
DOCUMENTATION PARSER TO EXTRACT SOFTWARE TEST CONDITIONS

Patricia Lutsky
Brandeis University

Digital Equipment Corporation
111 Locke Drive LMO2-1/Lll

Marlboro, MA 01752

OVERVIEW

This project concerns building a document
parser that can be used as a software engineer-
ing tool. A software tester's task frequently
involves comparing the behavior of a running
system with a document describing the behav-
ior of the system. If a problem is found, it may
indicate an update is required to the document,
the software system, or both. A tool to generate
tests automatically based on documents would
be very useful to software engineers, but it re-
quires a document parser which can identify
and extract testable conditions in the text.

This tool would also be useful in reverse en-
gineering, or taking existing artifacts of a soft-
ware system and using them to write the spec-
ification of the system. Most reverse engineer-
ing tools work only on source code. However,
many systems are described by documents that
contain valuable information for reverse engi-
neering. Building a document parser would al-
low this information to be harvested as well.

Documents describing a large software project
(i.e. user manuals, database dictionaries) are
often semi-formatted text in that they have
fixed-format sections and free text sections.
The benefits of parsing the fixed-format por-
tions have been seen in the CARPER project
(Schlimmer, 1991), where information found in
the fixed-format sections of the documents de-
scribing the system under test is used to ini-
tialize a test system automatically. The cur-
rent project looks at the free text descriptions
to see what useful information can be extracted
from them.

PARSING A DATABASE DICTIONARY

The current focus of this project is on ex-
tracting database related testcases from the
database dictionary of the XCON/XSEL con-
figuration system (XCS) (Barker & O'Connor,

294

1989). The CARPER project is aimed at build-
ing a self-maintaining database checker for the
XCS database. As part of its processing, it ex-
tracts basic information contained in the fixed-
format sections of the database dictionary.

This project looks at what additional testing
information can be retrieved from the database
dictionary. In particular, each attribute de-
scription contains a "sanity checks" section
which includes information relevant for test-
ing the attribute, such as the format and al-
lowable values of the attribute, or information
about attributes which must or must not be
used together. If this information is extracted
using a text parser, either it will verify the ac-
curacy of CARPER's checks, or it will augment
them.

The database checks generated from a docu-
ment parser will reflect changes made to the
database dictionary automatically. This will
be particularly useful when new attributes are
added and when changes are made to attribute
descriptions.

(Lutsky, 1989) investigated the parsing of
manuals for system routines to extract the
maximum allowed length of the character
string parameters. Database dictionary pars-
ing represents a new software domain as well
as a more complex type of testable information.

SYSTEM ARCHITECTURE

The overall structure of the system is given
in Figure 1. The input to the parser is a set
of system documents and the output is testcase
information. The parser has two main domain-
independent components, one a testing knowl-
edge module and one a general purpose parser.
It also has two domain-specific components: a
domain model and a sublanguage grammar of
expressions for representing testable informa-
tion in the domain.

Figure 1
Document Parser System

XCS database dictionary which concern these
test conditions.

Input . ~. Output
!

Domain Independent !
I

i

I' Testing knowledge i
, i '

Parser I i.
i *

i 1
! Domain Dependent
i
, , 1
i! Subfanguage grammar I i]

Domain Model 1
i
L. I

II (Documents)~

0 Canonical
s e n t e n c e s

0 Additions to
test system

For this to be a successful architecture, the
domain-independent part must be robust enough
to work for multiple domains. A person work-
ing in a new domain should be given the frame-
work and have only to fill in the appropriate
domain model and sublanguage grammar.

The grammar developed does not need to
parse the attribute descriptions of the input
text exhaustively. Instead, it extracts the spe-
cific concepts which can be used to test the
database. It looks at the appropriate sections
of the document on a sentence-by-sentence ba-
sis. If it is able to parse a sentence and de-
rive a semantic interpretation for it, it re-
turns the corresponding semantic expression.
If not, it simply ignores it and moves on to
the next sentence. This type of partial pars-
ing is well suited to this job because any infor-
mation parsed and extracted will usefully aug-

m e n t the test system. Missed testcases will
not adversely impact the test system.

COMBINATION CONDITIONS

In order to evaluate the effectiveness of the
document parser, a particular type of testable
condition for database tests was chosen: legal
combinations of attributes and classes. These
conditions include two or more attributes that
must or must not be used together, or an at-
tribute that must or must not be used for a
class.

