
F A C T O R I Z A T I O N  O F  L A N G U A G E  C O N S T R A I N T S  IN S P E E C H  R E C O G N I T I O N  

Roberto Pieraccini and Chin-Hui Lee 
Speech Research Department  

A T & T  Bell Laboratories 
Murray Hill, NJ 07974, USA 

ABSTRACT 

Integration of language constraints into a 
large vocabulary speech recognition system 
often leads to prohibitive complexity. We 
propose to factor the constraints into two 
components. The first is characterized by a 
covering grammar which is small and easily 
integrated into existing speech recognizers. The 
recognized string is then decoded by means of an 
efficient language post-processor in which the 
full set of constraints is imposed to correct 
possible errors introduced by the speech 
recognizer. 

1. Introduction 

In the past, speech recognition has mostly 
been applied to small domain tasks in which 
language constraints can be characterized by 
regular grammars. All the knowledge sources 
required to perform speech recognition and 
understanding, including acoustic, phonetic, 
lexical, syntactic and semantic levels of 
knowledge, are often encoded in an integrated 
manner using a finite state network (FSN) 
representation. Speech recognition is then 
performed by finding the most likely path 
through the FSN so that the acoustic distance 
between the input utterance and the recognized 
string decoded from the most likely path is 
minimized. Such a procedure is also known as 
maximum likelihood decoding, and such systems 
are referred to as integrated systems. Integrated 
systems can generally achieve high accuracy 
mainly due to the fact that the decisions are 
delayed until enough information, derived from 
the knowledge sources, is available to the 
decoder. For example, in an integrated system 
there is no explicit segmentation into phonetic 
units or words during the decoding process. All 
the segmentation hypotheses consistent with the 
introduced constraints are carried on until the 
final decision is made in order to maximize a 

global function. An example of an integrated 
system was HARPY (Lowerre, 1980) which 
integrated multiple levels of knowledge into a 
single FSN. This produced relatively high 
performance for the time, but at the cost of 
multiplying out constraints in a manner that 
expanded the grammar beyond reasonable 
bounds for even moderately complex domains, 
and may not scale up to more complex tasks. 
Other examples of integrated systems may be 
found in Baker (1975) and Levinson (1980). 

On the other hand modular systems clearly 
separate the knowledge sources. Different from 
integrated systems, a modular system usually 
make an explicit use of the constraints at each 
level of knowledge for making hard decisions. 
For instance, in modular systems there is an 
explicit segmentation into phones during an 
early stage of the decoding, generally followed 
by lexical access, and by syntactic/semantic 
parsing. While a modular system, like for 
instance HWIM (Woods, 1976) or HEARSAY-II 
(Reddy, 1977) may be the only solution for 
extremely large tasks when the size of the 
vocabulary is on the order of  10,000 words or 
more (Levinson, 1988), it generally achieves 
lower performance than an integrated system in a 
restricted domain task (Levinson, 1989). The 
degradation in performance is mainly due to the 
way errors propagate through the system. It is 
widely agreed that it is dangerous to make a long 
series of hard decisions. The system cannot 
recover from an error at any point along the 
chain. One would want to avoid this chain- 
architecture and look for an architecture which 
would enable modules to compensate for each 
other. Integrated approaches have this 
compensation capability, but at the cost of 
multiplying the size of  the grammar in such a 
way that the computation becomes prohibitive 
for the recognizer. A solution to the problem is 
to factorize the constraints so that the size of the 
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grammar, used for maximum likelihood 
decoding, is kept within reasonable bounds 
without a loss in the performance. In this paper 
we propose an approach in which speech 
recognition is still performed in an integrated 
fashion using a covering grammar with a smaller 
FSN representation. The decoded string of 
words is used as input to a second module in 
which the complete set of task constraints is 
imposed to correct possible errors introduced by 
the speech recognition module. 

