
A N  E F F I C I E N T  P A R S I N G  A L G O R I T H M  F O R  T R E E  A D J O I N I N G  

G R A M M A R S  

K a r i n  H a r b u s c h  

DFKI - D e u t s c h e s  F o r s c h u n g s z e n t r u m  fiir K f i n s t l i c h e  I n t e l l i g e n z  

S t u h l s a t z e n h a u s w e g  3, D-6600  S a a r b r i i c k e n  11, F . R . G .  

h a r b u s c h ~ d f k i . u n i - s b . d e  

A B S T R A C T  
In the literature, Tree Adjoining Grammars  
(TAGs) are propagated to be adequate for nat- 
ural language description - -  analysis as well as 
generation. In this paper we concentrate on the 
direction of analysis. Especially important  for an 
implementation of that task is how efficiently this 
can be done, i.e., how readily the word problem 
can be solved for TAGs. Up to now, a parser with 
O(n 6) steps in the worst case was known where n 
is the length of the input string. In this paper, the 
result is improved to O(n 4 log n) as a new lowest 
upper bound. The paper demonstrates how local 
interpretion of TAG trees allows this reduction. 

1 I N T R O D U C T I O N  

Compared with the formalism of context-free 
grammars ( CFC, s), the rules of Tree Adjoining 
Grammars (TAGs) can be imagined intuitively 
as parts of context-free derivation trees. Without  
paying attention to the fact that  there are some 
more restrictions for these rules, the recursion op- 
eration (adjoining) is represented as replacing a 
node in a TAG rule by another TAG rule so that  
larger derivation trees are built. 

This close relation between CFGs and TAGs 
can imply that  they are equivalent. But TAGs 
are more powerful than context-free grammars. 
This additional power - -  characterized as mildly 
context-sensitive - -  leads to the question of 
whether there are efficient algorithms to solve the 
word problem for TAGs. 

Up to now, the algorithm of Vijay-Shanker and 
Joshi with a time complexity of O(n 6) for the 
worst case was known, in addition to several un- 
successful a t tempts  to improve this result. This 
paper's main emphasis is on the improvement of 
this result. An efficient parser for Tree Adjoining 
Grammars  with a worst case time complexity of 
O(n 4 log n) is discussed. 

All known parsing algorithms for TAGs use 
the close structural similarity between TAGs and 
CFGs, which can be expressed by writing all inner 
nodes and all their sons in a TAG as the rule set 
of a context-free grammar (the context-free ker- 
nelof a TAG). Additionally, the constraint has to 
be tested that  all further context-free rules corre- 
sponding to the same TAG tree must appear in 
the derivation tree, iff one rule of that  TAG tree 
is in use. Therefore, it is clear that  a context-free 
parser can be the basis for extensions representing 
the test of the additional constraint. 

On the basis of the two fundamental context- 
free analysers, the different approaches for TAGs 

284 

can be divided into two classes. One class extends 
an Earley parser and the second class extends a 
Cocke-Kasami- Younger ( CKY) parser for CFGs. 
Here, we focus on the approaches with a CKY 
basis, because the relation between the resulting 
triangle matrix and the encoded derivation trees 
is closer than for the item lists of an Earley parser. 

In particular, the paper is divided into the fol- 
lowing sections. First, a short overview of the 
TAG formalism is given in order to have a com- 
mon terminological basis with the reader. 

In the second section, the approach of Vijay- 
Shanker and Joshi is presented as the natural way 
of extending the CKY algorithm for context-free 
grammars to TAGs. As a precondition for that 
analysis, it has to be proven that  each TAG can 
be transformed into two form, a normal form re- 
stricting the outdegree of a node to be less three. 

In section 4, the main section of this paper, 
a normal-form is defined as a precondition for a 
new and more efficient parsing algorithm. This 
form is more restricted than the two form, and is 
closely related to the Chomsky normal form for 
CFGs. The main emphasis lies on the description 
of the new parsing approach. The general idea is 
to separate the context-free parsing and the addi- 
tional testing so that  the test can run locally. On 
the triangle matr ix which is the result of the CKY 
analysis with the context-free kernel, all complete 
TAG trees encoded in the triangle matr ix are 
computed recursively. It is intuitively motivated 
that this approach needs fewer steps than the 
strategy of Vijay-Shanker and Joshi, which stores 
all intermediate states of TAG derivations, be- 
cause the locally represented elementary trees can 
be interpreted as TAG derivations where equal 
parts are computed exactly once instead of indi- 
vidual representations in each derivation. 

In the summary, our experience with an imple- 
mentation in CommonLISP on a Hewlett Packard 
machine is mentioned to illustrate the response 
time in an average case. Finally, different ap- 
proaches for TAG parsing are characterized and 
compared with the approaches presented here. 

2 T A G S  B R I E F L Y  R E V I S I T E D  

First of all, the basic definitions for TAGs are re- 
visited in order to have a common terminology 
with the reader (even though not defined explic- 
itly here, CFGs are used as described, e.g., in 
[Hopcroft, Ullman 79]). 

In 1975, the formalism of Tree Adjoining Gram- 
mars (TAGs) was introduced by Aravind K. 
Joshi, Leon S. Levy and Masako Takahashi ([Joshi 



et al. 75]). Since then, a wide variety of prop- 
erties - -  formal properties as well as linguisti- 
cally relevant ones - -  have been studied (see, e.g., 
[Joshi 85] for a good overview). 

