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In this paper I will consider parsing as a discrete 
combinatorial problem which consists in constructing a 
labeled graph that satisfies a set of linguistic 
constraints. I will identify some properties of linguistic 
constraints which allow this problem to be solved 
efficiently using constraint satisfaction algorithms. I 
then describe briefly a modular parsing algorithm 
which constructs a syntactic graph using a set of 
generative operations and applies a filtering algorithm 
to eliminate inconsistent nodes and edges. 

The model of grammar I will assume is not a monolithic 
rule system, but instead decomposes grammatical 
problems into multiple constraints, each describing a 
certain dimension of linguistic knowledge. The 
grammar is partitioned into operations and constraints. 
Some of these are given in (1); note that many 
constraints, including linear precedence, are not 
discussed here. I assume also that the grammar 
specifies a lexicon, which is a list of complex categories 
or attribute-value structures (Johnson 1988), along with 
a set of partial functions which define the possible 
categories of the grammar. 

(1) Operations Constraints 
PROJECT-X CASEMARK(X,Y) 
ADJOIN-X THETAMARK(X,Y) 
MOVE-X AGREE(X,Y) 
INDEX-X ANTECEDE(X,Y) 

This cluster of modules incorporates operations and 
constraints from both GB theory (Chomsky 1981) and 
TAG (Johsi 1985). PROJECT-X is a category-neutral X- 
bar grammar consisting of three context-free metarules 
which yield a small set of unordered elementary trees. 
ADJOIN-X, which consists of a single adjunction 
schema, is a restricted type of tree adjunction which 
takes two trees and adjoins one to a projection of the 
head of the other. The combined schema are given in 
(2): 

(2) X2 = { X1, Y2} 
X l  = {x0,Y2} 

Xn = (0 (a lexical category) 
Xn = {Xn, Yn} 

specifier axiom 
complement axiom 

labeling axiom 
adjunction axiom 

MOVE-X constructs chains which link gaps to 
antecedents, while INDEX-X assigns indices to nodes 
from the set of natural numbers. In the parsing model 
to be discussed below, these make up the four basic 
operations of a nondeterministic automaton that 
generates sets of cantidate structures. Although these 
sets are finite, their size is not bounded above by a 

polynomial function in the size of the input. I showed in 
Martin(1989) that if X-bar and adjunction rules together 
allow four attachment levels, then the number of 
possible (unordered) trees formed by unconstrained 
application of these rules to a string of n terminals is 

o(4n). Also, Fong(1989) has shown that the number of 
n z1 

distinct indexings for n noun phrases is bn= Xm= 1 {m}, 

whose closed form solut ion is exponential .  
Unconstrained use of these operations therefore results 
in massive overgeneration, caused by the fact that they 
encode only a fragment of the knowledge in a grammar. 

Unlike operations, the constraints in (1) crucially 
depend on the attributes of lexical items and 
nonterminal nodes. Three key properties of the 
constraints can be exploited to achieve an efficient 
filtering algorithm: 

(i) they apply in local government configurations 
(ii) they depend on node attributes whose domain of 
values is small 
(iii) they are binary 

For example, agreement holds between a phrase YP 
and a head Xo if and only if YP governs Xo, and YP and 
Xo share a designated agreement vector, such as 
[(zperson, ~number]; case marking holds between a 
head Xo and a phrase YP if and only if Xo governs YP, 
and Xo and YP share a designated case feature; and so 
forth. Lebeaux (1989) argues that only closed classes of 
features can enter into government relations. Unlike 
open lexical classes such as (3a), it is feasible to list the 
members of closed classes extensionally, for example 
the case features in (3b): 

(3)a. 
b. 

Verb : {eat, sing, cry .... } 
Case : {Nom, Acc, Dat, Gen} 

Constraints express the different types of attribute 
dependency which may hold between a governor and a 
governed node in a government domain. Each 
constraint can be represented as a binary predicate 
P(X,Y) which yields True if and only if a designated 
subset of attributes do not have distinct values in the 
categories X and Y. We may picture such predicates as 
specifying a path which must be unifiable in the 
directed acyclic graphs representing the categories X 
and Y. 

