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Abstract 
Interpreting fully natural speech is an important goal 
for spoken language understanding systems. However, 
while corpus studies have shown that about 10% of 
spontaneous utterances contain self-corrections, or RE- 
PAIRS, little is known about the extent to which cues in 
the speech signal may facilitate repair processing. We 
identify several cues based on acoustic and prosodic 
analysis of repairs in a corpus of spontaneous speech, 
and propose methods for exploiting these cues to detect 
and correct repairs. We test our acoustic-prosodic cues 
with other lexical cues to repair identification and find 
that precision rates of 89-93% and recall of 78-83% 
can be achieved, depending upon the cues employed, 
from a prosodically labeled corpus. 

Introduction 

Disfluencies in spontaneous speech pose serious prob- 
lems for spoken language systems. First, a speaker 
may produce a partial word or FRAGMENT, a string of 
phonemes that does not form the complete intended 
word. Some fragments may coincidentally match 
words actually in the lexicon, such as fly in Exam- 
ple (1); others will be identified with the acoustically 
closest item(s) in the lexicon, as in Example (2). 1 

(1) What is the earliest fli- flight from Washington to 
Atlanta leaving on Wednesday September fourth? 

(2) Actual string: What is the fare f ro -  on American 
Airlines fourteen forty three 
Recognized string: With fare four American Air- 
lines fourteen forty three 

Even if all words in a disfluent segment are correctly 
recognized, failure to detect a disfluency may lead to 
interpretation errors during subsequent processing, as 
in Example (3). 

1The presence of a word fragment in examples is indicated 
by the diacritic '- ' .  Self-corrected portions of the utterance 
appear in boldface. All examples in this paper are drawn 
from the ATIS corpus described below. Recognition output 
shown in Example (2) is from the system described in (Lee 
et al., 1990). 

(3) . . .  Delta leaving Boston seventeen twenty one ar- 
riving Fort Worth twenty two twenty one fo r ty . . .  

Here, 'twenty two twenty one forty' must be interpreted 
as a flight arrival time; the system must somehow 
choose among '21:40', '22:21', and '22:40'. 

Although studies of large speech corpora have 
found that approximately 10% of spontaneous utter- 
ances contain disfluencies involving self-correction, or 
REPAIRS (Hindle, 1983; Shriberg et al., 1992), little is 
known about how to integrate repair processing with 
real-time speech recognition. In particular, the speech 
signal itself has been relatively unexplored as a source 
of processing cues for the detection and correction of 
repairs. In this paper, we present results from a study of 
the acoustic and prosodic characteristics of 334 repair 
utterances, containing 368 repair instances, from the 
AROA Air Travel Information System (ATIS) database. 
Our results are interpreted within our "speech-first" 
framework for investigating repairs, the REPAIR IN- 
TERVAL MODEL (RIM). RIM builds upon Labov (1966) 
and Hindle (1983) by conceptually extending the EDIT 
SIGNAL HYPOTHESIS - -  that repairs are acoustically or 
phonetically marked at the point of interruption of flu- 
ent speech. After describing acoustic and prosodic 
characteristics of the repair instances in our corpus, we 
use these and other lexical cues to test the utility of 
our "speech-first" approach to repair identification on 
a prosodically labeled corpus. 

Previous Computational Approaches 
While self-correction has long been a topic of psy- 
cholinguistic study, computational work in this area 
has been sparse. Early work in computational linguis- 
tics treated repairs as one type of ill-formed input and 
proposed solutions based upon extensions to existing 
text parsing techniques such as augmented transition 
networks (ATNs), network-based semantic grammars, 
case frame grammars, pattern matching and determin- 
istic parsers. 

Recently, Shriberg et al. (1992) and Bear et 
al. (1992) have proposed a two-stage method for pro- 
cessing repairs. In the first stage, lexical pattern 
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matching rules operating on orthographic transcrip- 
tions would be used to retrieve candidate repair utter- 
ances. In the second, syntactic, semantic, and acoustic 
information would filter true repairs from false posi- 
tives found by the pattern matcher. Results of testing 
the first stage of this model, the lexical pattern matcher, 
are reported in (Bear et al., 1992): 309 of 406 utterance 
containing 'nontrivial' repairs in their 10,718 utterance 
corpus were correctly identified, while 191 fluent utter- 
ances were incorrectly identified as containing repairs. 
This represents recall of 76% with precision of 62%. 
Of the repairs correctly identified, the appropriate cor- 
rection was found for 57%. Repaj'r candidates were 
filtered and corrected by deleting a portion of the ut- 
terance based on the pattern matched, and then check- 
ing the syntactic and semantic acceptability of the cor- 
rected version using the syntactic and semantic com- 
ponents of the Gemini NLP system. Bear et al. (1992) 
also speculate that acoustic information might be used 
to filter out false positives for candidates matching two 
of their lexical patterns - -  repetitions of single words 
and cases of single inserted words - -  but do not report 
such experimentation. 

