures of a
FS. If .A is a feature structure as described above,
we write . A / f for the feature structure rooted at
6(q, f) . This feature structure is defined by Q~ c_ Q,
the set of nodes that can be reached from 6(r, f) .
We will use the letter p (possibly subscripted) to
represent paths (that is, finite sequences from .T'*).
We will also extend ~ to have paths in its second

209

<subj agr person> isa 3rd
<subj agr number> isa singular
<subj agr> = <pred agr>
<pred actor> = <subj>
<pred rep> isa sleep
<pred tense> isa present

Figure 1: Textual Feature Structure: "Uther
sleeps."

T RUE
FALSE
a where a E S
pl -" P2 where each Pi E J~*
f : ¢ where f E ~- and ¢ E F M L
¢ ^ ¢
¢ v ¢

Figure 2: SFML: the domain of sorted logical for-
mulas.

1. A

2. A

3 . . 4

4 . , 4

5. A

6. A

7 . . 4

position, with the notion of i terated application of
5.

We will assume that there is a partial order, -~,
defined on S. This ordering is such that the great-
est lower bound of any two sorts is unique, if it
exists. In other words, (S U {_1_}, -q) is a meet-
semilattice (where _l_ represents inconsistency or
failure). This allows us to define the most general
unifier of two sorts as their greatest lower bound,
which write as aAsb. We also assume that there is
a most general sort, T, called top. The structure
(S, -g) is called the sort hierarchy.

K A S P E R - R O U N D S L O G I C
(Kasper 1988) provides a logic for describing fea-
ture structures. Fig. 2 shows the domain of these
logical formulas. We use the standard notion of
satisfaction. Let A = (Q, r, 5, O).

= T R U E always;

- F A L S E never;

= a ~ O (r) _ _ . a ;

= p l --'p~ -:-, > 5(r, pl) = 5(r,p~);

= f : ¢ ¢=~ A / f is defined and A / f ~ ¢;

= ¢ A ¢ ¢===~ A ~ ¢ and .A ~ ¢;

= ¢ V ¢ ¢---~ A ~ ¢ o r A ~ ¢
Note that i tem 3 is different than Kasper 's original
formulation. Kasper was working with a flat sort
hierarchy and a version of FSs that allowed sorts
only on sink nodes. The revised version allows for
order-sorted hierarchies and internal sorted nodes.

N O N M O N O T O N I C S O R T S
Figure 3 shows a lexical inheritance hierarchy for
a subset of German verbs. The hierarchy specifies

VERB template
<past tense suffix> default +te
<past participle prefix> isa ge+
<past participle suffix> default +t

spiel lex VERB

MIDDLE-VERB template VERB
<past participle suffix> isa +en

mahl lex MIDDLE-VERB

STRONG-VERB template MIDDLE-VERB
<past tense suffix> isa 0

zwing lex STRONG-VERB
<past tense stem> isa zwang
<past participle stem> isa zwung

Figure 3: Example Lexicon with Defaults

strict (isa) and default (default) values for various
suffixes. If we ignore the difference between strict
and default values, we find that the information
specified for the past participle of mahl is inconsis-
tent. The MIDDLE-VERB template gives +en as
the suffix, while VERB gives +t . The declaration
of the latter as a default tells the system that it
should be dropped in favour of the former. The
method of nonmonotonic sorts formalizes this no-
tion of separating strict from default information.

D e f i n i t i o n 2 A nonmonotonic sort is a pair (s, A /
where s E S, and A C S such that for each d E A ,
d-4 s.

The first element, s, represents the strict informa-
tion. The default sorts are gathered together in A.
We write Af for the set of nonmonotonic sorts.

Given a pair of nonmonotonic sorts, we can unify
them to get a third NS that represents their com-
bined information.

D e f i n i t i o n 3 The nonmonotonic sort unifier of
nonmonotonic sorts (s l , A z) and (s2 ,As) is the
nonmonotonic sort (s, A) where

• S ~ 8 1 A s s 2 , and
• A = {dAss I d E Az U A2 A (dAss) -~ s}.

The nonmonotonic sort unifier is undefined if
saAss2 is undefined. We write nzA~n2 for the NS
unifier of nl and n2.
The method strengthens consistent defaults while
eliminating redundant and inconsistent ones. It
should be clear from this definition that NS unifica-
tion is both commutat ive and associative. Thus we
may speak of the NS unifier of a set of NSs, with-
out regard to the order those NSs appear. Looking
back to our German verbs example, the past par-
ticiple suffix in VERB is (T, {+t}), while tha t of
MIDDLE-VERB is (+en, {}). The lexical entry for
mahl gets their nonmonotonic sort unifier, which is
(+en, {}). If + t A s + e n had been defined, and equal

210

to, say, +ten, then the NS unifier of (T, {+t}) and
(+en, {}) would have been (+an, {+ten}}.

