
P A R S I N G T H E L O B C O R P U S

Carl G. de Marcken
MIT AI Laboratory Room 838

545 Technology Square
Cambridge, MA 02142

Internet: cgdemarc@ai.mit.edu

ABSTRACT

This paper 1 presents a rapid and robust pars-
ing system currently used to learn from large
bodies of unedited text. The system contains a
multivalued part-of-speech disambiguator and
a novel parser employing bottom-up recogni-
tion to find the constituent phrases of larger
structures that might be too difficult to ana-
lyze. The results of applying the disambiguator
and parser to large sections of the Lancaster/
Oslo-Bergen corpus are presented.

I N T R O D U C T I O N
We have implemented and tested a pars-

ing system which is rapid and robust enough
to apply to large bodies of unedited text. We
have used our system to gather data from the
Lancaster/Oslo-Bergen (LOB) corpus, generat-
ing parses which conform to a version of current
Government-Binding theory, and aim to use the
system to parse 25 million words of text

The system consists of an interface to the
LOB corpus, a part of speech disambiguator,
and a novel parser. The disambiguator uses
multivaluedness to perform, in conjunction with
the parser, substantially more accurately than
current algorithms. The parser employs bottom-
up recognition to create rules which fire top-
down, enabling it to rapidly parse the constituent
phrases of a larger structure that might itself be
difficult to analyze. The complexity of some of
the free text in the LOB demands this, and we
have not sought to parse sentences completely,
but rather to ensure that our parses are accu-
rate. The parser output can be modified to con-
form to any of a number of linguistic theories.
This paper is divided into sections discussing
the LOB corpus, statistical disambiguation, the
parser, and our results.

1 This paper reports work done at the MIT
Artificial Intelligence Laboratory. Support for
this research was provided in part by grants
from the National Science Foundation (under a
Presidential Young Investigator award to Prof.
Robert C. Berwick); the Kapor Family Foun-
dation; and the Siemens Corporation.

T H E L O B C O R P U S
The Lancaster/Oslo-Bergen Corpus is an on-

line collection of more than 1,000,000 words of
English text taken from a variety of sources,
broken up into sentences which are often 50 or
more words long. Approximately 40,000 differ-
ent words and 50,000 sentences appear in the
corpus.

We have used the LOB corpus in a standard
way to build several statistical tables of part of
speech usage. Foremost is a dictionary keying
every word found in the corpus to the number
of times it is used as a certain part of speech,
which a/lows us to compute the probability that
a word takes on a given part of speech. In ad-
dition, we recorded the number of times each
part of speech occurred in the corpus, and built
a digram array, listing the number of times
one part of speech was followed by another.
These numbers can be used to compute the
probability of one category preceding another.
Some disambiguation schemes require knowing
the number of trigram occurrences (three spe-
cific categories in a row). Unfortunately, with
a 132 category system and only one million
words of tagged text, the statistical accuracy of
LOB trigrams would be minima/. Indeed, even
in the digram table we have built, fewer than
3100 of the 17,500 digrams occur more than 10
times. When using the digram table in statisti-
ca/schemes, we treat each of the 10,500 digrams
which never occur as if they occur once.

S T A T I S T I C A L D I S A M B I G U A T I O N
Many different schemes have been proposed

to disambiguate word categories before or dur-
ing parsing. One common style of disambigua-
tots, detailed in this paper, rely on statistical
cooccurance information such as that discussed
in the section above. Specific statistical disam-
biguators are described in both DeRose 1988
and Church 1988. They can be thought of as
algorithms which maximize a function over the
possible selections of categories. For instance,
for each word A-" in a sentence, the DeRose al-
gorithm takes a set of categories {a~, a~,. . .} as
input. It outputs a particular category a~z such

243

that the product of the probability that A: is
the category a~, and the probability that the

category a~.. occurs before the category a z+l is
i . z+l

maximized. Although such an algori thm might
seem to be exponential in sentence length since
there are an exponential number of combina-
tions of categories, its limited leftward and right-
ward dependencies permit linear t ime dynamic
programming method. Applying his algorithm
to the Brown Corpus 2, DeRose claims the ac-
curacy rate of 96%. Throughout this paper we
will present accuracy figures in terms of how of-
ten words are incorrectly disambiguated. Thus,
we write 96% correctness as an accuracy of 25
(words per error).