This work promotes the important idea that auto- 
matic repair processing can be made more robust by 
integrating knowledge from multiple sources. Such 
integration is a desirable long-term goal. However, 
the working assumption that correct transcriptions will 
be available from speech recognizers is problematic, 
since current recognition systems rely primarily upon 
language models and lexicons derived from fluent 
speech to decide among competing acoustic hypothe- 
ses. These systems usually treat disfluencies in training 
and recognition as noise; moreover, they have no way 
of modeling word fragments, even though these occur 
in the majority of repairs. We term such approaches 
that rely on accurate transcription to identify repair 
candidates "text-first". 

Text-first approaches have explored the potential 
contributions of lexical and grammatical information 
to automatic repair processing, but have largely left 
open the question of whether there exist acoustic and 
prosodic cues for repairs in general, rather than po- 
tential acoustic-prosodic filters for particular pattern 
subclasses. Our investigation of repairs addresses the 
problem of identifying such general acoustic-prosodic 
cues to repairs, and so we term our approach "speech- 
first". Finding such cues to repairs would provide early 
detection of repairs in recognition, permitting early 
pruning of the hypothesis space. 

One proposal for repair processing that lends it- 
self to both incremental processing and the integration 
of speech cues into repair detection is that of Hindle 
(1983), who defines a typology of repairs and asso- 
ciated correction strategies in terms of extensions to 
a deterministic parser. For Hindle, repairs can be (1) 
full sentence restarts, in which an entire utterance is re- 
initiated; (2) constituent repairs, in which one syntactic 

constituent (or part thereof) is replaced by another; 2 or 
(3) surface level repairs, in which identical strings ap- 
pear adjacent to each other. An hypothesized acoustic- 
phonetic edit signal, "a markedly abrupt cut-off of 
the speech signal" (Hindle, 1983, p.123), is assumed 
to mark the interruption of fluent speech (cf. (Labov, 
1966)). This signal is treated as a special lexical item in 
the parser input stream that triggers certain correction 
strategies depending on the parser configuration. Thus, 
in Hindle's system, repair detection is decoupled from 
repair correction, which requires only that the location 
of the interruption is stored in the parser state. 

Importantly, Hindle's system allows for non- 
surface-based corrections and sequential application 
of correction rules (Hindle, 1983, p. 123). In con- 
trast, simple surface deletion correction strategies can- 
not readily handle either repairs in which one syntactic 
constituent is replaced by an entirely different one, as 
in Example (4), or sequences of overlapping repairs, 
as in Example (5). 

(4) I 'd like to a flight from Washington to Denver . . .  

(5) I 'd like to book a reser- are there f -  is there a 
first class fare for the flight that departs at six forty 
p.m. 

Hindle's methods achieved a success rate of 97% 
on a transcribed corpus of approximately 1,500 sen- 
tences in which the edit signal was orthographically 
represented and lexical and syntactic category assign- 
ments hand-corrected, indicating that, in theory, the 
edit signal can be computationally exploited for both 
repair detection and correction. Our "speech-first" in- 
vestigation of repairs is aimed at determining the extent 
to which repair processing algorithms can rely on the 
edit signal hypothesis in practice. 

The  Repa ir  Interval  M o d e l  

To support our investigation of acoustic-prosodic cues 
to repair detection, we propose a "speech-first" model 
of repairs, the REPAIR INTERVAL MODEL (RIM). RIM di- 
vides the repair event into three consecutive temporal 
intervals and identifies time points within those inter- 
vals that are computationally critical. A full repair 
comprises three intervals, the REPARANDUM INTERVAL, 
the DISFLUENCY INTERVAL, and the REPAIR INTERVAL. 
Following Levelt (1983), we identify the REPARANDUM 
as the lexicai material which is to be repaired. The end 
of the reparandum coincides with the termination of 
the fluent portion of the utterance, which we term the 
INTERRUPTION SITE (IS). The DISFLUENCY INTERVAL 
(nI) extends from the IS to the resumption of fluent 
speech, and may contain any combination of silence, 
pause fillers ('uh', 'urn'), or CUE PHRASES (e.g., 'Oops' 

2This is consistent with Levelt (1983)'s observation that 
the material to be replaced and the correcting material in a 
repair often share structural properties akin to those shared 
by coordinated constituents. 
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or 'I  mean'), which indicate the speaker's recognition 
of his/her performance error. The REPAIR INTERVAL 
corresponds to the utterance of the correcting material, 
which is intended to 'replace' the reparandum. It ex- 
tends from the offset of the DI tO the resumption of 
non-repair speech. In Example (6), for example, the 
reparandum occurs from 1 to 2, the DI from 2 to 3, and 
the repair interval from 3 to 4; the Is occurs at 2. 