Once we have nonmonotonic sorts, we can create
nonmonotonical ly sorted feature structures (NS-
FSs) by replacing the function 0 : Q ~ S by a
function ~ : Q ~ Af. The nodes of the graph
are thus labeled by NSs instead of the usual sorts.
NSFSs may be unified by the same procedures as
before, only replacing sort unification at the nodes
with nonmonotonic sort unification. NSFS unifi-
cation, writ ten with the symbol rlN, is associative
and commutat ive .

NSFSs allow us to carry around default sorts, but
has so far given us no way to apply them. When
we are done collecting information, we will want
to return to the original system of FSs, using all
and only the applicable defaults. To do that , we
introduce the notions of explanation and solution.

D e f i n i t i o n 4 A sort t is said to be explained by a
nonmonotonic sort (s ,A} if there is a D C A such
that t = S ^ s (A s D) . I f t is a maximally specific
explained sort, lhen ~ is called a solution of n.

The solutions for {+en, {)) and {T, {+t}) are +en
and + t respectively. The lat ter NS also explains T.

Note that , while D is maximal , i t 's not necessar-
ily the case tha t D = A. If we have mutual ly incon-
sistent defaults in A, then we will have more than
one maximal consistent set of defaults, and thus
more than one solution. On the other hand, strict
information can eliminate defaults during unifica-
tion. Tha t means tha t a part icular templa te can
inherit conflicting defaults and still have a unique
solut ion--provided tha t enough strict information
is given to disambiguate.

NSFS solutions are defined in much the same way
as NS solutions.

De f in i t i on 5 A FS (Q,r ,~,O) is said to be ex-
plained by a NSFS (Q,r, 8, Q) if for each node
q E Q we have ~2(q) explains O(q). I f .A is a max-
imally specific explained FS, then A is called a so-
lution.

I f we look again at our German verbs example, we
can see tha t the solution we get for mahl is the FS
tha t we want. The inconsistent default suffix + t
has been eliminated by the strict +en, and the sole
remaining default must be applied.

For the generic way we have defined feature
structures, a NSFS solution can be obtained sim-
ply by taking NS solutions at each node. More
restricted versions of FSs may require more care.
For instance, if sorts are not allowed on internal
nodes, then defining an a t t r ibute for a node will
el iminate any default sorts assigned to tha t node.
Another example where care must be taken is with
typed feature structures (Carpenter 1992). Here
the application of a default at one node can add
strict information at another (possibly making a

default at the other node inconsistent). The defini-
tion of NSFS solution handles bo th of these cases
(and others) by requiring tha t the solution be a
FS as the original system defines them. In both
of these cases, however, the work can be (at least
part ial ly) delegated to the unification routine (in
the former by Mlowing labels with only defaults
to be removed when at t r ibutes are defined, and in
the lat ter by propagat ing type restrictions on strict
sorts).

Wha t is done in other systems in one step has
been here broken into two s teps- -ga ther ing infor-
mat ion and taking a solution. I t is impor tan t that
the second step be carried out appropriately, since
it re-introduces the nonmonotonici ty tha t we've
taken out of the first step. For a lexicon, templates
exist in order to organize information about words.
Thus it is appropr ia te to take the solution of a lex-
ical entry (which corresponds to a word) but not of
a higher templa te (which does not). If the lexicon
were queried for the lexical entry for mahl, then, it
would collect the information f rom all appropriate
templates using NSFS unification, and return the
solution of tha t NSFS as the result.

D E F A U L T L O G I C

The semantics for nonmonotonic sorts is mot ivated
by default logic (Reiter 1980). W h a t we want a
default sort to mean is: "if it is consistent for this
node to have tha t sort, then it does." But where
Reiter based his DL on a first order language, we
want to base ours on Kasper-P~ounds logic. This
will require some minor alterations to lZeiter's for-
malism.

A default theory is a pair (D, W) where D is a
set of default inferences and W is a set of sentences
f rom the underlying logic. The default inferences
are triples, writ ten in the form

~ : M p

Each of the greek letters here represents a wff from
the logic. The mean ing of the default inference is
tha t if ~ is believed and it is consistent to assume
t5, then 7 can be believed.

