
A L O G I C A L  S E M A N T I C S  
F O R  N O N M O N O T O N I C  S O R T S  

A b s t r a c t  

Suppose we have a feature system, and we wish 
to add default values in a well-defined way. We 
might start  with Kasper-Rounds logic, and use 
Reiter's example to form it into a default logic. 
Giving a node a default value would be equiv- 
alent to saying "if it is consistent for this node 
to have that  value, then it does." Then we 
could use default theories to describe feature 
structures. The particular feature structure 
described would be the structure that  supports 
the extension of the default theory. This is, in 
effect, what the theory of nonmonotonic sorts 
gives you. This paper describes how that  the- 
ory derives from what is described above. 
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The original presentation of nonmonotonic sorts 
provided only a description of their operation and 
an informal description of their meaning. In this 
paper, we present a logical basis for NSs and non- 
monotonically sorted feature structures (NSFSs). 
NSFSs are shown to be equivalent to default theo- 
ries of default logic (Reiter 1980). In particular, we 
show how nonmonotonic sort unification is equiv- 
alent to finding the smallest default theory that  
describes both NSFSs; and also how taking a solu- 
tion for a NSFS is the same as finding an extension 
for that  theory. 

I N T R O D U C T I O N  

There have been many suggestions for incorporat- 
ing defaults into unification-based grammar for- 
malisms (Bouma 1990; Bouma 1992; Carpenter 
1991; Kaplan 1987; Russell et al. 1992; Shieber 
1986; Shieber 1987). Each of these proposes a 
non-commutative,  non-associative default unifica- 
tion operation that  combines one structure repre- 
senting strict information with another represent- 
ing default information. When presented with a 
set of structures, the result depends on the order in 
which the structures are combined. This runs very 
much against the unification tradition, in which any 
set has a unique most general satisfier (if a satisfier 
exists at all). 

A method that  is free of these ordering effects 
was presented in (Young 1992). The method of 
nonmonotonic sorts (NSs) allows default labels to 
be assigned at any time, and used only in the ab- 
sence of conflicting information. NSs replace the 
more tradit ional labels on feature structures to give 
nonmonotonically sorted feature structures (NS- 
FSs). These structures can be combined by an asso- 
ciative and commutat ive unification operation. FSs 
are rederived from NSFSs by taking a solut ion--an 
operation defined in terms of information present 
in the NSFS. 

F E A T U R E  S Y S T E M S  

Unification-based grammar  formalisms use formal 
objects called feature structures to encode linguis- 
tic information. We use a variant of the standard 
definition. Each structure has a sort (drawn from 
a finite set 8) ,  and a (possibly empty)  set of at- 
tributes (drawn from a finite set ~ ) .  

D e f i n i t i o n 1  A feature structure is a tuple 
(Q, r, 6, O) where 

• Q is a finite set of nodes, 

• r E Q is the root node, 

• 6 : Q x Y  r ---+ Q is a partial feature value function 
that gives the edges and their labels, and 

• (9  : Q ~ S is a sorting function that gives the 
labels of the nodes. 

This structure must  be connected. 

It is not unusual to require that  these structures 
also be acyclic. For some systems O is defined only 
for sink nodes (PATR-II,  for example). Fig. 1 shows 
a standard textual representation for a FS. 

We sometimes want to refer to substructures of a 
FS. If .A is a feature structure as described above, 
we write . A / f  for the feature structure rooted at 
6(q, f ) .  This feature structure is defined by Q~ c_ Q, 
the set of nodes that  can be reached from 6(r, f ) .  
We will use the letter p (possibly subscripted) to 
represent paths ( that  is, finite sequences from .T'*). 
We will also extend ~ to have paths in its second 
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<subj agr person> isa 3rd 
<subj agr number> isa singular 
<subj agr> = <pred agr> 
<pred actor> = <subj> 
<pred rep> isa sleep 
<pred tense> isa present 

Figure 1: Textual  Feature Structure: "Uther 
sleeps." 

T RUE 
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a where a E S 
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Figure 2: SFML: the domain of sorted logical for- 
mulas. 
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position, with the notion of i terated application of 
5. 