(6) Give me airlines 1 [ flying to Sa-  ] 2 [ SILENCE 
uh SILENCE ] 3 [ flying to Boston ] 4 from San 
Francisco next summer that have business class. 

RIM provides a framework for testing the extent 
to which cues from the speech signal contribute to 
the identification and correction of repair utterances. 
RIM incorporates two main assumptions of Hindle 
(1983): (1) correction strategies are linguisticallyrule- 
governed, and (2) linguistic cues must be available to 
signal when a disfluency has occurred and to 'trigger' 
correction strategies. As Hindle noted, if the process- 
ing of disfluencies were not rule-governed, it would 
be difficult to reconcile the infrequent intrusion of dis- 
fluencies on human speech comprehension, especially 
for language learners, with their frequent rate of oc- 
currence in spontaneous speech. We view Hindle's 
results as evidence supporting (1). Our study tests 
(2) by exploring the acoustic and prosodic features of 
repairs that might serve as a form of edit signal for 
rule-governed correction strategies. 

While Labov and Hindle proposed that an 
acoustic-phonetic cue might exist at precisely the Is, 
based on our analyses and on recent psychotinguistic 
experiments (Lickley et al., 1991), this proposal ap- 
pears too limited. Crucially, in RIM, we extend the 
notion of edit signal to include any phenomenon which 
may contribute to the perception of an "abrupt cut-off" 
of the speech signal - -  including cues such as coartic- 
ulation phenomena, word fragments, interruption glot- 
talization, pause, and prosodic cues which occur in the 
vicinity of the disfluency interval. RIM thus acknowl- 
edges the edit signal hypothesis, that some aspect of 
the speech signal may demarcate the computationally 
key juncture between the reparandum and repair inter- 
vals, while extending its possible acoustic and prosodic 
manifestations. 

Acoustic-Prosodic Characteristics of 
Repairs 

We studied the acoustic and prosodic correlates of 
repair events as defined in the RIM framework with 
the aim of identifying potential cues for automatic re- 
pair processing, extending a pilot study reported in 
(Nakatani and Hirschberg, 1993). Our corpus for the 
current study consisted of 6,414 utterances produced 
by 123 speakers from the ARPA Airline Travel and In- 
formation System (ATIS) database (MADCOW, 1992) 
collected at AT&T, BBN, CMU, SRI, and TL 334 (5.2%) 

of these utterances contain at least one repair~ where 
repair is defined as the self-correction of one or more 
phonemes (up to and including sequences of words) 
in an utterance) Orthographic transcriptions of the 
utterances were prepared by ARPA contractors accord- 
ing to standardized conventions. The utterances were 
labeled at Bell Laboratories for word boundaries and 
intonational prominences and phrasing following Pier- 
rehumbert's description of English intonation (Pierre- 
humbert, 1980). Also, each of the three RIM intervals 
and prosodic and acoustic events within those intervals 
were labeled. 

Identifying the Reparandum Interval 

Our acoustic and prosodic analysis of the reparan- 
dum interval focuses on acoustic-phonetic properties 
of word fragments, as well as additional phonetic cues 
marking the reparandum offset. From the point of view 
of repair detection and correction, acoustic-prosodic 
cues to the onset of the reparandum would clearly be 
useful in the choice of appropriate correction strat- 
egy. However, recent perceptual experiments indicate 
that humans do not detect an oncoming disfluency as 
early as the onset of the reparandum (Lickley et al., 
1991; Lickley and Bard, 1992). Subjects were gen- 
erally able to detect disfluencies before lexical access 
of the first word in the repair. However, since only 
a small number of the test stimuli employed in these 
experiments contained reparanda ending in word frag- 
ments (Lickley et al., 1991), it is not clear how to 
generalize results to such repairs. In our corpus, 74% 
of all reparanda end in word fragments. 4 

Since the majority of our repairs involve word frag- 
mentation, we analyzed several lexical and acoustic- 
phonetic properties of fragments for potential use in 
fragment identification. Table 1 shows the broad word 
class of the speaker's intended word for each fragment, 
where the intended word was recoverable. There is 

Lexical Class 
Content 
Function 
Untranscribed 

Tokens % 
121 42% 

12 4% 
155 54% 

Table 1: Lexical Class of Word Fragments at Reparan- 
dum Offset (N=288) 

a clear tendency for fragmentation at the reparandum 
offset to occur in content words rather than function 
words. 