We have applied the DeRose scheme and
several variations to the LOB corpus in order
to find an optimal disambiguation method, and
display our findings below in Figure 1. First,
we describe the four functions we maximize:

M e t h o d A: Method A is also described in
the DeRose paper. It maximizes the product
of the probabilities of each category occurring
before the next, or

n - - 1

IIP (a~zis-flwd-by a'~+l)~+1
z = l

M e t h o d B: Method B is the other half of
the Dettose scheme, maximizing the product of
the probabilities of each category occurring for
its word. Method B simply selects each word's
most probable category, regardless of context.

n

H P (Azis-cat aZz)
z----1

M e t h o d C" The DeRose scheme, or the
max imum of

n n - 1

IT P (A~is-cat a~,) l'-I P (a~ is-flwd-by a~?:~)
z=l z=l

M e t h o d D: No statistical disambiguator
can perform perfectly if it only returns one part
of speech per word, because there are words and
sequences of words which can be truly ambigu-
ous in certain contexts. Method D addresses
this problem by on occasion returning more
than one category per word.

The DeRose algori thm moves from left to
right assigning to each category a~ an optimal
pa th of categories leading from the start of the
sentence to a~, and a corresponding probability.

2 The Brown Corpus is a large, tagged text
database quite similar to the LOB.

It then extends each path with the categories of
the word A -'+1 and computes new probabilities
for the new paths. Call the greatest new prob-
ability P. Method D assigns to the word A z
those categories {a~} which occur in those new
paths which have a probability within a factor
F of P. It remains a linear t ime algorithm.

Naturally, Method D will re turn several cat-
egories for some words, and only one for others,
depending on the particular sentence and the
factor F. If F = 1, Method D will re turn only
one category per word, but they are not nec-
essarily the same categories as DeRose would
return. A more obvious variation of DeRose,
in which al ternate categories are subst i tuted
into the DeRose disambiguation and accepted
if they do not reduce the overall disambigua-
tion probability significantly, would approach
DeRose as F went to 1, but turns out not to
perform as well as Method D. 3

D i s a m b i g u a t o r R e s u l t s : Each me thod
was applied to the same 64,000 words of the
LOB corpus. The results were compared to the
LOB part of speech pre-tags, and are listed in
Figure 1. 4 If a word was pre-tagged as being
a proper noun, the proper noun category was
included in the dictionary, but no special infor-
mat ion such as capitalization was used to dis-
tinguish that category from others during dis-
ambiguation. For that reason, when judging
accuracy, we provide two metrics: one simply
comparing disambiguator output with the pre-
tags, and another that gives the disambiguator
the benefit of the doubt on proper nouns, under
the assumption that an "oracle" pre-processor
could distinguish proper nouns from contextual
or capitalization information. Since Method D
can return several categories for each word, we
provide the average number of categories per
word returned, and we also note the setting of
the parameter F , which determines how m a n y
categories, on average, are returned.

The numbers in Figure 1 show that sim-
ple statistical schemes can accurately disam-
biguate parts of speech in normal text, con-
firming DeRose and others. The extraordinary

3 To be more precise, for a given average
number of parts of speech re turned V, the "sub-
st i tution" method is about 10% less accurate
when 1 < V < 1.1 and is almost 50% less ac-
curate for 1.1 < V < 1.2.

4 In all figures quoted, punctuat ion marks
have been counted as words, and are
t reated as parts of speech by the statistical
disambiguators.

244

Method: A B C D(1)D(.3)
Accuracy: 7.9 17 23 25 41
with oracle: 8.8 18 30 31 54
of Cats: 1 1 1 1 1.04

Method: D(.1) D(.03) D(.01) D(.003)
Accuracy: 70 126 265 1340
with oracle: 105 230 575 1840
No. of Cats: 1.09 1.14 1.20 1.27

Figure 1: Accuracy of various disambiguation
strategies, in number of words per error. On
average, the dictionary had 2.2 parts of speech
listed per word.

accuracy one can achieve by accepting an ad-
ditional category every several words indicates
that disambiguators can predict when their an-
swers are unreliable.