We will assume that  there is a partial  order, -~, 
defined on S. This ordering is such that  the great- 
est lower bound of any two sorts is unique, if it 
exists. In other words, (S U {_1_}, -q) is a meet- 
semilattice (where _l_ represents inconsistency or 
failure). This allows us to define the most general 
unifier of two sorts as their greatest lower bound, 
which write as aAsb. We also assume that  there is 
a most general sort, T,  called top. The structure 
(S, -g) is called the sort hierarchy. 

K A S P E R - R O U N D S  L O G I C  
(Kasper 1988) provides a logic for describing fea- 
ture structures. Fig. 2 shows the domain of these 
logical formulas. We use the standard notion of 
satisfaction. Let A = (Q, r, 5, O). 

= T R U E  always; 

- F A L S E  never; 

= a ~ O ( r ) _ _ . a ;  

= p l  --'p~ -:-, > 5(r, pl)  = 5(r,p~); 

= f : ¢ ¢=~ A / f  is defined and A / f  ~ ¢; 

= ¢ A ¢  ¢===~ A ~ ¢ and .A ~ ¢; 

= ¢ V ¢  ¢---~ A ~ ¢ o r A ~ ¢  
Note that  i tem 3 is different than Kasper 's original 
formulation. Kasper was working with a flat sort 
hierarchy and a version of FSs that  allowed sorts 
only on sink nodes. The revised version allows for 
order-sorted hierarchies and internal sorted nodes. 

N O N M O N O T O N I C  S O R T S  
Figure 3 shows a lexical inheritance hierarchy for 
a subset of German verbs. The hierarchy specifies 

VERB template 
<past tense suffix> default +te 
<past participle prefix> isa ge+ 
<past participle suffix> default +t  

spiel lex VERB 

MIDDLE-VERB template VERB 
<past participle suffix> isa +en 

mahl lex MIDDLE-VERB 

STRONG-VERB template MIDDLE-VERB 
<past tense suffix> isa 0 

zwing lex STRONG-VERB 
<past tense stem> isa zwang 
<past participle stem> isa zwung 

Figure 3: Example Lexicon with Defaults 

strict (isa) and default (default) values for various 
suffixes. If we ignore the difference between strict 
and default values, we find that  the information 
specified for the past participle of mahl is inconsis- 
tent. The MIDDLE-VERB template  gives +en as 
the suffix, while VERB gives +t .  The  declaration 
of the latter as a default tells the system that  it 
should be dropped in favour of the former. The 
method of nonmonotonic sorts formalizes this no- 
tion of separating strict from default information. 

D e f i n i t i o n  2 A nonmonotonic sort is a pair (s, A / 
where s E S,  and A C S such that for each d E A ,  
d-4 s. 

The first element, s, represents the strict informa- 
tion. The default sorts are gathered together in A. 
We write Af for the set of nonmonotonic sorts. 

Given a pair of nonmonotonic sorts, we can unify 
them to get a third NS that  represents their com- 
bined information. 

D e f i n i t i o n  3 The nonmonotonic sort unifier of 
nonmonotonic sorts ( s l , A z )  and (s2 ,As)  is the 
nonmonotonic sort (s, A)  where 

• S ~ 8 1 A s s 2 ,  and 
• A = {dAss  I d E Az U A2 A (dAss)  -~ s}. 

The nonmonotonic sort unifier is undefined if  
saAss2 is undefined. We write nzA~n2  for the NS 
unifier of nl and n2. 
The method strengthens consistent defaults while 
eliminating redundant  and inconsistent ones. It  
should be clear from this definition that  NS unifica- 
tion is both commutat ive  and associative. Thus we 
may speak of the NS unifier of a set of NSs, with- 
out regard to the order those NSs appear. Looking 
back to our German verbs example, the past par- 
ticiple suffix in VERB is (T,  {+t}),  while tha t  of 
MIDDLE-VERB is (+en, {}). The lexical entry for 
mahl gets their nonmonotonic sort unifier, which is 
(+en, {}). If + t A s + e n  had been defined, and equal 
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to, say, +ten, then the NS unifier of (T, {+t}) and 
(+en, {}) would have been (+an, {+ten}}. 

Once we have nonmonotonic  sorts, we can create 
nonmonotonical ly sorted feature structures (NS- 
FSs) by replacing the function 0 : Q ~ S by a 
function ~ : Q ~ Af. The nodes of the graph 
are thus labeled by NSs instead of the usual sorts. 
NSFSs may  be unified by the same procedures as 
before, only replacing sort unification at the nodes 
with nonmonotonic  sort unification. NSFS unifi- 
cation, writ ten with the symbol  rlN, is associative 
and commutat ive .  