The following example describing the crossed 
dependencies in Dutch should illustrate the for- 
malism (see Figure 1, where the node numbers 
written in slanted font should be ignored here; 
they make sense in combination with the descrip- 
tion of the new algorithm, especially step (tag2)).  
A TAG is a tree generation system. It consists, 
in addition to the set of nonterminals N, the set 
of terminals T and the start symbol S, an extraor- 
dinary symbol in N, of two different sets of trees, 
which specify the rules of a TAG. Intuitively, the 
set I of initial trees can be seen as context-free 
derivation trees. This means the start  symbol 
is the root node, all inner nodes are nontermi- 
nals and all leaves are terminals (e.g., in Figure 
1 tree a). The second set A, the auxiliary trees, 
which can replace a node in an initial tree (which 
is possibly modified by further adjoinings) dur- 
ing the recursion process, must have a form, so 
that again a derivation tree results. The trees/31 
and /32 demonstrate that  restriction. A special 
leaf (the foot node) must exist, labelled with the 
same nonterminal as the root node. Further, it is 
obligatory that  an auxiliary tree derives at least 
one terminal. The union of the initial and the 
auxiliary trees, so to speak the rule set of a TAG, 
is called the set of elementary trees. 

Tree 7 in Figure 1 shows a TAG derivation 
tree, which means an initial tree with an arbi- 
trary number of adjoinings (here /3x is adjoined 
at the node S* in a and/32 at the node S* in the 
adjoined tree /31). During the recursion process 
(adjoining), a node X in an initial tree a, which 
can be modified by further adjoinings, is replaced 
by an auxiliary tree /3 with the same nontermi- 
nal label at root and foot node, that  X is labelled 
with. The incoming edge in X (if it exists; this is 
true if X is not the root node of a) now ends in 
the root node of/3, and all outgoing edges of X in 
a now start at the foot node of/3. 

The set of all initial trees modified by an arbi- 
trary number of adjoinings (at least zero) is called 
T(G), the tree set of a TAG G. The elements in 
this set can also be specified by building a series 
of triples (ai,/3i, Xi) (0 < i < n) - -  the deriva. 
tion - -  where s0 E I, al  (1 < i < n) is the result 
of the adjoining of/31-x in node ~:i-x in ai-x,/3i 
(0 < i < n-l)  is the auxiliary tree, which is ad- 
joined in node Xl in tree ai and Xi (0 < i < n-l) 
is a unique node number in ai.  This description 
has the advantage that  structurally equal trees in 
T(G) which result from different adjoinings can 
be uniquely represented. 

L(G), the language of a TAG, is defined as the 
set containing all leaf strings of trees in T (G) ,  
respectively all trees which can be constructec[ 
by adjoining as described in the corresponding 
derivation. Here, a leaf string means all labels of 
leaves in a tree are concatenated in order from 
left to right. In the tree 3' in Figure 1 'Jan Pier 
Marie e e zag laten zwemmen' is in L(G). 

The relation between TAGs and CFGs can be 
characterized by defining the context.free kernel 

285 

a :  AS°°  /3F ~ S I 0  /32: / ~  

Marie e Plet e 

7: s~ 

l '2 men" 
N~P2' ~ a t e n  

Jan N.P 111 V~ zag 

Marie c 

Figure l: A small sample TAG demonstrating the 
process of ADJOINING 

K of a TAG G. K is a CFG and consists of the 
same sets N, T and S of G, but P(K) is the set 
of all inner nodes of all elementary trees in G 
interpreted as the lefthand side of a rule, where 
all sons in their order from left to right build the 
righthand side of that  rule. E.g., in Figure 1 /32 
has the corresponding context-free rules: (S, NP 
VP), (NP, N), (N, Jan), (VP, S V1), (V1, zag). 

It is clear that having a context-free derivation 
tree (on the basis of the context-free kernel K of 
a TAG G) is a necessary, but not sufficient prop- 
erty for an input string, which is tested to be an 
element in L(G). In the following, this property 
motivates the extension of context-free parsing al- 
gorithms to accept TAGs as well. 

The following parsing algorithms are able to ac- 
cept some extensions of the pure TAG definition 
without changing the upper time bound. Here, 
only TAGs with Constraints are mentioned (for 
more information about other extensions, e.g., 
TAGs with Links, with Unification or Multi Com- 
ponent TAGs - -  some extending the generative 
capacity - -  see, e.g., [Joshi 85]). 

The motivation for TAGs with Constraints 
TAGCs) is to restrict the recursion operation of 

Gs. Each node X in an elementary tree la- 
belled with a nonterminal has an associated con- 
straint set C, which has one 0fthe following forms: 

• NA stands for null adjoining and means that 
at node X no adjoining can take place, 

• SA(B) stands for selective adjoining and 
means that  at X the adjoining of an auxil- 



iary tree (6 B). can take place (where each 
tree in B h a s  the same root and foot node 
label as X) or 

• OA(B) stands for obligalory adjoining and 
means that  at X the adjoining of an auxiliary 
tree (E B) must take place (where each tree 
in B has the same root and foot node label 
as X). 

When TAGs are mentioned in the following, the 
same result can be shown for TAGs with Con- 
straints, which it is not explicitly outlined. Only 
the property of generative power is illustrated, to 
make clear that  finding a parsing algorithm is not 
a trivial task. For more information about the lin- 
guistic relevance of TAGs, the reader is referred, 
e.g., to [Kroch, Joshi 85]. 