3In our pilot study of the SRI and TI utterances only, we 
found that repairs occurred in 9.1% of utterances (Nakatani 
and Hirschberg, 1993). This rate is probably more accurate 
than the 5.2% we find in our current corpus, since repairs for 
the pilot study were identified from more detailed transcrip- 
tions than were available for the larger corpus. 

4Shriberg et al. (1992) found that 60.2% of repairs in their 
corpus contained fragments. 

48 



Table 2 shows the distribution of fragment repairs 
by length. 91% of fragments in our corpus are one 
syllable or less in length. Table 3 shows the distri- 

Syllables Tokens % 
0 113 39% 
1 149 52% 
2 25 9% 
3 1 0.3% 

Table 2: Length of Reparandum Offset Word Frag- 
ments (N=288) 

bution of initial phonemes for all words in the corpus 
of 6,414 ATIS sentences, and for all fragments, single 
syllable fragments, and single consonant fragments in 
repair utterances. From Table 3 we see that single con- 

Class 

stop 
vowel 
fric 
nasal/ 
glide/ 
liquid 
h 
N 

% of % of 
Words Frags 

23% 23% 30% 
25% 13% 19% 
33% 45% 28% 

% of One % of One 
Syll Frags Cons Frags 

18% 17% 20% 
1% 2% 4% 

64896 288 

11% 
0% 

73% 

15% 
1% 

148 114 

Table 3: Feature Class of Initial Phoneme in Fragments 
by Fragment Length 

sonant fragments occur more than six times as often as 
fricatives than as stops. However, fricatives and stops 
occur almost equally as the initial consonant in single 
syllable fragments. Furthermore, we observe two di- 
vergences from the underlying distributions of initial 
phonemes for all words in the corpus. Vowel-initial 
words show less tendency and fricative-initial words 
show a greater tendency to occur as fragments, relative 
to the underlying distributions for those classes. 

Two additional acoustic-phonetic cues, glottaliza- 
tion and coarticulation, may help in fragment identi- 
fication. Bear et al. (1992) note that INTERRUPTION 
GLO'I~ALIZATION (irregular glottal pulses) sometimes 
occurs at the reparandum offset. This form of glot- 
talization is acoustically distinct from LARYNGEALIZA- 
TION (creaky voice), which often occurs at the end of 
prosodic phrases; GLOTTAL STOPS, which often pre- 
cede vowel-initial words; and EPENTHETIC GLOTTAL- 
tZATtON. In our corpus, 30.2% of reparanda offsets 
are marked by interruption glottalization. 5 Although 
interruption glottalization is usually associated with 
fragments, not all fragments are glottalized. In our 
database, 62% of fragments are not  glottalized, and 
9% of glottalized reparanda offsets are not  fragments. 

5Shriberg et al. (1992) report glottalization on 24 of 25 
vowel-final fragments. 

Also, sonorant endings of fragments in our corpus 
sometimes exhibit coarticulatory effects of an unre- 
alized subsequent phoneme. When these effects occur 
with a following pause (see below), they can be used 
to distinguish fragments from full phrase-final words 
- -  such as ' f l i- '  from 'fly' in Example (1). 

To summarize, our corpus shows that most 
reparanda offsets end in word fragments. These frag- 
ments are usually fragments of content words (based 
upon transcribers' identification of intended words in 
our corpus), are rarely more than one syllable long, 
exhibit different distributions of initial phoneme class 
depending on their length, and are sometimes glottal- 
ized and sometimes exhibit coarticulatory effects of 
missing subsequent phonemes. These findings suggest 
that it is unlikely that word-based recognition mod- 
els can be applied directly to the problem of fragment 
identification. Rather, models for fragment identifica- 
tion might make use of initial phoneme distributions, 
in combination with information on fragment length 
and acoustic-phonetic events at the IS. Inquiry into 
the articulatory bases of several of these properties of 
self-interrupted speech, such as glottalization and ini- 
tial phoneme distributions, may further improve the 
modeling of fragments. 