The following are example sentences from the

1. If BUS-DATA is defined, then BUS must
also be defined.

2. Must be used if values exist for START-
ADDRESS or ADDRESS-PRIORITY attributes.

3. This attribute is appropriate only for class
SYNC-COMM.

4. The attribute ABSOLUTE-MAX-PER-BUS
must also be defined.

Canonical forms for the sentences were devel-
oped and are listed in Figure 2. Examples of
sentences and their canonical forms are given
in Figure 3. The canonical form can be used to
generate a logical formula or a representation
appropriate for input to the test system.

Figure 2
Canonical sentences

ATTRIBUTE must [not] be defined if
ATTRIBUTE is [not] defined.

ATTRIBUTE must [not] be defined for
CLASS.

ATTRIBUTE can only be defined for
CLASS.

Figure 3
Canonical forms of example sentences

Sentence:
If BUS-DATA is defined then BUS must
also be defined.

Canonical form:
BUS must be defined if BUS-DATA is
defined.

Sentence:
This attribute is appropriate only
for class SYNC-COMM.

Canonical form:
BAUD-RATE can only be defined for
class SYNC-COMM.

THE GRAMMAR

Since we are only interested in retrieving spe-
cific types of information from the documen-
tation, the sublanguage grammar only has to

295

cover the specific ways of expressing that in-
formation which are found in the documents.
As can be seen in the list of example sentences,
the information is expressed either in the form
of modal, conditional, or generic sentences.

In the XCS database dictionary, sentences de-
scribing legal combinations of attributes and
classes use only certain syntactic constructs,
all expressible within context-free grammar.
The grammar is able to parse these specific
types of sentence structure.

These sentences also use only a restricted set
of semantic concepts, and the grammar specifi-
cally covers only these, which include negation,
value phrases Ca value of,") and verbs of def-
inition or usage ("is defined," "is used"). They
also use the concepts of attribute and class as
found in the domain model. Two specific lex-
ical concepts which were relevant were those
for "only," which implies that other things are
excluded from the relation, and "also," which
presupposes that something is added to an al-
ready established relation. The semantic pro-
cessing module uses the testing knowledge, the
sublanguage semantic constructs, and the do-
main model to derive the appropriate canonical
form for a sentence.

The database dictionary is written in an in-
formal style and contains many incomplete
sentences. The partially structured nature of
the text assists in anaphora resolution and el-
lipses expansion for these sentences. For ex-
ample, "Only relevant for software" in a san-
ity check for the BACKWARD-COMPATIBLE
attribute is equivalent to the sentence "The
BACKWARD-COMPATIBLE attribute is only
relevant for software." The parsing system
keeps track of the name of the attribute be-
ing described and it uses it to fill in missing
sentence components.

EXPERIMENTAL RESULTS

Experiments were done to investigate the
utility of the document parser. A portion of the
database dictionary was analyzed to determine
the ways the target concepts are expressed in
that portion of the document. Then a gram-
mar was constructed to cover these initial sen-
tences. The grammar was run on the entire
document to evaluate its recall and precision in
identifying additional relevant sentences. The
outcome of the run on the entire document was

296

used to augment the grammar, which can then
be run on successive versions of the document
over time to determine its value.

Preliminary experiments using the grammar
to extract information about the allowable
XCS attribute and class combinations showed
that the system works with good recall (six
of twenty-six testcases were missed) and pre-
cision (only two incorrect testcases were re-
turned). The grammar was augmented to
cover the additional cases and not return
the incorrect ones. Subsequent versions of
the database dictionary will provide additional
data on its effectiveness.

SUMMARY

A document parser can be an effective soft-
ware engineering tool for reverse engineering
and populating test systems. Questions re-
main about the potential depth and robust-
ness of the system for more complex types of
testable conditions, for additional document
types, and for additional domains. Experi-
ments in these areas will investigate deeper
representational structures for modal, condi-
tional, and generic sentences, appropriate do-
main modeling techniques, and representa-
tions for general testing knowledge.

ACKNOWLEDGMENTS

I would like to thank James Pustejovsky for
his helpful comments on earlier drafts of this
paper.

R E F E R E N C E S

Barker, Virginia, & O'Connor, Dennis (1989).
Expert systems for configuration at DIGITAL:
XCON and beyond. Communications of the
ACM, 32, 298-318.

Lutsky, Patricia (1989). Analysis of a
sublanguage grammar for parsing software
documentation. Unpublished master's thesis,
Harvard University Extension.

Schlimmer, Jeffrey (1991) Learning meta knowl-
edge for database checking. Proceedings of
AAAI 91, 335-340.