A first impression comparing the generative 
power of TAGs and CFGs can be that  they are 
equivalent, but TAGs are more powerful, e.g., the 
famous language a n b" e c" can be produced by 
a TAG with Constraints (the main idea in con- 
structing this grammar is to represent the produc- 
tion of an a, a b and a c in one auxiliary tree). 
Thinking of the application domain of natural 
language processing, the discussion in the linguis- 
tic community becomes relevant as to how pow- 
erful a linguistic formalism should be (see, e.g., 
[Pullum 84] or [Shieber 85]). TAGs are mildly 
conlezt-sensitive, which means that  they can de- 
scribe some context-sensitive languages, but not 
all (e.g., www with w 6 {a,b)*, but ww is accept- 
able for a TAG). One thesis holds that  natural 
language can be described very well by a mildly 
context-sensitive formalism. But this can only be 
empirically confirmed by describing difficult lin- 
guistic phenomena (here, the example in Figure 
1 can only give an idea of the appropriateness of 
TAGs for natural language description). 

This property leads to the question of whether 
the word problem is solvable and if so, how ef- 
ficiently. In the following section, two differ- 
ent polynomial approaches are presented in de- 
tail. The property of efficiency becomes impor- 
tant when a TAG should be used in the applica- 
tion domain mentioned above, e.g., one can think 
of a syntax description encoded in TAG rules 
which is part  of a natural language dialogue sys- 
tem. The execution time is responsible for the 
acceptance of the whole system. Later on, our 
experience with the response time of an imple- 
mentation of the new algorithm is described. 

3 T H E  V I J A Y - S H A N K E R  A N D  
J O S H I  A P P R O A C H  

First, the approach of Vijay-Shanker and Joshi 
(see [Vijay-Shanker, Joshi 85])is discussed as the 
natural way of extending the context-free CKY 
algorithm (see, e.g., [Hopcroft, Ullman 79]) to an- 
alyze TAGs as well. As for the context-free anal- 
ysis with CKY, the grammar is required in nor- 
mal form as a precondition for the TAG parser. 
Therefore, first the two form is defined and the 
idea of the constructive proof for transforming a 
TAG into two form is given. The TAG parser is 
then presented in more detail. 

286 

3.1 T W O  F O R M  T R A N S F O R -  
M A T I O N  

The parsing algorithm of Vijay.Shanker and Joshi 
uses a special CKY algorithm for CFGs which 
requires fewer restrictive constraints than the 
Chomsky normal form for the ordinary CKY al- 
gorithm does. Here, the righthand side of all rules 
of the grammar should have at most two elements. 
This definition has to he adapted for TAG rules 
to extend this CKY parser to analyze TAGs as 
well. 

A TAG G is in two form, iff each node in each 
elementary tree has at most two sons. It can be 
proven that  each TAG G can be transformed into 
a TAG G'  in two form with L(G) - L(G').  

The proof of that  theorem uses the same tech- 
niques as in the context-free case which allow the 
reduction of the number of elements on the right- 
hand side to build the Chomsky normal form. If 
there are more than two sons, the second and all 
additional sons are replaced by a new nontermi- 
hal which becomes the lefthand side of a new rule 
with all replaced symbols on the righthand side 
(for more details see [Vijay-Shanker, Joshi 85]). 
We always refer to a TAG in two form, even when 
it is not explicitly confirmed. 

3.2 T H E  S T E P S  OF T H E  A L G O -  
R I T H M  

Now the idea of extending each context-free anal- 
ysis step by additional tests to ensure that  whole 
TAG trees are in use (sufficient property) is moti- 
vated. This approach was proposed to be natural 
because it tries to build TAG derivation trees at 
once. In contrast, a two level approach is pre- 
sented which constructs all context-free deriva- 
tion trees before the TAG derivations are com- 
puted in a second step. 

In the CKY analysis used here, a cell [row 
/,column j] in the triangle matr ix  (1 < i, j _< 
n, the length of the input string w --- tl  . . . t , ,  
where without loss of generality n >__ 1, because 
the test for e, the empty string, E L(G) sim- 
ply consists of searching for initial trees with all 
leaves labelled with e) contains an element X (6 
N) iff there are rules to produce the derivation for 
t i+l . . . t j_ l .  This invariant is extended to repre- 
sent a TAG derivation for t i+ l . . . t j_ l  iff X 6 [i,j]. 
Therefore additional information of each nonter- 
minal in a cell has to be stored as to which el- 
ementary trees are under completion and what 
subtrees have been analyzed up to now. Impor- 
tant to note is that  the list of trees which are 
under completion, can be longer than one. E.g., 
think of adjoinings which have taken place in ad- 
joined trees as described in Figure 1. 

For realization of that  information, a slack can 
be imagined. Here, the different stack elements 
are stored separately to use intermediate states 
in common. A stack element contains the infor- 
mation of exactly one auxiliary tree which is un- 
der construction, and a pointer to the next stack 
element. This pointer is realized by two addi- 
tional positions for each cell in the triangle matrix 
([i,j,k,l]), where k and I in the third and fourth 
position characterize the fact that  from tk+l to 



t1_1 no information about  the structure of the 
TAG derivation is known in this element and has 
to be reconstructed by examination of all cells 
[k,l,v,w] (k <_ v < w < 1). The stack cells which 
the elements point at must  also be recursively in- 
terpreted until the whole subtree is examined (left 
and right stack pointer are equal). It is clear that 
in interpreting these chains of pointers the stack 
at each node X in the triangle matr ix represents 
all intermediate states of TAG derivations with X 
as root node in an individual cell of the triangle 
matrix. 

The algorithm starts initializing cells for all ter- 
minal leaves (X E [i-l,i,i,i] for ti with father X, 
1 < i < n) and all foot nodes which can be seen 
as nonterminal leaves (X E [i, j ,  i, j] where X is a 
foot node in an auxiliary tree, 0 < i < j < n-l) .  