NSFSs allow us to carry around default sorts, but  
has so far given us no way to apply them. When 
we are done collecting information,  we will want 
to return to the original system of FSs, using all 
and only the applicable defaults. To do that ,  we 
introduce the notions of explanation and solution. 

D e f i n i t i o n  4 A sort t is said to be explained by a 
nonmonotonic sort ( s ,A}  if there is a D C A such 
that t = S ^ s ( A s D ) .  I f  t is a maximally specific 
explained sort, lhen ~ is called a solution of n. 

The solutions for {+en, {)) and {T, {+t}) are +en 
and + t  respectively. The  lat ter  NS also explains T.  

Note that ,  while D is maximal ,  i t 's  not necessar- 
ily the case tha t  D = A. If  we have mutual ly  incon- 
sistent defaults in A, then we will have more than  
one maximal  consistent set of defaults, and thus 
more than  one solution. On the other hand, strict 
information can eliminate defaults during unifica- 
tion. Tha t  means tha t  a part icular  templa te  can 
inherit conflicting defaults and still have a unique 
solut ion--provided tha t  enough strict information 
is given to disambiguate.  

NSFS solutions are defined in much the same way 
as NS solutions. 

De f in i t i on  5 A FS (Q,r ,~,O) is said to be ex- 
plained by a NSFS (Q,r, 8, Q) if for each node 
q E Q we have ~2(q) explains O(q). I f .A is a max- 
imally specific explained FS, then A is called a so- 
lution. 

I f  we look again at our German  verbs example,  we 
can see tha t  the solution we get for mahl is the FS 
tha t  we want.  The  inconsistent default suffix + t  
has been eliminated by the strict +en, and the sole 
remaining default must  be applied. 

For the generic way we have defined feature 
structures, a NSFS solution can be obtained sim- 
ply by taking NS solutions at each node. More 
restricted versions of FSs may  require more care. 
For instance, if sorts are not allowed on internal 
nodes, then defining an a t t r ibute  for a node will 
el iminate any default sorts assigned to tha t  node. 
Another example where care must  be taken is with 
typed feature structures (Carpenter  1992). Here 
the application of a default at one node can add 
strict information at another (possibly making a 

default at the other node inconsistent). The  defini- 
tion of NSFS solution handles bo th  of these cases 
(and others) by requiring tha t  the solution be a 
FS as the original system defines them.  In both  
of these cases, however, the work can be (at least 
part ial ly) delegated to the unification routine (in 
the former by Mlowing labels with only defaults 
to be removed when at t r ibutes  are defined, and in 
the lat ter  by propagat ing  type restrictions on strict 
sorts). 

Wha t  is done in other systems in one step has 
been here broken into two s teps- -ga ther ing  infor- 
mat ion  and taking a solution. I t  is impor tan t  that  
the second step be carried out appropriately,  since 
it re-introduces the nonmonotonici ty  tha t  we've 
taken out of the first step. For a lexicon, templates  
exist in order to organize information about  words. 
Thus it is appropr ia te  to take the solution of a lex- 
ical entry (which corresponds to a word) but  not of 
a higher templa te  (which does not). If  the lexicon 
were queried for the lexical entry for mahl, then, it 
would collect the information f rom all appropriate  
templates  using NSFS unification, and return the 
solution of tha t  NSFS as the result. 

D E F A U L T  L O G I C  

The  semantics for nonmonotonic  sorts is mot ivated 
by default logic (Reiter 1980). W h a t  we want a 
default sort to mean  is: "if it is consistent for this 
node to have tha t  sort, then it does." But where 
Reiter based his DL on a first order language, we 
want to base ours on Kasper-P~ounds logic. This 
will require some minor  alterations to lZeiter's for- 
malism. 

A default theory is a pair (D, W) where D is a 
set of default inferences and W is a set of sentences 
f rom the underlying logic. The  default inferences 
are triples, writ ten in the form 

~ : M p  

Each of the greek letters here represents a wff from 
the logic. The  mean ing  of the default inference is 
tha t  if ~ is believed and it is consistent to assume 
t5, then 7 can be believed. 