Before presenting the outline of a parsing algorithm 
incorporating such constraints, it is necessary to 
introduce the notion of boolean constraint satisfaction 
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problem (BCSP) as defined in Mackworth (1987). Given 
a finite set of variables {V1,V 2 ..... Vn} with associated 
domains {D1,D2,...,Dn} , constraint relations are stated 
on certain subsets of the variables; the constraints 
denote subsets of the cartesian product of the domains 
of those variables. The solution set is the largest subset 
of the cartesian product D1 x D2 x ... x Dn such that 
each n-tuple in that set satisfies all the constraints. 
Binary CSP's can be represented as a graph by 
associating a pair (Vi, Di) with each node. An edge 
between nodes i and j denotes a binary constraint Pij 
between the corresponding variables, while loops at a 
node i denote unary constraints Pi which restrict the 
domain of the node. Consistency is defined as follows: 

(4) Node i is consistent iff Vx[x~ D i] ~Pi(x). 

Arc i,j is consistent iff Vx[x~ D i] :=~ 3y[y~ Dj ,~Pij(x,y)]. 
A path of length 2 from node i through node m to 
node j is consistent iff 

VxVz[Pij(x,z)] ~3y[yE Dm ^ Pim(x,y)^ Pmj(Y,Z)]. 

A network is node, arc, and path consistent iff all its 
nodes, arcs and paths are consistent. Path consistency 
can be generalized to paths of arbitrary length. 

The parsing algorithm tries to find a consistent labeling 
for a syntactic graph representing the set of all syntactic 
analyses of an input string (see Seo & Simmons 1989 for 
a similar packed representation).  The graph is 
constructed from left to fight by the operations Project- 
X, Adjoin-X, Move-X and Index-X, which generate new 
nodes and arcs. In this scheme, overgeneration does 
not result in an abundance of parallel structures, but 
rather in the presence of superfluous nodes and arcs in 
a single graph. Each new node and arc generated is 
associated with a set of constraints; these associations 
are defined statically by the grammar. For example, 
complement arcs are associated with thetamarking 
constraints ,  specifier arcs are associated with 
ag reement  constraints ,  and indexing arcs are 
associated with coreference constraints. On each cycle 
the parser attempts to connect two consistently labeled 
subgraphs G1 and G2, where G1 represents the 
analyses of a leftmost portion of the input string, and G2 
represents the analyses of the rightmost substring 
under consideration. The parse cycle contains three 
basic steps: 

(a) select an operation 
(b) apply the operation to graphs G1 and G2, yielding G3 
(c) apply node, arc and path consistency to the 

extended graph (;3. 

Step (c) deletes inconsistent values from the domain at 
a node; also, if a node or arc is inconsistent, it is deleted. 
Note that nodes in syntactic graphs are labeled by 

linguistic categories which may contain many attribute- 
value pairs. Thus, a node typically represents not one 
but a set of variables whose values are relevant to the 
constraint predicates. The properties of locality and 
finite domains mentioned above turn out to be useful in 
the filtering step. Locality guarantees that the algorithm 
need only apply in a government domain. Therefore, it 
is not necessary to make the entire graph consistent 
after each extension, but only the largest subgraph 
which is a government domain and contains the nodes 
and edges most recently connected. The fact that the 
domains of attributes have a limited range is useful 
when the value of an attr ibute is unknown or 
ambiguous. In such cases, the number  of possible 
solutions obtained by choosing an exact value for the 
attribute is small. 

In this paper I have sketched the design of a parsing 
algorithm which makes direct use of a modular system 
of g r ammat i ca l  pr inciples .  The p rob lem of 
overgeneration is solved by performing a limited 
amount of local computation after each generation 
step. This approach is quite different from one which 
preprocesses  the g r ammar  by folding together 
grammatical rules and constraints off-line. While this 
latter approach can achieve an a priori pruning of the 
search space by eliminating overgeneration entirely, it 
may do so at the cost of an explosion in grammar size. 
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