Just as the CKY algorithm tests all combina- 
tions of neighboring strings, here new elements of 
cells are computed together with the context-free 
invariant computation,  e.g., iff (Z,X Y) is a rule 
in the context-free kernel of the input TAG and 
X E [i, j, k, I], Y E [j - 1, m, p, p] and X and Y are 
root nodes of neighboring parts in the same ele- 
mentary tree, then Z is added to [i, m, k, l]). With 
the additional test to determine whether the rule 
(in the example (Z,X Y)) is in the same TAG tree 
as the two sons (X and Y) and whether the same 
holds for the subtrees below X and Y, it is clear 
that a whole TAG tree can be detected. If this 
is the case, i.e., that  two neighboring stack ele- 
ments should be combined, all elements of cells 
[k, l, m, p] are added to [i, j ,  m, p] iff X E[ i ,  j ,  k,/] 
is the root of an identified auxiliary tree. 

The time complexity becomes obvious when 
the range of the loops for all four dimensions 
of the array is described explicitly (see [Vijay- 
Shanker, Joshi 85]). From a more abstract point 
of view, the main difference between the CKY 
analysis for a CFG and a TAG is that ,  the sub- 
trees below the foot nodes are stored. This fact 
extends the input of length n to n 2 to describe the 
two additional dimensions. On the basis of that  
input, the ordinary CKY analysis can be done, 
and so the expected time complexity is O((n2) 3) 
= O(nS). With the explicitly defined ranges of 
the four dimensions for the positions in the array, 
it is clear that  the worst case and the best case 
for this algorithm are equal. 

4 A N E W  A N D  M O R E  E F F I -  
C I E N T  A P P R O A C H  

A time bound of O(n e) in the best and worst 
case must be seen as a more theoretical result, be- 
cause an implementation of the algorithm shows 
that  the execution time is unacceptable. In order 
to use the formalism for any application domain, 
this result should be improved. In this section, a 
TAG parser with an upper bound of O(n 4 log n) 
in the worst case is presented. The best case is 
O(n3), because a CKY analysis has to at least be 
done. 

287 

4 . 1  N O R M A L  F O R M  T R A N S -  

F O R M A T I O N  

As precondition of the new parsing algorithm, the 
TAG has to be transformed into a normal form 
which contains only trees with nodes and their 
sons, following the Chomsky normal form defini- 
tion. This means that  the following three condi- 
tions hold for a TAG G: 

1. e E L(G) iff a tree with root node S (NA), 
the start symbol, which allows no further ad- 
joinings (null adjoining), and a single termi- 
nal son e is element in the set of initial trees 
I (this tree is called the e tree), 

2. except the e tree, no leaf in another elemen- 
tary tree is labelled with e, and 

3. for each node in each elementary tree, the 
condition holds that  either the node has two 
sons both labelled with a nonterminal or that 
the node has one son labelled with a termi- 
nM. 

In a first step, each TAG is transformed in two 
form so that  condition 3 can be satisfied easier. 
This transformation is accomplished by the con- 
structive proof for the theorem that  for each TAG 
(or TAG with Constraints for which the definition 
holds as well) there exists an equivalent TAG with 
Constraints in normal. 

Important  to note is that  the idea of the trans- 
formation into Chomsky normal form for CFGs 
cannot be adopted further on because this con- 
struction allows the erasure of nonterminal sym- 
bols if their derived structure is added to the 
grammar. In TAGs, a nonterminal not only rep- 
resents the derivation of its subtree in an elemen- 
tary tree, but can be replaced by an adjoining. 
Therefore, the general idea of the proof is to erase 
parts of elementary trees which are not in normal 
form, and represent those parts as new auxiliary 
trees. After this step, the original grammar is in 
normal form and therefore the encoded auxiliary 
trees can be used for explicit adjoinings, always 
producing structures in normal form. Expiicil 
adjoinings mean adjoinings in the new auxiliary 
trees which were built out of the erased parts of 
the original grammar.  These adjoinings replace 
the nodes which are not in normal form. Since 
the details of the different steps are of no further 
interest here, the reader is referred to [Harbusch 
89] for the complete proof. 

4 . 2  T H E  S T E P S  O F  T H E  N E W  

P A R S I N G  A L G O R I T H M  

The input of the new parser consists of a TAG G 
in normal form, and a string w = tl  . . . t , .  With 
condition one in the normal form definition, the 
test for e E L(G) is trivial again. From now on 
this case is ignored, i.e., n > 1. 

The algorithm is divided into two steps. First 
a CKY analysis is done with the context-free ker- 
nel K of the input TAG G. Here, the standard 
CKY algorithm as described in [Hopcroft, Uliman 
79] is taken, which requires a CFG in Chomsky 
normal form. K satisfies the requirement that  
the TAG G is in normal form. One can think 
that  it would be sufficient to simply transform the 



context-free kernel into Chomsky normal form in- 
stead of transforming the input TAG. But with 
this strategy one would loose the one-to-one map- 
ping of context-free rules in the CFK and father- 
son-relations in a TAG rule which becomes impor- 
tant for finding complete TAG rules in the second 
step of the new parser. 

Here the invariant of the CKY analysis is X 
E [i, j] iff there are rules to produce a derivation 
for ti ... t j+i-1.  This information is slightly ex- 
tended to recognize complete subtrees of elemen- 
tary trees in the triangle matrix. In the terminol- 
ogy of Vijay-Shanker and Joshi, a stack element is 
constructed. But it 's important  to note that  the 
pointers are not interpreted, so that here local in- 
formation is computed relative to an elementary 
tree. 