Readers may worry about correlation result-
ing from using the same corpus to both learn
from and disambiguate. We have run tests by
first learning from half of the LOB (600,000
words) and then disambiguating 80,000 words
of random text from the other half. The ac-
curacy figures varied by less than 5% from the
ones we present, which, given the size of the
LOB, is to be expected. We have also applied
each disambiguation method to several smaller
(13,000 word) sets of sentences which were se-
lected at complete random from throughout the
LOB. Accuracy varied both up and down from
the figures we present, by up to 20% in terms of
words per error, but relative accuracy between
methods remained constant.

The fact the Method D with F = 1 (with
F = 1 Method D returns only one category per
word) performs as well or even better on the
LOB than DeKose's algorithm indicates that,
with exceptions, disambiguation has very lim-
ited rightward dependence: Method D employs
a one category lookahead, whereas DeRose's
looks to the end of the sentence. This sug-
gests that Church's strategy of using trigrams
instead of digrams may be wasteful. Church
manages to achieve results similar or slightly
better than DeRose's by defining the probabil-
ity that a category A appears in a sequence
ABC to be the number of times the sequence
ABC appears divided by the number of times
the sequence BC appears. In a 100 category
system, this scheme requires an enormous ta-
ble of data, which must be culled from tagged
text. If the rightward dependence of disam-

biguation is small, as the data suggests, then
the extra effort may be for naught. Based on
our results, it is more efficient to use digrams
in genera] and only mark special cases for tri-
grams, which would reduce space and learning
requirements substantially.

I n t e g r a t i n g D i s a m b i g u a t o r and Parser:
As the LOB corpus is pretagged, we could ig-
nore disambiguation problems altogether, but
to guarantee that our system can be applied to
arbitrary texts, we have integrated a variation
of disambiguation Method D with our parser.
When a sentence is parsed, the parser is ini-
tially passed all categories returned by Method
D with F = .01. The disambiguator substan-
tially reduces the time and space the parser
needs for a given parse, and increases the parser's
accuracy. The parser introduces syntactic con-
straints that perform the remaining disambigua-
tion well.

T H E P A R S E R

I n t r o d u c t i o n : The LOB corpus contains
unedited English, some of which is quite com-
plex and some of which is ungrammatical. No
known parser could produce full parses of all
the material, and even one powerful enough to
do so would undoubtably take an impractical
length of time. To facilitate the analysis of
the LOB, we have implemented a simple parser
which is capable of rapidly parsing simple con-
structs and of "failing gracefully" in more com-
plicated situations. By trading completeness
for accuracy, and by utilizing the statistical dis-
ambiguator, the parser can perform rapidly and
correctly enough to usefully parse the entire
LOB in a few hours. Figure 2 presents a sample
parse from the LOB.

The parser employs three methods to build
phrases. CFG-like rules are used to recognize
lengthy, less structured constructions such as
NPs, names, dates, and verb systems. Neigh-
boring phrases can connect to build the higher
level binary-branching structure found in En-
glish, and single phrases can be projected into
new ones. The ability of neighboring phrase
pairs to initiate the CFG-like rules permits context-
sensitive parsing. And, to increase the effi-
ciency of the parser, an innovative system of
deterministically discarding certain phrases is
used, called "lowering".

Some Parser Detai ls : Each word in an
input sentence is tagged as starting and end-
ing at a specific numerical location. In the
sentence "I saw Mary." the parser would in-
sert the locations 0-4, 0 I 1 SAW 2 MARY 3

245

MR MICHAEL FOOT HAS PUT DOWN A RESOLUTION ON THE
SUBJECT AND HE IS TO BE HACKED BY ME WILL
GHIFFITHS , PIP FOR MANCHESTER EXCHANGE .

> (IP
(NP (PROP (N MR) (NAME MICHAEL) (NAME FOOT)))
(I-EAR (I (HAVE HAS) (RP DOWN))

(VP (V PUT) (NP (DET A) (N RESOLUTION)))))
> (PP (P ON) (NP (DET THE) (N SUBJECT)))
> (CC AND)
> (IP (NP HE)

(I-BAR (I)
(VP (IS IS)

(I-BAR (I (PP (P BY) (NP (PROP (N MR)
(NAME WILL) (NAME GRIFFITNS)))))

(TO TO) (IS BE)) (VP (V BACKED))))))
> (*CMA ",")
> (NP (N MP))
> (PP (P FOR) (NP (PROP (NAME MANCHESTER)

(NAME EXCHANGE))))
> (*PER ".")