Identifying the Disfluency Interval 

In the RIM model, the D/includes all cue phrases and 
filled and unfilled pauses from the offset of the reparan- 
dum to the onset o.f the repair. The literature contains a 
number of hypotheses about this interval (cf. (Black- 
met and Mitton, 1991). For our corpus, pause fillers 
or cue words, which have been hypothesized as repair 
cues, occur within the DI for only 9.8% (332/368) of 
repairs, and so cannot be relied on for repair detection. 
Our findings do, however, support a new hypothesis 
associating fragment repairs and the duration of pause 
following the IS. 

Table 4 shows the average duration of 'silent DI'S 
(those not containing pause fillers or cue words) com- 
pared to that of fluent utterance-internal silent pauses 
for the Tt utterances. Overall, silent DIS are shorter 

Pausal Juncture Mean Std Dev 
Fluent 513 msec 676 msec 
DI 333 msec 417 msec 

Frags 292 msec 379 msec 
Non-frags 471 msec 502 msec 

N 
1186 
332 
255 

77 

Table 4: Duration of Silent DIS vs. Utterance-Internal 
Fluent Pauses 

than fluent pauses (p<.001, tstat=4.60, df=1516). If  
we analyze repair utterances based on occurrence of 
fragments, the DI duration for fragment repairs is 
significantly shorter than for nonfragments (p<.001, 
tstat=3.36, df=330). The fragment repair DI duration 
is also significantly shorter than fluent pause intervals 
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(p<.001, tstat=5.05, df=1439), while there is no sig- 
nificant difference between nonfragment DIS and fluent 
utterances. So, DIS in general appear to be distinct from 
fluent pauses, and the duration of DIS in fragment re- 
pairs might also be exploited to identify these cases as 
repairs, as well as to distinguish them from nonfrag- 
ment repairs. Thus, pausal duration may serve as a 
general acoustic cue for repair detection, particularly 
for the class of fragment repairs. 

Identifying the Repair 

Several influential studies of acoustic-prosodic repair 
cues have relied upon texical, semantic, and prag- 
matic definitions of repair types (Levelt and Cutler, 
1983; Levelt, 1983). Levelt & Cutler (1983) claim that 
repairs of erroneous information (ERROR REPAIRS) are 
marked by increased intonational prominence on the 
correcting information, while other kinds of repairs, 
such as additions to descriptions (APPROPRIATENESS 
REPAIRS), generally are not. We investigated whether 
the repair interval is marked by special intonational 
prominence relative to the reparandum for all repairs 
in our corpus and for these particular classes of repair. 

To obtain objective measures of relative promi- 
nence, we compared absolute f0 and energy in the 
sonorant center of the last accented lexical item in the 
reparandum with that of the first accented item in the 
repair interval. 6 We found a small but reliable increase 
in f0 from the end of the reparandum to the beginning of 
the repair (mean--4.1 Hz, p<.01, tstat=2.49, df=327). 
There was also a small but reliable increase in ampli- 
tude across the oI (mean=+l.5 db, p<.001, tstat=6.07, 
df=327). We analyzed the same phenomena across 
utterance-internal fluent pauses for the ATIS TI set and 
found no reliable differences in either f0 or intensity, 
although this may have been due to the greater variabil- 
ity in the fluent population. And when we compared 
the f0 and amplitude changes from reparandum to re- 
pair with those observed for fluent pauses, we found no 
significant differences between the two populations. 

So, while differences in f0 and amplitude exist 
between the reparandum offset and the repair onset, 
we conclude that these differences are too small help 
distinguish repairs from fluent speech. Although it is 
not entirely straightforward to compare our objective 
measures of intonational prominence with Levelt and 
Cutler's perceptual findings, our results provide only 
weak support for theirs. And while we find small but 
significant changes in two correlates of intonational 
prominence, the distributions of change in f0 and en- 
ergy for our data are unimodal; when we further test 
subclasses of Levelt and Cutler's error repairs and ap- 
propriateness repairs, statistical analysis does not sup- 

6We performed the same analysis for the last and first 
syllables in the reparandum and repair, respectively, and for 
normalized f0 and energy; results did not substantially differ 
from those presented here. 

port Levelt and Cutler's claim that the former - -  and 
only the former - -  group is intonationally 'marked'.  

Previous studies of disfluency have paid consider- 
able attention to the vicinity of the DI but little to the 
repair offset. Although we did not find comparative in- 
tonationai prominence across the DI tO be a promising 
cue for repair detection, our RIM analysis uncovered 
one general intonational cue that may be of use for 
repair correction, namely the prosodic phrasing of the 
repair interval. We propose that phrase boundaries at 
the repair offset can serve to delimit the region over 
which subsequent correction strategies may operate. 