Actually, the correspondence between an ele- 
ment in the triangle matr ix and a TAG tree is 
represented as a pointer from the node in a tri- 
angle cell to a node in an elementary tree as de- 
scribed in Figure 2 (ignore the dotted lines at the 
moment).  An equivalent description is presented 
in Figure 3 by storing the unique node number at 
which the pointer ends in the elementary tree and 
additionally a flag indicating whether the TAG 
tree is initial (I) or auxiliary (A) and whether the 
node is root node (T) of the tree or not (L). E.g., 
in Figure 2 the NP-son of the root node S in tree 
T carries the flag TA. 

In this terminology, the special case that  the 
subtree contains the foot node has to be repre- 
sented explicitly, because the foot node is a leaf 
in the sense of elementary trees, but not in the 
sense of a derivation tree. To know where this 
leaf is positioned in the triangle matrix,  a foot 
node pointer (FP) is defined from the root of the 
subtree to the foot node if one exists in that  tree 
(in Figure 2 the dashed arc). 

initial tree ~ auxiliary tree,B: 3' where,6' is adjoined in o~: 

N~'~I/ VP'~I DETH"~II/I ~ NP ~ , ~ , . ~  rVP 
. , ,  J I°ET-- 

Figure 2: Example illustrating the inductive basis 
of the new invariant 

So, the invariant in the first step of the new 
parsing algorithm is computed during the CKY 
analysis - -  in our second terminology - -  by re- 
cursively defining extended node numbers ( ENNs) 
by triples (NN,TK,FP)  as follows: 

I n i t i a l i z a t i o n  
Each element X in level 1 (father of a terminal 
t) is initialized with an ENN, where NN is the 
node number of X in a father-son-relation in an 
elementary tree a ( x ---* t), the tree kind TK := 
LU (U=I,A) iff a E U and NN doesn't  .end with 
zero (X is not the root of a)  else TK := TU, and 
the foot node pointer FP := nil, because the fa- 

288 

ther of a terminal is never a foot node in the same 
auxiliary tree. 
For each node X in level 1 the ENN := iNN=node 
number of a foot node in an auxiliary tree, LA, 
pointer to that  ENN) is added iff X is the label 
of the foot node with node number NN - -  to de- 
scribe foot node leaves. 

R e c u r s i o n  a l o n g  t h e  C K Y  ana lys i s  
For each new context-free element Z (Z ; X Y), 
the following tests are done in addition: 
If X has an ENN (NNi ,TK1,FPi )  and Y has 
an ENN (NNz,TK2,FP2) and NNI-(1 in the last 
positition) = NN2-(2 in the last position) and 
TKi  = TK2 and at least FPi  or FP2 = nil then for 
Z an ENN (NNI- I ,TK,FP)  is added where TK = 
TK1 if Z is not the root node of the whole tree (in 
this case T K  = T K I - ( L + T  in the first position)); 
FP = FPi (i=1,2), which is not equal nil, else it 
is nil. 
If an auxiliary tree with Z the label of the 
foot node exists, the ENN (NN=node number of 
the foot node in that  tree, LA, pointer to that 
element) is added to Z in the currently manipu- 
lated triangle cell - -  to represent the possibility 
of an adjoining in that  node. 

It is obvious that  this invariant consisting of 
the nonterminal in a cell of the triangle matr ix  to 
represent the context-free invariant, the pointers 
to elementary trees, and the foot node pointers 
to represent which part of an elementary tree is 
analyzed computes less information than an array 
cell in the approach of Vijay-Shanker and Joshi 
does, where whole subtrees of the derivation tree 
are stored not stopping at a foot node as we do. 
Also, it is clear that  this invariant can be com- 
puted recursively during the ordinary CKY steps 
within the upper time bound of O(n3). The num- 
ber of pointers to elementary trees at each node 
can be restricted by the number ofoccurences of a 
nonterminal as the left-hand side symbol of a rule 
in the context-free kernel (which is a constant). 
The number of foot node pointers is restricted by 
the outdegree of each cell in the triangle matrix 
b<e n), because only for such an edge can an FP 

recursively defined. 
In the second step, whole TAG derivations are 

computed by combining the subtrees of elemen- 
tary trees (represented by the invariant after step 
1), according to the adjoining definition inter- 
preted inversely. Inversely means that  the equiva- 
lence in the adjoining definition is not interpreted 
in the direction that  a node is replaced by a tree, 
but in the opposite direction, where trees have to 
be detected and are eliminated. 

Since all TAG derivation trees of a string w 
and a TAG G are encoded in the triangle matrix 
bnecessary condition w E CFK(G))  and have to 

e found in the triangle matrix,  the derivation 
definition has to be modified as well to support 
the 'inverse' adjoining definition. It means that  
a string w E L(G) iff there exists a tree, where 
recursively all complete auxiliary trees can be de- 
tected and replaced b y t h e  label of the root node 
of the auxiliary tree until this process terminates 
in an initial tree. 

The second step formulates the algorithm for 



exactly this definition. An auxiliary tree in the 
derivation tree which contains no further adjoin- 
ings is called an innermost tree. As long as the 
termination condition isn't satisfied, at least one 
innermost tree must exist in the derivation tree. 

Returning to the invariant in the first step, in- 
nermost trees are characterized as a pointers to 
the root node of an auxiliary tree or in the rep- 
resentation of ENNs as the node number of the 
root node (in our numbering algorithm visible by 
the end number zero) and the tree kind flag TA 
(total auxiliary). 