2. Syntax Driven Continuous Speech 
Recognition 

The general trend in large vocabulary 
continuous speech recognition research is that of 
building integrated systems (Huang, 1990; 
Murveit, 1990; Paul, 1990; Austin, 1990) in 
which all the relevant knowledge sources, 
namely acoustic, phonetic, lexical, syntactic, and 
semantic, are integrated into a unique 
representation. The speech signal, for the 
purpose of  speech recognition, is represented by 
a sequence of acoustic patterns each consisting 
of a set of  measurements taken on a small 
portion of signal (generally on the order of 10 
reset). The speech recognition process is carried 
out by searching for the best path that interprets 
the sequence of acoustic patterns, within a 
network that represents, in its more detailed 
structure, all the possible sequences of acoustic 
configurations. The network, generally called a 
decoding network, is built in a hierarehical way. 
In current speech recognition systems, the 
syntactic structure of the sentence is represented 
generally by a regular grammar that is typically 
implemented as a finite state network (syntactic 
FSN). The ares of the syntactic FSN represent 
vocabulary items, that are again represented by 
FSN's (lexical FSN), whose arcs are phonetic 
units. Finally every phonetic unit is again 
represented by an FSN (phonetic FSN). The 
nodes of the phonetic FSN, often referred to as 
acoustic states, incorporate particular acoustic 
models developed within a statistical framework 
known as hidden Markov model (HMM). 1 The 

1. The reader is referred to Rabiner (1989) for a tutorial 
introduction of HMM. 

model pertaining to an acoustic state allows 
computation of a likelihood score, which 
represents the goodness of acoustic match for the 
observation of a given acoustic patterns. The 
decoding network is obtained by representing the 
overall syntactic FSN in terms of acoustic states. 

Therefore the recognition problem can be 
stated as follows. Given a sequence of acoustic 
patterns, corresponding to an uttered sentence, 
find the sequence of acoustic states in the 
decoding network that gives the highest 
likelihood score when aligned with the input 
sequence of acoustic patterns. This problem can 
be solved efficiently and effectively using a 
dynamic programming search procedure. The 
resulting optimal path through the network gives 
the optimal sequence of acoustic states, which 
represents a sequence of phonetic units, and 
eventually the recognized string of words. 
Details about the speech recognition system we 
refer to in the paper can be found in Lee 
(1990/1). The complexity of such an algorithm 
consists of two factors. The first is the 
complexity arising from the computation of the 
likelihood scores for all the possible pairs of 
acoustic state and acoustic pattern. Given an 
utterance of fixed length the complexity is linear 
with the number of distinct acoustic states. Since 
a finite set of phonetic units is used to represent 
all the words of a language, the number of 
possible different acoustic states is limited by the 
number of distinct phonetic units. Therefore the 
complexity of the local likelihood computation 
factor does not depend either on the size of the 
vocabulary or on the complexity of the language. 
The second factor is the combinatorics or 
bookkeeping that is necessary for carrying out 
the dynamic programming optimization. 
Although the complexity of this factor strongly 
depends on the implementation of the search 
algorithm, it is generally true that the number of 
operations grows linearly with the number of 
arcs in the decoding network. As the overall 
number of arcs in the decoding network is a 
linear function of the number of ares in the 
syntactic network, the complexity of the 
bookkeeping factor grows linearly with the 
number of ares in the FSN representation of the 
grammar. 
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The syntactic FSN that represents a certain 
task language may be very large if both the size 
of the vocabulary and the munber of syntactic 
constraints are large. Performing speech 
recognition with a very large syntactic FSN 
results in serious computational and memory 
problems. For example, in the DARPA resource 
management task (RMT) (Price, 1988) the 
vocabulary consists of 991 words and there are 
990 different basic sentence structures (sentence 
generation templates, as explained later). The 
original structure of the language (RMT 
grammar), which is given as a non-deterministic 
finite state semantic grammar (Hendrix, 1978), 
contains 100,851 rules, 61,928 states and 
247,269 arcs. A two step automatic optimization 
procedure (Brown, 1990) was used to compile 
(and minimize) the nondeterministic FSN into a 
deterministic FSN, resulting in a machine with 
3,355 null arcs, 29,757 non-null arcs, and 5832 
states. Even with compilation, the grammar is 
still too large for the speech recognizer to handle 
very easily. It could take up to an hour of cpu 
time for the recognizer to process a single 5 
second sentence, running on a 300 Mflop Alliant 
supercomputer (more that 700 times slower than 
real time). However, if we use a simpler 
covering grammar, then recognition time is no 
longer prohibitive (about 20 times real time). 
Admittedly, performance does degrade 
somewhat, but it is still satisfactory (Lee, 
1990/2) (e.g. a 5% word error rate). A simpler 
grammar, however, represents a superset of the 
domain language, and results in the recognition 
of word sequences that are outside the defined 
language. An example of a covering grammars 
for the RMT task is the so called word-pair 
(WP) grammar where, for each vocabulary word 
a list is given of all the words that may follow 
that word in a sentence. Another covering 
grammar is the so called null grammar (NG), in 
which a word can follow any other word. The 
average word branching factor is about 60 in the 
WP grammar. The constraints imposed by the 
WP grammar may be easily imposed in the 
decoding phase in a rather inexpensive 
procedural way, keeping the size of the FSN 
very small (10 nodes and 1016 arcs in our 
implementation (Lee, 1990/1) and allowing the 
recognizer to operate in a reasonable time (an 
average of 1 minute of CPU time per sentence) 

(Pieraccini, 1990). The sequence of words 
obtained with the speech recognition procedure 
using the WP or NG grammar is then used as 
input to a second stage that we call the semantic 
decoder. 