Given a default theory (D, W), we are interested 
in knowing what  can we believe. Such a set of be- 
liefs, cMled an extension, is a closure of W under 
the usual rules of inference combined with the de- 
fault  rules of inference given in D. An extension 
E is a minimal  closed set containing W and such 
tha t  if c~ :M f l /7  is a default, and if ~ E E and 
consistent with E then 7 E E ( that  is, if we believe 
~x and fl is consistent with what  we believe, then 
we also believe 7). 

l~eiter can test a formula  for consistency by test- 
ing for the absence of its negation. Since Kasper-  
Rounds logic does not have negation, we will not be 
able to do that .  Fortunately,  we have do have our 
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own natural  notion of cons is tency--a  set of formu- 
las is consistent if it is satisfiable. Testing a set of 
Kasper-Rounds  formulas for consistency thus sim- 
ply reduces to finding a satisfier for that  set. 

Formally, we encode our logic as an information 
system (Scott 1982). An information system (IS) 
is a triple (A, C, b) where A is a countable set of 
"atoms,"  Cis  a class of  finite subsets of A, and t- is 
a binary relation between subsets of A and elements 
of A. A set X is said to be consistent if every finite 
subset of  X is an element of C. A set G is closed if 
for every X _C G such tha t  X l- a, we have a E G. 
Following t h e s t y l e  used for information systems, 
we will write G for the closure of  G. 

In our case, A is the wffs of SFML (except 
FALSE) ,  and C is the class of satisfiable sets. The  
entai lment  relation encodes the semantics of the 
part icular  unification sys tem we are using. Tha t  
is, we have 

F I - I~  if VF.F~AF~F~fl. 
For instance, 

P l  ":- P2,  P2 - -  P3 I- P l  - -  P3 

represents the t ransi t ivi ty  of  pa th  equations. 

D E F A U L T  K A S P E R - R O U N D S  
L O G I C  

In the previous section we described the generic 
form of default logic. We will not need the full 
generality to describe default sorts. We will re- 
strict our a t tent ion to closed precondition-free nor- 
mal  defaults. T h a t  is, all of our defaults will be of 
the form: 

:M~ 

We will write D E as an abbreviat ion for this default 
inference. Here fl s tands for a generic wff f rom the 
base language. Even this is more general than we 
truly need, since we are really only interested in 
default sorts. Nevertheless, we will prove things in 
the more general form. 

Note tha t  our default inferences are closed and 
normal .  This  means  tha t  we will always have an 
extension and tha t  the extension(s) will be consis- 
tent  if and only if W is consistent. These follow 
from our equivalents of Reiter 's  theorem 3.1 and 
corollaries 2.2 and 2.3. 

Let 's  consider now how we would represent the 
information in Fig. 3 in terms of Kasper-Rounds 
default logic. The strict s ta tements  become normal  
K R  formulas in W. For instance, the information 
for MIDDLE-VERBs  (not counting the inheritance 
information)  is represented as follows: 

({}, {past : part iciple:  suf f ix:  + e n ) )  

The information for VERB will clearly involve 
some defaults. In part icular,  we have two paths 

leading to default sorts. We interpret  these state- 
ments  as saying tha t  the pa th  exists, and tha t  it has 
the value indicated by default. Thus  we represent 
the VERB templa te  as: 

D = { D p a s t : t e n a e : s u y f i x : + t e ,  

Dpast :par t ie ip le:su  ] ] ix  : + t ) ,  

W = {past : tense : suffix : T ,  

past : participle : suffix : -I-, 

past : participle : prefix : ge+ } 

Inheri tance is done s imply by pair-wise set union of 
ancestors in the hierarchy. Since the entry for mahl 
contains no local information,  the full description 
for it is s imply the union of the two sets above. 

D = {Dpas t : tense:suy$ i~: :+te ,  

Opas t :par t i e ip le : ,u  L f i x :  +t  } ,  

W = {past : tense : suffix :-l-, 

past : participle : suffix : T ,  

past : participle : prefix : ge+, 

past : participle : suffix : +en}  

We can then find an extension for tha t  default the- 
ory and take the most  general satisfier for tha t  for- 
mula.  I t  is easy to see tha t  the only extension for 
raahl is the closure of: 

past : tense : suffix : +te ,  

past : participle : suffix : +en ,  

past : participle : prefix : ge+ 

The default suffix + t  is not applicable for the past  
participle due to the presence of +en.  The suffix 
+re is applicable and so appears  in the extension. 