Given a default theory (D, W), we are interested
in knowing what can we believe. Such a set of be-
liefs, cMled an extension, is a closure of W under
the usual rules of inference combined with the de-
fault rules of inference given in D. An extension
E is a minimal closed set containing W and such
tha t if c~ :M f l /7 is a default, and if ~ E E and
consistent with E then 7 E E (that is, if we believe
~x and fl is consistent with what we believe, then
we also believe 7).

l~eiter can test a formula for consistency by test-
ing for the absence of its negation. Since Kasper-
Rounds logic does not have negation, we will not be
able to do that . Fortunately, we have do have our

211

own natural notion of cons is tency--a set of formu-
las is consistent if it is satisfiable. Testing a set of
Kasper-Rounds formulas for consistency thus sim-
ply reduces to finding a satisfier for that set.

Formally, we encode our logic as an information
system (Scott 1982). An information system (IS)
is a triple (A, C, b) where A is a countable set of
"atoms," Cis a class of finite subsets of A, and t- is
a binary relation between subsets of A and elements
of A. A set X is said to be consistent if every finite
subset of X is an element of C. A set G is closed if
for every X _C G such tha t X l- a, we have a E G.
Following t h e s t y l e used for information systems,
we will write G for the closure of G.

In our case, A is the wffs of SFML (except
FALSE) , and C is the class of satisfiable sets. The
entai lment relation encodes the semantics of the
part icular unification sys tem we are using. Tha t
is, we have

F I - I~ if VF.F~AF~F~fl.
For instance,

P l ":- P2, P2 - - P3 I- P l - - P3

represents the t ransi t ivi ty of pa th equations.

D E F A U L T K A S P E R - R O U N D S
L O G I C

In the previous section we described the generic
form of default logic. We will not need the full
generality to describe default sorts. We will re-
strict our a t tent ion to closed precondition-free nor-
mal defaults. T h a t is, all of our defaults will be of
the form:

:M~

We will write D E as an abbreviat ion for this default
inference. Here fl s tands for a generic wff f rom the
base language. Even this is more general than we
truly need, since we are really only interested in
default sorts. Nevertheless, we will prove things in
the more general form.

Note tha t our default inferences are closed and
normal . This means tha t we will always have an
extension and tha t the extension(s) will be consis-
tent if and only if W is consistent. These follow
from our equivalents of Reiter 's theorem 3.1 and
corollaries 2.2 and 2.3.

Let 's consider now how we would represent the
information in Fig. 3 in terms of Kasper-Rounds
default logic. The strict s ta tements become normal
K R formulas in W. For instance, the information
for MIDDLE-VERBs (not counting the inheritance
information) is represented as follows:

({}, {past : part iciple: suf f ix: + e n))

The information for VERB will clearly involve
some defaults. In part icular, we have two paths

leading to default sorts. We interpret these state-
ments as saying tha t the pa th exists, and tha t it has
the value indicated by default. Thus we represent
the VERB templa te as:

D = { D p a s t : t e n a e : s u y f i x : + t e ,

Dpast :par t ie ip le:su]] ix : + t) ,

W = {past : tense : suffix : T ,

past : participle : suffix : -I-,

past : participle : prefix : ge+ }

Inheri tance is done s imply by pair-wise set union of
ancestors in the hierarchy. Since the entry for mahl
contains no local information, the full description
for it is s imply the union of the two sets above.

D = {Dpas t : tense:suy$ i~: :+te ,

Opas t :par t i e ip le : ,u L f i x : +t } ,

W = {past : tense : suffix :-l-,

past : participle : suffix : T ,

past : participle : prefix : ge+,

past : participle : suffix : +en}

We can then find an extension for tha t default the-
ory and take the most general satisfier for tha t for-
mula. I t is easy to see tha t the only extension for
raahl is the closure of:

past : tense : suffix : +te ,

past : participle : suffix : +en ,

past : participle : prefix : ge+

The default suffix + t is not applicable for the past
participle due to the presence of +en. The suffix
+re is applicable and so appears in the extension.

D K R L A N D N O N M O N O T O N I C

S O R T S

In the previous section we defined how to get the
right answers f rom a system using default sorts. In
this section we will show tha t the me thod of non-
monotonic sorts gives us the same answers. First
we formalize the relation between NSFSs and de-
fault logic.

D e f i n i t i o n 6 Let 79 = (Q, r, 5, ~) be a nonmono-
tonically sorted feature structure. The default the-
ory of D is

DT(79) = ({Dp:t I ~2(5(r,p)) = (s, A) A t 6 A } ,

{{Pl,P2} I 5(r, PQ ---- 5(r, p2)}

u { p : s I ~(5(r,p)) = (s, A)))

The default par t of DT(79) encodes the default
sorts, while the strict par t encodes the pa th equa-
tions and strict sorts.