We tested the idea that repair interval offsets 
are intonationally marked by either minor or major 
prosodic phrase boundaries in two ways. First, we used 
the phrase prediction procedure reported by Wang & 
Hirschberg (1992) to estimate whether the phrasing at 
the repair offset was predictable according to a model 
of fluent phrasing. 7 Second, we analyzed the syntactic 
and lexical properties of the first major or minor intona- 
tional phrase including all or part of the repair interval 
to determine whether such phrasal units corresponded 
to different types of repairs in terms of Hindle's typol- 
ogy. 

The first analysis tested the hypothesis that repair 
interval offsets are intonationally delimited by minor or 
major prosodic phrase boundaries. We found that the 
repair offset co-occurs with minor phrase boundaries 
for 49% of repairs in the TI set. To see whether these 
boundaries were distinct from those in fluent speech, 
we compared the phrasing of repair utterances with 
the phrasing predicted for the corresponding corrected 
version of the utterance identified by ATIS transcribers. 
For 40% of all repairs, an observed boundary occurs at 
the repair offset where one is predicted; and for 33% 
of all repairs, no boundary is observed where none 
is predicted. For the remaining 27% of repairs for 
which predicted phrasing diverged from observed, in 
10% of cases a boundary occurred where none was 
predicted and in 17%, no boundary occurred when one 
was predicted. 

In addition to differences at the repair offset, 
we also found more general differences from pre- 
dicted phrasing over the entire repair interval, which 
we hypothesize may be partly understood as follows: 
Two strong predictors of prosodic phrasing in flu- 
ent speech are syntactic constituency (Cooper and 
Sorenson, 1977; Gee and Grosjean, 1983; Selkirk, 
1984), especially the relative inviolability of noun 
phrases (Wang and Hirschberg, 1992), and the length of 
prosodic phrases (Gee and Grosjean, 1983; Bachenko 

7Wang & Hirschberg use statistical modeling techniques 
to predict phrasing from a large corpus of labeled ATIS speech; 
we used a prediction tree that achieves 88.4% accuracy on 
the ATIS TI corpus using only features whose values could be 
calculated via automatic text analysis. Results reported here 
are for prediction on only TI repair utterances. 
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and Fitzpatrick, 1990). On the one hand, we found oc- 
currences of phrase boundaries at repair offsets which 
occurred within larger NPs, as in Example (7), where 
it is precisely the noun modifier - -  not the entire noun 
phrase - -  which is corrected. 8 

(7) Show me all n -  [ round-trip flights [ from Pittsburgh 
[ to Atlanta. 

We speculate that, by marking off the modifier intona- 
tionaily, a speaker may signal that operations relating 
just this phrase to earlier portions of the utterance can 
achieve the proper correction of the disfluency. We 
also found cases of 'lengthened' intonational phrases 
in repair intervals, as illustrated in the single-phrase 
reparandum in (8), where the corresponding fluent ver- 
sion of the reparandum is predicted to contain four 
phrases. 

(8) What  airport is it [ is located [ what is the name 
of the airport located in San Francisco 

Again, we hypothesize that the role played by this un- 
usually long phrase is the same as that of early phrase 
boundaries in NPS discussed above. In both cases, the 
phrase boundary delimits a meaningful unit for sub- 
sequent correction strategies. For example, we might 
understand the multiple repairs in (8) as follows: First 
the speaker attempts a vP repair, with the repair phrase 
delimited by a single prosodic phrase 'is located'. Then 
the initially repaired utterance 'What airport is located' 
is itself repaired, with the reparadum again delimited 
by a single prosodic phrase, 'What is the name of  the 
airport located in San Francisco'. 

In the second analysis of lexical and syntactic 
properties, we found three major classes of phras- 
ing behaviors, all involving the location of the first 
phrase boundary after the repair onset: First, for 44% 
(163/368) of repairs, the repair offset we had initially 
identified 9 coincides with a phrase boundary, which 
can thus be said to mark off the repair interval. Of the 
remaining 205 repairs, more than two-thirds (140/205) 
have the first phrase boundary after the repair onset 
at the right edge of a syntactic constituent. We pro- 
pose that this class of repairs should be identified as 
constituent repairs, rather than the lexical repairs we 
had initially hypothesized. For the majority of these 
constituent repairs (79%, 110/140), the repair interval 
contains a well-formed syntactic constituent (see Ta- 
ble 5). If the repair interval does not form a syntactic 
constituent, it is most often an NP-internal repair (77%, 
23/30). The third class of repairs includes those in 
which the first boundary after the repair onset occurs 
neither at the repair offset nor at the right edge of a syn- 
tactic constituent. This class contains surface or lexical 

8Prosodic boundaries in examples are indicated by '1'. 
9Note crucially here that, in labeling repairs which might 

be viewed as either constituent or lexical, we preferred the 
shorter lexical analysis by default. 