3. Semant ic  Decod ing  

The RMT grammar is represented, according 
to a context free formalism, by a set of 990 
sentence generation templates of the form: 

Sj = ~ ai2 . . . a ~ ,  (1) 

where a generic ~ may be either a terminal 
symbol, hence a word belonging to the 991 word 
vocabulary and identified by its orthographic 
transcription, or a non-terminal symbol 
(represented by sharp parentheses in the rest of 
the paper). Two examples of sentence 
generation templates and the corresponding 
production of non-terminal symbols are given in 
Table 1 in which the symbol e corresponds to the 
empty string. 

A characteristic of  the the RMT grammar is 
that there are no reeursive productions of the 
kind: 

(,4) = a l  a2 - ' .  (A)  . . .  a/v (2) 

For the purpose of semantic decoding, each 
sentence template may then be represented as a 
FSN where the arcs correspond either to 
vocabulary words or to categories of vocabulary 
words. A category is assigned to a vocabulary 
word whenever that vocabulary word is a unique 
element in the tight hand side of a production. 
The category is then identified with the symbol 
used to represent the non-terminal on the l e f t  
hand side of the production. For instance, 
following the example of Table 1, the words 
SHIPS, FRIGATES, CRUISERS, CARRIERS, 
SUBMARINES, SUBS, and VESSELS belong to 
the category <SH/PS>, while the word LIST 
belongs to the category <LIST>. A special word, 
the null word, is included in the vocabulary and 
it is represented by the symbol e. 

Some of the non-terminal symbols in a given 
sentence generation template are essential for the 
representation of the meaning of the sentence, 
while others just represent equivalent syntactic 
variations with the same meaning. For instance, 
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GIVE A LIST OF <OPTALL> <OPTTHE> <SHIPS> 
<LIST> <OPTTHE> <THREATS> 
<OPTALL> AlJ. 

<OPTTHE> THE 

<SHIPS> 

<LIST> 

SHIPS 
FRIGATES 
CRUISERS 
CARRIERS 
SUBMARINES 
SUBS 
VESSELS 
SHOW <OPTME> 
GIVE <OFrME> 
LIST 
GET <Oil]dE> 
FIND <OPTME> 
GIVE ME A LIST OF 
GET <OPTME> A LIST OF 

<THREATS> AI .gRTS 
THREATS 

<OPTME> ME 
E 

TABLE 1. Examples of sentence generation templates and semantic categories 

the correct detection by the recognizer of  the 
words uttered in place of  the non-terminals 
<SHIPS> and <THREATS>, in the former 
examples, is essential for the execution of  the 
correct action, while an error introduced at the 
level o f  the nonterminals <OPTALL>, 
<OP'ITHE> and <LIST> does not change the 
meaning of  the sentence, provided that the 
sentence generation template associated to the 
uttered sentence has been correctly identified. 
Therefore there are non-terminals associated 
with essential information for the execution of  
the action expressed by the sentence that we call 
semantic variables. An analysis of  the 990 
sentence generation templates allowed to define 
a set of  69 semantic variables. 

The function of  the semantic decoder is that 
of  finding the sentence generation template that 
most likely produced the uttered sentence and 
give the correct values to its semantic variables. 
The sequence of  words given by the recognizer, 
that is the input of  the semantic decoder, may 
have errors like word substitutions, insertions or 
deletions. Hence the semantic decoder should be 
provided with an error correction mechanism. 

With this assumptions, the problem of  semantic 
decoding may be solved by introducing a 
distance criterion between a string of  words and 
a sentence template that reflects the nature of  the 
possible word errors. We defined the distance 
between a string of  words and a sentence 
generation templates as the minimum 
Levenshtein 2 distance between the string of 
words and all the string of  words that can be 
generated by the sentence generation template. 
The Levenshtein distance can be easily 
computed using a dynamic programming 
procedure. Once the best matching template has 
been found, a traceback procedure is executed to 
recover the modified sequence of  words. 