These trees are eliminated by identifying the 
root and the foot nodes of innermost trees, so to 
speak, as interpretation of the foot node point- 
ers as e edges. This can be represented sim- 
ply as propagation of the pointers from the foot 
node to the root node. This information is suffi- 
cient because the strategy of the algorithm checks 
whether an incoming edge in a node and the in- 
formation of an outgoing edge (without loss of 
generality represented at the start  node of the 
edge) belong to the same elementary tree. Note 
that  this bot tom-up interpretation of the deriva- 
tion trees (propagation) realizes that  the finding 
of larger subtrees is computed only once (the 
father-son relation is only interpreted in the up- 
ward direction). In Figure 2 the dotted line from 
the NP node in 7 describes the elimination of/3 
by propagation of the information from the foot 
node to the root node. 

Since it doesn't mat ter  in the algorithm what 
history an information in a node has (especially 
how much and exactly what trees are eliminated) 
all possibilities of producing new extended node 
numbers - -  representing the new invariant - -  are 
simply called elimination. The information in a 
node represents what further parts of the same 
elementary tree are expected to be found in the 
triangle matr ix  above that  node. A subclassifica- 
tion differentiates what kinds of incoming edges 
should be compared to find these parts. One class 
describes whether such a further piece is detected 
- -  by interpreting incoming and outgoing edges 
of the same node (simple elimination). E.g., this 
is the case in the inductive basis of the invariant 
definition. The second class realizes the elimina- 
tion of a detected innermost tree, where its foot 
node pointer ends in that  node. Then the neigh- 
borhood of the incoming edges in the root node of 
the innermost tree and the outgoing edges in the 
foot node (the currently examined node where the 
invariant contains the information of the outgoing 
edges from this node) has to be tested (complex 
elimination). By this classification, each neigh- 
borhood - -  the explicitly represented ones in the 
triangle matr ix  as well as the neighborhoods via 
e respectively foot node pointer edges - -  is exam- 
ined exactly once during the algonthm. 

The fact that  a derivation tree again results 
after an elimination, which is encoded in the tri- 
angle matr ix as well, becomes clear by looking 
at the invariant after an elimination. In the first 
step the invariant describes complete subtrees of 
elementary trees. If a complete innermost tree is 
eliminated by propagating the complete subtrees 
of elementary trees derived by the foot node to 
the root node, this represents the fact that  the 

289 

root node can derive both trees, but the subtrees 
below the foot node have to be completed. This 
can be done again by elimination (in Figure 2 the 
dotted line from node S represents the computa- 
tion of a TAG tree after an elimination). 

Since this is not the place to present the algo- 
r i thm in detail, it is described in informal terms: 

( tagl)  Treatment of  t h e  E m p t y  String 
ACCEPT : -  false; 
i f w  = e t h e n  i f  e tree 6 I 

t h e n  A C C E P T  := true; fi; 
goto  (tagT); fi; 

From now on, G is interpreted without the e 
tree. 

( tag2)  D e f i n i t i o n  o f  U n i q u e  N o d e  N u m b e r s  
V nodes X in ~ 6 (I t9 A) a unique node 
number NN is defined recursively as follows: 

• a has a unique number k all over the 
grammar (starting with zero), 

• if X is root node NN := k0, for X the 
left or only son of the root NN := kl ,  for 
X the right son of the root (if existing) 
NN := k2, and 

• for the left or only son of a node with 
node number kx (x 6 {1,2} +) NN := 
kxl ,  for the right son of kx NN := kx2. 

( tag3)  Computat ion  o f  the  C o n t e x t - F r e e  
K e r n e l  fo r  T h e  T A G  ( C F K )  
Each inner node of an elementary tree in G 
and its sons are interpreted as a context-free 
rule where the node number and the con- 
straints are represented as well. 

( tag4)  Cocke-  K a s a m i - Y o u n g e r -  A n a l y s i s  
w i t h  C F K  a n d  w 
The slightly extended CKY algorithm is ap- 
plied to w and CFK. The result is a triangle 
matr ix if the following holds: 

i f  w ~L(CFK) t h e n  g o t o  ( tagT) 
else goto (tagS); fi; 

(tagS) Computat ion  o f  the  Initial State  
All possible extended node numbers are com- 
puted, which means that all auxiliary trees, 
or respectively all subtrees of elementary 
trees, are computed on the triangle matrix 
and gathered in SAT, the set o f  a c t i v e  
trees. 

(tag6) Iteration on the El imination and the 
Initial State  
NEWSAT1 and NEWSAT2 are empty sets 
and COUNT : -  1. 

(it0) if  an extended node number with tree 
kind TK  -- TI  6 [1,n] t h e n  ACCEPT 
:= true and COUNT := n; fi; 

( i t1)  i f  COUNT - n t h e n  g o t o  ( tagT);  fi; 

(it2) ¥ nodes k with extended node num- 
ber ENN 6 SAT and tree kind of ENN 
= TA : propagate the extended node 
number of the node which the foot node 
pointer points at to the root node and 
add this information to NEWSAT1; 



( i t3)  V nodes k E NEWSAT1 : do all sim- 
ple and complez eliminations and add 
the new extended node numbers to 
NEWSAT2; 

( i t4)  SAT := NEWSAT2; NEWSAT1 and 
NEWSAT2 := ~, COUNT := 
C O U N T + I  and g o t o  (it0).  

( tagT) O u t p u t  o f  t h e  R e s u l t  

I f  A C C E P T  = true t h e n  w E L(G) 
e lse  w ~ L(G); ft. 