T h e o r e m 1 The F S .4 is a solution for the N S F S
7) i f and only i f { ¢ 1 . 4 ~ ¢ } is an extension of
DT(79).

212

Because we are dealing with closed normal default
theories, we can form extensions simply by taking
maximal consistent sets of defaults. This, of course,
is also how we form solutions, so the the solution
of a NSFS is an extension of its default theory.

We now need to show that NSFS unification be-
haves properly. Tha t is, we must show that non-
monotonic sort unification doesn't create or destroy
extensions. We will write (D1, W1)=zx(D2, I4/2) to
indicate that (O1, W1) and (D2, W2) have the same
set of extensions. We will do this by combining a
number of intermediate results.

T h e o r e m 2 Let (D, W) be a closed normal default
theory.

1. /fc~ A/3 ¢* 7,
then (D, W to {4 ^/3})=a(D, W to {7})-

2. / f W U {/3} is inconsistent,
then (D t^ {DE} , W)=A(D, W).

3. I f W ~-/3, then (D U {DE} , W)=A(D, W).

4. I f W ~ - ~ anda^ /3¢ :~7 ,
then (D tO {DE} , W) = A (D tO {D.y}, W).

The formulas ~ and /3 represent the (path pre-
fixed) sorts to be unified, and 7 their (path pre-
fixed) greatest lower bound. The first part deals
with strict sort unification, and is a simple conse-
quence of the fact that (D, W) has the same exten-
sions as (D, W). The next two deal with inconsis-
tent and redundant default sorts. They are simi-
lar to theorems proved in (Delgrande and Jackson
1991): inconsistent defaults are never applicable;
while necessary ones are always applicable. The
last par t allows for strengthening of default sorts.
It follows from the previous three. Together they
show that nonmonotonic unification preserves the
information present in the NSFSs being unified.

T h e o r e m 3 Let 791 and 792 be NSFSs. Then
DT(79Z RN792)=zx DT(791) to DT(792) (using pair-
wise set union).

D I S C U S S I O N

Most t reatments of default unification to date have
been presented very informally. (Bouma 1992)
and (Russell et al. 1992), however, provide very
thorough treatments of their respective methods.
Bouma's is more traditional in that it relies on
"subtracting" inconsistent information from the de-
fault side of the unification. The method given in
t h i s p a p e r is similar to Russell's method in that
it relies on consistency to decide whether default
information should be added.

Briefly, Bouma defines a default unification op-
eration AU!B = (A - B) II B, where A - B is de-
rived from A by eliminating any path that either
gets a label or shares a value in B. In the lexi-
con, each template has both "strict" and "default"
information. The default information is combined

A template
<f> isa a
<g> default b

B template
<f> default c
<g> isa d

C lex A B

Figure 4: Multiple Default Inheritance

with the inherited information by the usual unifica-
tion. This information is then combined (using El!)
with the strict information to derive the FS associ-
ated with the template. This FS is then inherited
by any children of the template.

Note that the division into "strict" and "default"
for Bouma is only local to the template. At the
next level in the hierarchy, what was strict becomes
default. Thus "defaultness" is not a property of the
information itself, as it is with NSs, but rather a
relation one piece of information has to another.

The method described in (Russell et al. 1992)
also divides templates into strict and default
parts 1. Here, though, the definitions of strict and
default are closer to our own. Each lexical entry
inherits from a list of templates, which are scanned
in order. Starting from the lexical entry, at each
template the strict information is added, and then
all consistent defaults are applied.

The list of templates that the lexical entry in-
herits from is generated by a topological sort of the
inheritance hierarchy. Thus the same set may give
two different results based on two different order-
ings. This approach to multiple inheritance allows
for conflicts between defaults to be resolved. Note,
however, tha t if template A gets scanned before
template B, then A must not contain any defaults
that conflict with the strict information in template
B. Otherwise we will get a unification failure, as
the default in A will already have been applied
when we reach B. With NSs, the strict informa-
tion will always override the default, regardless of
the order information is received.

The t reatment of default information with NSs
allows strict and default information to be inherited
from multiple parents. Consider Fig. 4. Assuming
that the sorts do not combine at all, the resulting
FS for lexical entry C should be

[,a]
g d

The two methods mentioned above would fail to get
any answer for 6': one default or the other would

l'I'here may actually be multiple strict parts, which
are treated as disjuncts, but that is not pertinent to the
comparison.

213

be applied before the other template was even con-
sidered. In order to handle this example correctly,
they would have to state C's properties directly.