3.1 Semantic Filter 

After the alignment procedure described 
above, a semantic check may be performed on 
the words that correspond to the non-terminals 

2. The Levenshtein distance (Levenshtein, 1966) between 
two strings is defined as the minimum number of 
editing operations (substitutions, deletions, and 
insertions) for transforming one string into the other. 
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associated with semantic variables in the 
selected template. If the results of  the check is 
positive, namely the words assigned to the 
semantic variables belong to the possible values 
that those variables may have, we assume that 
the sentence has been correctly decoded, and the 
process stops. In the case of a negative response 
we can perform an additional acoustic or 
phonetic verification, using the available 
constraints, in order to find which production, 
among those related to the considered non- 
terminal, is the one that more likely produced the 
acoustic pattern. There are different ways of 
carrying out the verification. In the current 
implementation we performed a phonetic 
verification rather than an acoustic one. The 
recognized sentence (i.e. the sequence of words 
produced by the recognizer) is transcribed in 
terms of phonetic units according to the 
pronunciation dictionary used in speech 
decoding. The template selected during semantic 
decoding is also transformed into an FSN in 
terms of phonetic units. The transformation is 
obtained by expanding all the non-terminals into 
the corresponding vocabulary words and each 
word in terms of phonetic units. Finally a 
matching between the string of phones 
describing the recognized sentence and the 
phone-transcribed sentence template is 
performed to find the most probable sequence of  
words among those represented by the template 
itself (phonetic verification). Again, the 
matching is performed in order to minimize the 
Levenshtein distance. An example of  this 
verification procedure is shown in Table 2. 

The first line in the example of Table 2 
shows the sentence that was actually uttered by 

the speaker. The second line shows the 
recognized sentence. The recognizer deleted the 
word WERE, substituted the word THERE for the 
word THE and the word EIGHT for the word 
DATE. The semantic decoder found that, among 
the 990 sentence generation templates, the one 
shown in the third line of  Table 2 is the one that 
minimizes the criterion discussed in the previous 
section. There are three semantic variables in 
this template, namely <NUMBER>, <SHIPS> and 
<YEAR>. The backtracking procedure associated 
to them the words DATE, SUBMARINES, and 
EIGHTY TWO respectively. The semantic check 
gives a false response for the variable 
<NUMBER>. In fact there are no productions of 
the kind <NUMBER> := DATE. Hence the 
recognized string is translated into its phonetic 
representation. This representation is aligned 
with the phonetic representation of the template 
and gives the string shown in the last line of the 
table as the best interpretation. 

3.2 Acoustic Verification 

A more sophisticated system was also 
experimented allowing for acoustic verification 
after semantic postprocessing. 
For some uttered sentences it may happen that 
more than one template shows the very same 
minimum Levenshtein distance from the 
recognized sentence. This is due to the simple 
metric that is used in computing the distance 
between a recognized string and a sentence 
template. For example, if  the uttered sentence is: 

WHEN WILL THE PERSONNEL CASUALTY 
REPORT FROM THE YORKTOWN BE 
RESOLVED 

uuered WERE THERE MORE THAN EIGHT SUBMARINES EMPLOYED IN EIGHTY TWO 
recognized THE MORE THAN DATE SUBMARINES EMPLOYED END EIGHTY TWO 
.template !WERE THERE MORE THAN <NUMBER> <SHIPS> EMPLOYED IN <YEAR> 

semantic 
variable value check 

<NUMBER> DATE FALSE 
<SHIPS> SUBMARINES TRUE 
<YEAR> EIGHTY TWO TRuE 

phonetic dh aet m ao r t ay I ae n d d ey t s ah b max r iy n z ix m p i oy d eh n d ey dx iy 
t w e h n i y  

corrected WERE THERE MORE THAN EIGHT SUBMARINES EMPLOYED IN EIGHTY TWO 

TABLE 2. An example of semantic postprocessing 
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and the recognized sentence is: 

WILL THE PERSONNEL CASUALTY REPORT 
THE YORKTOWN BE RESOLVED 

there are two sentence templates that show a 
minimum Levenshtein distance of 2 (i.e. two 
words are deleted in both cases) from the 
recognized sentence, namely: 

1) <WHEN+LL> <OPTTHE> <C-AREA> 

<CASREP> FOR <OFITHE> <SHIPNAME> BE 
RESOLVED 

2) <WHEN+LL> <OPTTHE> <C-AREA> 
<CASREP> FROM <OPTTHE> <SHIPNAME> BE 
RESOLVED. 