Repair Constituent Tokens 
Sentence 24 
Verb phrase 7 
Participial phrase 6 
Noun phrase 38 
Prepositional phrase 34 
Relative clause 1 

% 

22% 
6% 
5% 

35% 
31% 

0.9% 

Table 5: Distribution of Syntactic Categories for Con- 
stituent Repairs (N= 110) 

repairs (where the first phrase boundary in the repair 
interval delimits a sequence of one or more repeated 
words), phonetic errors, word insertions, and syntactic 
reformulations (as in Example (4)). It might be noted 
here that, in general, repairs involving correction of 
either verb phrases or verbs are far less common than 
those involving noun phrases, prepositional phrases, or 
sentences. 

We briefly note evidence against one alternative 
(although not mutually exclusive) hypothesis, that the 
region to be delimited correction strategies is marked 
not by a phrase boundary near the repair offset, but by 
a phrase boundary at the onset of the reparandum. In 
other words, it may be the reparandum interval, not the 
repair interval, that is intonationally delimited. How- 
ever, it is often the case that the last phrase boundary 
before the IS occurs at the left edge of a major syn- 
tactic constituent (42%, (87/205), even though major 
constituent repairs are about one third as frequent in 
this corpus (15%, 31/205). In contrast, phrase bound- 
aries occur at the left edge of minor constituents 27% 
(55/205) of the time, whereas minor constituent re- 
pairs make up 39% (79/205) of the subcorpus at hand. 
We take these figures as general evidence against the 
outlined alternative hypothesis, establishing that the 
demarcation repair offset is a more productive goal for 
repair processing algorithms. 

Investigation of repair phrasing in other corpora 
covering a wider variety of genres is needed in order 
to assess the generality of these findings. For exam- 
ple, 35% (8/23) of NP-internal constituent repairs oc- 
curred within cardinal compounds, which are prevalent 
in the nTIS corpus due to its domain. The preponder- 
ance of temporal and locative prepositional phrases 
may also be attributed to the nature of the task and 
domain. Nonetheless, the fact that repair offsets in our 
corpus are marked by intonational phrase boundaries 
in such a large percentage of cases (82.3%, 303/368), 
suggests that this is a possibility worth pursuing. 

Predicting Repairs from Acoustic and 
Prosodic Cues 

Despite the small size of our sample and the possibly 
limited generality of our corpus, we were interested 
to see how well the characterization of repairs derived 
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from RIM analysis of the ATIS COrpUS would transfer 
to a predictive model for repairs in that domain. We 
examined 374 ATIS repair utterances, including the 334 
upon which the descriptive study presented above was 
based. We used the 172 TI and SRI repair utterances 
from our earlier pilot study (Nakatani and Hirschberg, 
1993) as training date; these served a similar purpose 
in the descriptive analysis presented above. We then 
tested on the additional 202 repair utterances, which 
contained 223 repair instances. In our predictions we 
attemped to distinguish repair Is from fluent phrase 
boundaries (collapsing major and minor boundaries), 
non-repair disfluencies, 1° and simple word boundaries. 
We considered every word boundary to be a potential 
repair site. 11 Data points are represented below as 
ordered pairs <wl,wj >, where wi represents the lexical 
item to the left of the potential IS and wj represents that 
on the right. 

For each <wi,wj >, we examined the following 
features as potential Is predictors: (a) duration of pause 
between wi and wj; (b) occurrence of a word frag- 
ment(s) within <w~,wj >; (c) occurrence of a filled 
pause in <wi,wj >; (d) amplitude (energy) peak within 
wi, both absolute and normalized for the utterance; (e) 
amplitude of wi relative to w i - i  and to wj; (f) abso- 
lute and normalized f0 of wi; (g) f0 of wi relative to 
w i - i  and to wj; and (h) whether or not wi was ac- 
cented, deaccented, or deaccented and cliticized. We 
also simulated some simple pattern matching strate- 
gies, to try to determine how acoustic-prosodic cues 
might interact with lexical cues in repair identification. 
To this end, we looked at (i) the distance in words of 
wi from the beginning and end of the utterance; (j) the 
total number of words in the utterance; and (k) whether 
wi or wi-1 recurred in the utterance within a window 
of three words after wi. We were unable to test all 
the acoustic-prosodic features we examined in our de- 
scriptive analysis, since features such as glottalization 
and coarticulatory effects had not been labeled in our 
data base for locations other than DIs. Also, we used 
fairly crude measures to approximate features such as 
change in f0 and amplitude, since these .too had been 
precisely labeled in our corpus only for repair locations 
and not for fluent speech./2 