One advantage of both Bouma and Russell is
that exceptions to exceptions are allowed. With
nonmonotonic sorts as we have presented them
here, we would get conflicting defaults and thus
multiple answers. However, it is straight-forward
to add priorities to defaults. Each solution has a
unique set of defaults it uses, and so we can com-
pare the priorities of various solutions to choose the
most preferred one. The priority scheme can be any
partial order, though one that mirrored the lexical
inheritance hierarchy would be most natural.

Another advantage that both might claim is that
they deal with more than just default sorts. How-
ever, the theorems we proved above were proved
for generic wits of Kasper-Rounds logic. Thus any
formula could be used as a default, and the only
question is how best to represent the information.
Nonmonotonic sorts are a concise and correct im-
plementation of the kind of default inheritance we
have defined here.

C O N C L U S I O N
This paper has shown how the method ofnonmono-
tonic sorts is grounded in the well-established the-
ories of Kasper-Rounds logic and Reiter's default
logic. This is, to our knowledge, the first a t tempt
to combine Reiter 's theory with feature systems.
Most previous a t tempts to fuse defaults with fea-
ture structures have relied on procedural code- -
a state of affairs that is highly inconsistent with
the declarative nature of feature systems. Meth-
ods that do not rely on procedures still suffer from
the necessity to specify what order information is
received in.

It seems to us that the major problem that has
plagued a t tempts to add defaults to feature systems
is the failure to recognize the difference in kind be-
tween strict and default information. The state-
ment that the present participle suffix for English
is '+ ing ' is a very different sort of s tatement than
that the past participle suffix is '+ed ' by default.
The former is unassailable information. The latter
merely describes a convent ion-- tha t you should use
'+ed ' unless you're told otherwise. The method of
nonmonotonic sorts makes this impor tant distinc-
tion between strict and default information. The
price of this method is in the need to find solu-
tions to NSFSs. But much of the cost of finding
solutions is dissipated through the unification pro-
cess (through the elimination of inconsistent and
redundant defaults). In a properly designed lexi-
con there will be only one solution, and that can
be found simply by unifying all the defaults present
(getting a unification failure here means that there
is more than one so lu t ion--a situation that should
indicates an error).

The semantics given for NSs can be extended in
a number of ways. In particular, it suggests a se-
mantics for one kind of default unification. It is
possible to say that two values are by default equal
by giving the formula Dp -p2. This would be useful
in our German verbs example to specify that the
past tense root is by default equal to the present
tense root. This would fill in roots for spiel and
mahl without confounding zwing. Another exten-
sion is to use a prioritized default logic to allow for
resolution of conflicts between defaults. The nat-
ural prioritization would be parallel to the lexicon
structure, but others could be imposed if they made
more sense in the context.

R e f e r e n c e s

Bouma, Gosse 1990. Defaults in unification gram-
mar. In Proceedings of the 1990 Conference of the
Association for Computational Linguistics. 165-
172.

Bouma, Gosse 1992. Feature structures and
nonmonotonicity. Computational Linguistics
18(2):183-203.

Carpenter, Bob 1991. Skeptical and credulous de-
fault unification with applications to templates
and inheritance. In Default Inheritance Within
Unification-Based Approaches to the Lexicon.
Carpenter, Bob 1992. The Logic of Typed Feature
Structures. Cambridge University Press.

Delgrande, James P and Jackson, W Ken 1991.
Default logic revisited. In Proceedings of the Sec-
ond International Conference on the Principles of
Knowledge Representation and Reasoning. 118-
127.

Kaplan, Ronald 1987. Three seductions of com-
putat ional linguistics. In Linguistic Theory and
Computer Applications. Academic Press, London.
149-188.
Kasper, Bob 1988. Feature Structures: A Logical
Theory with Applications to Language Analysis.
Ph.D. Dissertation, University of Michigan, Ann
Arbor.

Reiter, Ray 1980. A logic for default reasoning.
Artificial Intelligence 13:81-132.

Russell, Graham; Ballim, Afzal; Carroll, John;
and Warwick-Armstrong, Susan 1992. A practi-
cal approach to multiple default inheritance for
unification-based lexicons. Computational Lin-
guistics 18(3):311-337.

Scott, Dana 1982. Domains for Denotational Se-
mantics, volume 140 of Lecture Notes in Computer
Science.
Shieber, Stuart 1986. An Introduction to
Unification-Based Approaches to Grammar, vol-
ume 4 of CSLI Lecture Notes. University of
Chicago Press, Chicago.

2 1 4

Shieber, Stuart 1987. Separating linguistic anal-
yses from linguistic theories. In Linguistic The-
ory and Computer Applications. Academic Press,
London. 1-36.
Young, Mark 1992. Nonmonotonic sorts for fea-
ture structures. In National Conference on Arti-
ficial Intelligence, San Jose, California. 596-601.

215