D K R L  A N D  N O N M O N O T O N I C  

S O R T S  

In the previous section we defined how to get the 
right answers f rom a system using default sorts. In 
this section we will show tha t  the me thod  of non- 
monotonic  sorts gives us the same answers. First 
we formalize the relation between NSFSs and de- 
fault  logic. 

D e f i n i t i o n  6 Let 79 = (Q, r, 5, ~)  be a nonmono-  
tonically sorted feature structure. The default the- 
ory of D is 

DT(79) = ({Dp:t I ~2(5(r,p)) = (s, A)  A t  6 A } ,  

{{Pl,P2} I 5(r, PQ ---- 5(r, p2)} 

u { p : s  I ~(5(r,p)) = (s, A))) 

The default par t  of DT(79)  encodes the default 
sorts, while the strict par t  encodes the pa th  equa- 
tions and strict sorts. 

T h e o r e m  1 The F S  .4 is a solution for  the N S F S  
7) i f  and only i f  { ¢ 1 . 4 ~ ¢ }  is an extension of  
DT(79).  
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Because we are dealing with closed normal default 
theories, we can form extensions simply by taking 
maximal consistent sets of defaults. This, of course, 
is also how we form solutions, so the the solution 
of a NSFS is an extension of its default theory. 

We now need to show that  NSFS unification be- 
haves properly. Tha t  is, we must show that  non- 
monotonic sort unification doesn't  create or destroy 
extensions. We will write (D1, W1)=zx(D2, I4/2) to 
indicate that  (O1, W1) and (D2, W2) have the same 
set of extensions. We will do this by combining a 
number of intermediate results. 

T h e o r e m  2 Let (D, W)  be a closed normal default 
theory. 

1. /fc~ A/3 ¢* 7, 
then (D, W to {4 ^/3})=a(D, W to {7})- 

2. / f  W U {/3} is inconsistent, 
then (D t^ {DE} , W)=A(D,  W). 

3. I f W  ~-/3, then (D U {DE} , W)=A(D,  W). 

4. I f W ~ - ~  anda^ /3¢ :~7 ,  
then (D tO {DE} , W ) = A ( D  tO {D.y}, W). 

The formulas ~ and /3 represent the (path pre- 
fixed) sorts to be unified, and 7 their (path pre- 
fixed) greatest lower bound. The first part  deals 
with strict sort unification, and is a simple conse- 
quence of the fact that  (D, W) has the same exten- 
sions as (D, W).  The next two deal with inconsis- 
tent and redundant  default sorts. They are simi- 
lar to theorems proved in (Delgrande and Jackson 
1991): inconsistent defaults are never applicable; 
while necessary ones are always applicable. The 
last par t  allows for strengthening of default sorts. 
It follows from the previous three. Together they 
show that  nonmonotonic unification preserves the 
information present in the NSFSs being unified. 

T h e o r e m  3 Let 791 and 792 be NSFSs. Then 
DT(79Z RN792)=zx DT(791) to DT(792) (using pair- 
wise set union). 

D I S C U S S I O N  

Most t reatments  of default unification to date have 
been presented very informally. (Bouma 1992) 
and (Russell et al. 1992), however, provide very 
thorough treatments  of their respective methods. 
Bouma's  is more traditional in that  it relies on 
"subtracting" inconsistent information from the de- 
fault side of the unification. The method given in 
t h i s p a p e r  is similar to Russell's method in that  
it relies on consistency to decide whether default 
information should be added. 

Briefly, Bouma defines a default unification op- 
eration AU!B = (A - B) II B, where A - B is de- 
rived from A by eliminating any path that  either 
gets a label or shares a value in B. In the lexi- 
con, each template has both "strict" and "default" 
information. The default information is combined 

A template 
<f> isa a 
<g> default b 

B template 
<f> default c 
<g> isa d 

C lex A B 

Figure 4: Multiple Default Inheritance 

with the inherited information by the usual unifica- 
tion. This information is then combined (using El!) 
with the strict information to derive the FS associ- 
ated with the template.  This FS is then inherited 
by any children of the template.  

Note that  the division into "strict" and "default" 
for Bouma is only local to the template.  At the 
next level in the hierarchy, what was strict becomes 
default. Thus "defaultness" is not a property of the 
information itself, as it is with NSs, but  rather a 
relation one piece of information has to another. 