We trained prediction trees, using Classification 
and Regression Tree (CART) techniques (Brieman et 
al., 1984), on our 172-utterance training set. We first 
included all our potential identifiers as possible predic- 
tors. The resulting (automatically generated) decision 
tree was then used to predict IS locations in our 202- 

l°These had been marked independently of our study and 
including all events with some phonetic indicator of disflu- 
ency which was not involved in a self-repair, such as hesita- 
tions marked with audible breath or sharp cut-off. 

llWe also included utterance-final boundaries as data 
points. 

12We used uniform measures for prediction, however, for 
both repair sites and fluent regions. 

utterance test set. This procedure identified 186 of the 
223 repairs correctly, while predicting 12 false posi- 
tives and omitting 37 true repairs, for a recall of 83.4% 
and precision of 93.9%. Fully 177 of the correctly 
identified ISS were identified via presence of word frag- 
ments as well as duration of pause in the DL Repairs 
not containing fragments were identified from lexical 
matching plus pausal duration in the DI. 

Since the automatic identification of word frag- 
ments from speech is an unsolved problem, we next 
omitted the fragment feature and tried the prediction 
again. The best prediction tree, tested on the same 
202-utterance test set, succeeded in identifying 174 of 
repairs correct ly--  in the absence of fragment informa- 
t i o n -  with 21 false positives and 49 omissions (78.1% 
recall, 89.2% precision). The correctly identified re- 
pairs were all characterized by constraints on duration 
of pause in the DI. Some were further identified via 
presence of lexical match to the right of wi within the 
window of three described above, and word position 
within utterance. Those repairs in which no lexical 
match was identified were characterized by lower am- 
plitude of wi relative to wj and cliticization or deac- 
centing of wi. Still other repairs were characterized by 
more complex series of lexical and acoustic-prosodic 
constraints. 

These results are, of course, very preliminary. 
Larger corpora must certainly be examined and more 
sophisticated versions of the crude measures we have 
used should be employed. However, as a first ap- 
proximation to the characterization of repairs via both 
acoustic-prosodic and lexical cues, we find these re- 
suits encouraging. In particular, our ability to iden- 
tify repair sites successfully without relying upon the 
identification of fragments as such seems promising, 
although our analysis of fragments suggests that there 
may indeed be ways of identifying fragment repairs, 
via their relatively short DI, for example. Also, the 
combination of general acoustic-prosodic constraints 
with lexical pattern matching techniques as a strategy 
for repair identification appears to gain some support 
from our predictions. Further work on prediction mod- 
eling may suggest ways of combining these lexical and 
acoustic-prosodic cues for repair processing. 

Discussion 

In this paper, we have presented a"speech-first" model, 
the Repair Interval Model, for studying repairs in spon- 
taneous speech. This model divides the repair event 
into a reparandum interval, a disfluency interval, and 
a repair interval. We have presented empirical results 
from acoustic-phonetic and prosodic analysis of a cor- 
pus of repairs in spontaneous speech, indicating that 
reparanda offsets end in word fragments, usually of (in- 
tended) content words, and that these fragments tend 
to be quite short and to exhibit particular acoustic- 
phonetic characteristics. We found that the disfluency 
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interval can be distinguished from intonational phrase 
boundaries in fluent speech in terms of duration of 
pause, and that fragment and nonfragment repairs can 
also be distinguished from one another in terms of the 
duration of the disfluency interval. For our corpus, 
repair onsets can be distinguished from reparandum 
offsets by small but reliable differences in f0 and am- 
plitude, and repair intervals differ from fluent speech 
in their characteristic prosodic phrasing. We tested 
our results by developing predictive models for repairs 
in the ATIS domain, using CART analysis; the best per- 
forming prediction strategies, trained on a subset of our 
data, identified repairs in the remaining utterances with 
recall of 78-83% and precision of 89-93%, depending 
upon features examined. 
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