In this case both the templates are used as input 
to the acoustic verification system. The final 
answer is the one that gives the highest acoustic 
score. For computing the acoustic score, the 
selected templates are represented as a FSN in 
terms of  the same word HMMs that were used in 
the speech recognizer. This FSN is used for 
constraining the search space of a speech 
recognizer that runs on the original acoustic 
representation of the uttered sentence. 

4. Experimental Results 

The semantic postproeessor was tested using 
the speech recognizer arranged in different 
accuracy conditions. Results are summarized in 
Figures 1 and 2. Different word accuracies were 
simulated by using various phonetic unit models 
and the two covering grammars (i.e. NG and 
WP). The experiments were performed on a set 
of 300 test sentences known as the February 89 
test set (Pallett. 1989) The word accuracy, 
defined as 

1 -  insertions deletions'e substitutions x l 0 0  (3) 
number of words uttered 

was computed using a standard program that 
provides an alignment of the recognized 
sentence with a reference string of words. Fig. 1 
shows the word accuracy after the semantic 
postprocessing versus the original word accuracy 
of the recognizer using the word pair grammar. 
With the worst recognizer, that gives a word 
accuracy of  61.3%, the effect of the semantic 
postprocessing is to increase the word accuracy 
to 70.4%. The best recognizer gives a word 
accuracy of  94.9% and, after the postprocessing, 

the corrected strings show a word accuracy of 
97.7%, corresponding to a 55% reduction in the 
word error rate. Fig. 2 reports the semantic 
accuracy versus the original sentence accuracy of 
the various recognizers. Sentence accuracy is 
computed as the percent of correct sentences, 
namely the percent of sentences for which the 
recognized sequence of words corresponds the 
uttered sequence. Semantic accuracy is the 
percent of sentences for which both the sentence 
generation template and the values of the 
semantic variables are correctly decoded, after 
the semantic postprocessing. With the best 
recognizer the sentence accuracy is 70.7% while 
the semantic accuracy is 94.7%. 
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Figure 1. Word accuracy after semantic postprocess- 
ing 
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Figure 2. Semantic accuracy after semantic postpro- 
cessing 

When using acoustic verification instead of 
simple phonetic verification, as described in 
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section 3.2, better word and sentence accuracy 
can be obtained with the same test data. Using a 
NG covering grammar, the final word accuracy 
is 97.7% and the sentence accuracy is 91.0% 
(instead of 92.3% and 67.0%, obtained using 
phonetic verification). With a WP covering 
grammar the word accuracy is 98.6% and the 
sentence accuracy is 92% (instead of 97.7% and 
86.3% with phonetic verification). The small 
difference in the accuracy between the NG and 
the WP case shows the rebusmess introduced 
into the system by the semantic postprocessing, 
especially when acoustic verification is 
peformed. 

5. Summary 

For most speech recognition and 
understanding tasks, the syntactic and semantic 
knowledge for the task is often represented in an 
integrated manner with a finite state network. 
However for more ambitious tasks, the FSN 
representation can become so large that 
performing speech recognition using such an 
FSN becomes computationally prohibitive. One 
way to circumvent this difficulty is to factor the 
language constraints such that speech decoding 
is accomplished using a covering grammar with 
a smaller FSN representation and language 
decoding is accomplished by imposing the 
complete set of task constraints in a post- 
processing mode using multiple word and string 
hypotheses generated from the speech decoder as 
input. When testing on the DARPA resource 
management task using the word-pair grammar, 
we found (Lee, 1990/2) that most of the word 
errors involve short function words (60% of the 
errors, e.g. a, the, in) and confusions among 
morphological variants of the same lexeme (20% 
of the errors, e.g. six vs. sixth). These errors are 
not easily resolved on the acoustic level, 
however they can easily be corrected with a 
simple set of syntactic and semantic rules 
operating in a post-processing mode. 

The language constraint factoring scheme 
has been shown efficient and effective. For the 
DARPA RMT, we found that the proposed 
semantic post-processor improves both the word 
accuracy and the semantic accuracy significantly. 
However in the current implementation, no 
acoustic information is used in disambiguating 

words; only the pronunciations of words are 
used to verify the values of the semantic 
variables in cases when there is semantic 
ambiguity in finding the best matching string. 
The performance can further be improved if the 
acoustic matching information used in the 
recognition process is incorporated into the 
language decoding process. 
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