The method described in (Russell et al. 1992) 
also divides templates into strict and default 
parts 1. Here, though, the definitions of strict and 
default are closer to our own. Each lexical entry 
inherits from a list of templates,  which are scanned 
in order. Starting from the lexical entry, at each 
template the strict information is added, and then 
all consistent defaults are applied. 

The list of templates that  the lexical entry in- 
herits from is generated by a topological sort of the 
inheritance hierarchy. Thus the same set may give 
two different results based on two different order- 
ings. This approach to multiple inheritance allows 
for conflicts between defaults to be resolved. Note, 
however, tha t  if template  A gets scanned before 
template B, then A must  not contain any defaults 
that  conflict with the strict information in template 
B. Otherwise we will get a unification failure, as 
the default in A will already have been applied 
when we reach B. With  NSs, the strict informa- 
tion will always override the default, regardless of 
the order information is received. 

The t reatment  of default information with NSs 
allows strict and default information to be inherited 
from multiple parents. Consider Fig. 4. Assuming 
that  the sorts do not combine at all, the resulting 
FS for lexical entry C should be 

[,a] 
g d 

The two methods mentioned above would fail to get 
any answer for 6': one default or the other would 

l'I'here may actually be multiple strict parts, which 
are treated as disjuncts, but that is not pertinent to the 
comparison. 
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be applied before the other template was even con- 
sidered. In order to handle this example correctly, 
they would have to state C's properties directly. 

One advantage of both Bouma and Russell is 
that  exceptions to exceptions are allowed. With 
nonmonotonic sorts as we have presented them 
here, we would get conflicting defaults and thus 
multiple answers. However, it is straight-forward 
to add priorities to defaults. Each solution has a 
unique set of defaults it uses, and so we can com- 
pare the priorities of various solutions to choose the 
most preferred one. The priority scheme can be any 
partial order, though one that  mirrored the lexical 
inheritance hierarchy would be most natural.  

Another advantage that  both might claim is that  
they deal with more than just  default sorts. How- 
ever, the theorems we proved above were proved 
for generic wits of Kasper-Rounds logic. Thus any 
formula could be used as a default, and the only 
question is how best to represent the information. 
Nonmonotonic sorts are a concise and correct im- 
plementation of the kind of default inheritance we 
have defined here. 

C O N C L U S I O N  
This paper has shown how the method ofnonmono-  
tonic sorts is grounded in the well-established the- 
ories of Kasper-Rounds logic and Reiter's default 
logic. This is, to our knowledge, the first a t tempt  
to combine Reiter 's theory with feature systems. 
Most previous a t tempts  to fuse defaults with fea- 
ture structures have relied on procedural code- -  
a state of affairs that  is highly inconsistent with 
the declarative nature of feature systems. Meth- 
ods that  do not rely on procedures still suffer from 
the necessity to specify what order information is 
received in. 

It seems to us that  the major  problem that  has 
plagued a t tempts  to add defaults to feature systems 
is the failure to recognize the difference in kind be- 
tween strict and default information. The state- 
ment that  the present participle suffix for English 
is '+ ing '  is a very different sort of s tatement than 
that  the past participle suffix is '+ed '  by default. 
The former is unassailable information. The latter 
merely describes a convent ion-- tha t  you should use 
'+ed '  unless you're told otherwise. The method of 
nonmonotonic sorts makes this impor tant  distinc- 
tion between strict and default information. The 
price of this method  is in the need to find solu- 
tions to NSFSs. But much of the cost of finding 
solutions is dissipated through the unification pro- 
cess ( through the elimination of inconsistent and 
redundant  defaults). In a properly designed lexi- 
con there will be only one solution, and that  can 
be found simply by unifying all the defaults present 
(getting a unification failure here means that  there 
is more than one so lu t ion--a  situation that  should 
indicates an error). 

The semantics given for NSs can be extended in 
a number of ways. In particular, it suggests a se- 
mantics for one kind of default unification. It is 
possible to say that  two values are by default equal 
by giving the formula Dp -p2. This would be useful 
in our German verbs example to specify that  the 
past tense root is by default equal to the present 
tense root. This would fill in roots for spiel and 
mahl without confounding zwing. Another exten- 
sion is to use a prioritized default logic to allow for 
resolution of conflicts between defaults. The  nat- 
ural prioritization would be parallel to the lexicon 
structure, but  others could be imposed if they made 
more sense in the context. 
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