Figure 3 illustrates the recursion step (tag6) for 
a single, but  arbitrary innermost tree represent- 
ing an auxiliary tree with the root node number 
numl.  

for all auxiliary trees in SAT: all extended node numbers (it2) 
. ( n u r n l , ~ A , F / ~ r )  in the node FP1 points at: 

(nurn~,l.A~FP2) (num2,LA or TI or LI,nil) 

and . ~  or A 

propagate these exlanded node numbers to the mot node: 

New exlended node numbers and all trees with tree kind LA at the root are 
added to NEWSATI. 

case a) a s/n'p/e elirru'nation (it3) for case b) a coml~x elimlnation for 
(num2,LA.F P2) is de~rbed: (num2,LA,FP2) is deeo'bed: 

(num4'LA'~FP2) ' ~  num~ 
3,LA,nlI) 

here exists a context-free rule here exists an eliminated tree 
(nurn,p nurn 2 num3) and below nurn 2 with a foot node pointer 
the subtree is cornpiste¥ analyzed, (dashed line) to the Iooal root 
this means nurn 4. nurn 2. I -  nurn3-2 node (num2,LA,FP2) 
(in this case nurn 4 not equal root). 

(it4): Results are added to SAT, all other sels are redefined wlthe. 

START " End of recurrJon (It0) M1er at most n-1 interations (Itl). 

Figure 3: Illustration of the step of recursion 

Here, the question of correctness is not dis- 
cussed in more detail (see [Harbusch 89]). It 
should be intuitively clear with the correspon- 
dence between the derivation definition and it's 
interpretation in the recursion step. 

Actually, the main emphasis lies on the ex- 
planation of the time complexity (for the formal 
proof see [Harbusch 89]). A good intuition can 
be won by concentrating for a first glance on a 
single, but  arbitrary TAG derivation tree 6 for w 
= tz...tn in the triangle matr ix after step one. It 
is clear that  (i contains at most n-1 adjoinings, 
because each TAG tree must produce at least one 
terminal. Therefore the recursion, which finds in- 
dependent (unnested) adjoinings simultaneously 
(after elimination of nested adjoinings identified 
in the last recursion step), terminates definitively 
after n-1 loops. 

At the beginning, at most O(n 2) innermost 
trees can exist in the triangle matrix. Each ter- 

2 9 0  

minal can be a leaf in a constant number of ele- 
mentary trees and with an indegree of O(n-1) in 
row 1 of the triangle matrix,  the number of oc- 
curences of elementary trees containing the input 
symbol tl (1 .< i < n) encoded in the invariant 
after step one is restricted. 

Since an elimination is defined along the path 
between root and foot node of an auxiliary tree, 
which has at least length 1 (i.e., root and foot 
node are father and son), the foot node informa- 
tion is always propagated to a higher row in the 
triangle matrix. The triangle matr ix  has depth 
n so that  the information of a node in ~f - -  our 
explicitly chosen derivation tree - -  can only be 
passed to O(n-1) nodes because each node has 
indegree 1 in a derivation tree. The passing of 
information (propagation) stands for the elimi- 
nation of O(n-1) innermost trees along the path 
to the root node. So, the invariant of that  node 
(a constant number of ENNs) can be propagated 
to O(n) nodes. As a result, the number of in- 
variants at a node increases to O(n). This must 
be done for all nodes (O(n2)) so that  the overall 
number of steps to find a special, but  arbitrary 
TAG derivation tree is O(n3). 

These suggestions can be used as a basis for 
finding all derivation trees in parallel instead of a 
single, but arbitrary one, because all intermedi- 
ate states in the triangle matr ix are shared. The 
only difference is that  the indegree of a node can- 
not be restricted to 1, but to O(n) so that  the 
exponent 3 increases to 4. The extension "log n" 
results from storing the foot node pointers, where 
addresses have to be represented instead of num- 
bers of other cells as in the Vijay-Shanker-Joshi 
approach. 

In other words, an intuition for an upper time 
bound of the algorithm is that  the recursion step 
can be seen as a CKY analysis, because particu- 
larly neighboring subtrees are combined to build 
a larger structure, where the constant number of 
nonterminals in a cell has to be replaced by O(n) 
candidates (O(n 3) x n). 

Another intuition gives a comparison with the 
Vijay.Shanker and Joshi approach. It is obvious 
that  our new approach has a different t ime bound 
for the best and the worst case, because all possi- 
bilities violating the necessary condition to have a 
context-free derivation are filtered out before step 
two is started. In the Vijay-Shanker and Joshi ap- 
proach for all context-free subtrees of the triangle 
matrix, the invariant is computed. But this fact 
doesn't modify the upper time bound. The main 
difference lies in the execution time for the two 
different invariants. In the Vijay-Shanker.Joshi 
approach, all different TAG derivations for a sub- 
tree are gathered in the stack of a node in a cell. 
For all these possibilities, the building process of 
larger structures is done separately, although the 
differences in the derivation tree doesn't concern 
the auxiliary tree actually mentioned. Our local 
invariant always handles an auxiliary tree with no 
further information about the derivation. There- 
fore each elimination of an auxiliary tree is done 
once only for all derivation trees. From this point 
of view, the different exponent results from the 
existence of O(n 2) stack pointers at each node in 



the triangle matrix. 
For both approaches, the integration of TAGs 

with Constraints is mentioned in common. For 
the new approach, this extension is obligatory be- 
cause the normal form transformation produces 
a TAGC. Anyway, this additional computation 
doesn't change the upper time bound, because 
constraints are local and their satisfaction has 
only to be tested iff an innermost tree should 
be eliminated ( i.e., a stack pointer has to be 
extended). In this case it had to be checked 
whether all obligatory constraints in the elimi- 
nated tree are satisfied and whether the adjoining 
was allowed (by analyzing to which tree the rule 
of the incoming edge in the root node belongs and 
what constraint the end point of that edge has). 

5 S U M M A R Y  
In the application domain of natural language 
processing, the execution time in an average case 
is of great interest as well. For the new parsing 
algorithm, a result is not yet known, but in basic 
considerations the main idea is to take the depth 
of analyzed parts of derivation trees as a constant 
term to come up with a result of O(n3). 

Actually, an implementation of the presented 
formalism exists written in Common LISP on 
a Hewlett Packard machine of the 9000 series 
(for more details about the implementation see 
[Buschauer et al. 89]). To give an idea of the re- 
sponse time, the analysis of a sentence of about 10 
to 15 words and a grammar of about 20 to 30 ele- 
mentary trees takes at most 6 milliseconds. Cur- 
rently, this implementation is extended to build 
a workbench supporting a linguist in writing and 
testing large TAG grammars (respectively TAGs 
with Unification). 

Finally, other approaches for TAG parsing 
should be mentioned and compared with the pre- 
sented result. In the literature, the two Ear- 
leybased approaches of Schabes and Joshi (see 
[Schabes, Joshi 89]) and of Lang ([Lang 86]) are 
proposed. The lowest upper time bound for the 
Schabes.Joshi approach is O(n 9) and for the ap- 
proach of Lang O(n6). But both algorithms come 
up with better results in the best and in the av- 
erage case. In the framework of parallel parsing, 
results for TAGs are also proposed. In [Palis et 
al. 87] a linear time approach on O(n 5) proces- 
sors and in [Palis, Shende 88] a sublinear (O(log 2 
n)) algorithm is described. 

One future perspective is to parallelize the 
new approach by the same method so that the 
expected result should be a linear time bound 
on O(n 2) processors. More concretely, an op- 
timal layout for two processors is looked for, 
where independent subtrees have to be specified 
(candidates are not always total innermost trees, 
e.g., if only one TAG derivation exists where all 
innermost trees are nested). 

Further on, we concentrate on appropriate ex- 
tensions of the TAG formalism for analysis as well 
as generation of natural language with the ambi- 
tious aim to verify that TAGs (in some extension) 
are appropriate for a bidirectional and integrated 
description of syntax, semantics and pragmatics. 

291 

A C K N O W L E D  G E M E N T S  
This paper is based on thesis work done under 
supervision of Wolfgang Wahlster and Gffnther 
Hotz. I would like to gratefully acknowledge Hans 
Arz, Bela Buschauer, G*inther Hotz, Paul Moli- 
tor, Peter Poller, Anne Schauder and Wolfgang 
Wahlster for their valuable interactions. 
I would like to thank Aravind Joshi for his helpful 
comments in earlier discussions and especially on 
this paper. 

R E F E R E N C E S  
B. Buschauer, P. Poller, A. Schauder, K. Har- 

busch. 1989. Parsing yon TAGs mit Unifikation. 
Saarbriicken, F.R.G.: "AI-Laboratory" Memo, 
Dept. of Computer Science, Univ. of Saarland. 

K. Harbusch. 1989. E•ziente Strukturanalyse 
nat~irlicher Sprache mit Tree Adjoining Gram. 
mars. PhD Thesis, Saarbriicken, F.R.G.: Dept. 
of Computer Science, Univ. of Saarland. 

J. E. Hopcroft, J. D. Ullman. 1979. In. 
troduction to Automata Theory, Languages, and 
Computation. Addison-Wesley, Reading, Mas- 
sachusetts. 

A. K. Joshi. 1985. An Introduction to Tree Ad- 
joining Grammars. Philadelphia, Pennsylvania: 
Technical Report MS-CIS-86-64, Dept. of Com- 
puter and Information Science, Moore School, 
Univ. of Pennsylvania. 

A. K. Joshi, L. S. Levy, M. Takahashi. 1975. 
Tree Adjoining Grammars. Journal of Computer 
and Systems Science 10:1, Seite 136-163. 

T. Kroch, A. K. Joshi. 1985 Linguistic Rel- 
evance of Tree Adjoining Grammars. Philadel- 
phia, Pennsylvania: Technical Report MS-CIS- 
85-16, Dept. of Computer and Information Sci- 
ence, Moore School, Univ. of Pennsylvania. 

B. Lang. 1989 forthcoming. A Uniform Frame- 
work for Parsing, Proceedings of the Interna- 
tional Workshop on Parsing Technologies in Pitts- 
burgh, 28~h-31 rd of August. 

G. Pullum. 1984. On Two Recent Attempts to 
Show That English ls Not a CFL. Computational 
Linguistics 10(4): 182-186. 

M. A. Pallis, S. Shende, D. S. L. Wet. 1987. 
An Optimal Linear-Time Parallel Parser for Tree 
Adjoining Languages. Philadelphia, Pennsyl- 
vania: Technical Report MS-CIS-87-36, Dept. 
of Computer and Information Science, Moore 
School, Univ. of Pennsylvania. 

Y. Schabes, A. Joshi. 1988. An Earley-Type 
Parsing Algorithm for Tree Adjoining Grammars. 
Philadelphia, Pennsylvania: Technical Rep.MS- 
CIS-88-36, Dept. of Computer and Information 
Science, Moore School, Univ. of Pennsylvania. 

S. M. Shieber. 1985. Evidence against the 
Context.Freeness of Natural Language. Linguis- 
tics and Philosophy 8: 333-343. 

K. Vijay-Shanker. 1987. A Study of Tree Ad- 
joining Grammars. Philadelphia, Pennsylvania: 
PhD Thesis, Dept. of Computer and Information 
Science, Moore School, Univ. of Pennsylvania. 

K. Vijay-Shanker, A. K. Joshi. 1985. 
Some Computational Properties o/ Tree Adjoin- 
ing Grammars. Chicago, Illinois: Proceedings of 
the 23 "d Annual Meeting of the Association for 
Computational Linguistics: 82-93. 