Figure 2: The parse of a sentence taken ver-
ba t im from the LOB corpus, printed without
features. Notice that the grammar does not at-
tach PP adjuncts.

4. A phrase consists of a category, starting
and ending locations, and a collection of fea-
ture and tree information. A verb phrase ex-
tending from 1 to 3 would print as [VP 1 3].
Rules consist of a state name and a location.
If a verb phrase recognition rule was firing in
location 1, it would get printed as (VP0 a*
1) where VP0 is the name of the rule state.
Phrases and rules which have yet to be pro-
cessed are placed on a queue. At parse initial-
ization, phrases are created from each word and
its category(ies), and placed on the queue along
with an end-of-sentence marker. The parse pro-
ceeds by popping the top rule or phrase off the
queue and performing actions on it. Figure 3
contains a detailed specification of the parser
algorithm, along with parts of a grammar. It
should be comprehensible after the following
overview and parse example.

When a phrase is popped off the queue, rules
are checked to see if they fire on it, a table
is examined to see if the phrase automatical ly
projects to another phrase or creates a rule,
and neighboring phrases are examined in case
they can pair with the popped phrase to ei-
ther connect into a new phrase or create a rule.
Thus the grammar consists of three tables, the
"rule-action-table" which specifies what action
a rule in a certain state should take if it en-
counters a phrase with a given category and
features; a "single-phrase-action-table" which
specifies whether a phrase with a given category

and features should project or start a rule; and
a "paired-phrase-action-table" which specifies
possible actions to take if two certain phrases
abut each other.

For a rule to fire on a phrase, the rule must
be at the starting posit ion of the phrase. Pos-
sible actions that can be taken by the rule are:
accepting the phrase (shift the dot in the rule);
closing, or creating a phrase from all phrases
accepted so far; or both, creating a phrase and
continuing the rule to recognize a larger phrase
should it exist. Interestingly, when an enqueued
phrase is accepted, it is "lowered" to the bot-
tom of the queue, and when a rule closes to
create a phrase, all other phrases it may have
already created are lowered also.

As phrases are created, a call is made to
a set of transducer functions which generate
more principled interpretat ions of the phrases,
with appropriate features and tree relations.
The representations they build are only for out-
put, and do not affect the parse. An exception
is made to allow the functions to project and
modify features, which eases handling of sub-
categorization and agreement. The transduc-
ers can be used to generate a constant output
syntax as the internal grammar varies, and v i c e
v e r s a .

New phrases and rules are placed on the
queue only after all actions resulting from a
given pop of the queue have been taken. The
ordering of their placement has a dramatic ef-
fect on how the parse proceeds. By varying
the queuing placement and the definition of
when a parse is finished, the efficiency and ac-
curacy of the parser can be radically altered.
The parser orders these new rules and phrases
by placing rules first, and then pushes all of
them onto the stack. This means that new
rules will always have precedence over newly
created phrases, and hence will fire in a succes-
sive "rule chain". If all i tems were eventually
popped off the stack, the ordering would be ir-
relevant. However, since the parse is s topped at
the end-of-sentence marker, all phrases which
have been "lowered" past the marker are never
examined. The part of speech disambiguator
can pass in several categories for any one word,
which are ordered on the stack by likelihood,
most probable first. When any lexical phrase
is lowered to the back of the queue (presum-
ably because it was accepted by some rule) all
other lexical phrases associated with the same
word are also lowered. We have found that this
bo th speeds up parsing and increases accuracy.
That this speeds up parsing should be obvi-
ous. That it increases accuracy is much less so.
Remember that disambiguation Method D is

246

The Parser Algorithm

T o p a r s e a s e n t e n c e s S o f l e n g t h n:

Perform multivalued disambiguation of S.
Create empty queue Q. Place End-of-Sentence marker on Q.
Create new phrases from disambiguator output categories,
and place them on Q.
Until Q is elnpty, or top(Q) = End-of-Sentence marker.

Let I = pop(Q). Let new-items = nil
If I t s phrase [cat i 3]

Let rules = all rules at location i.
Let lefts = all phrases ending at. location i.
Lel rights = all-phrases starting a.t location j.
Perform r u l e - a c t i o n s (r u l e s , i f })
Perform paired-phrase-actions(lefts,{]})
Perform p a i r e d - p h r a s e - a c t i o n s ({] } , rights)
Perforin single-phrase-actions (D.

I f / i s rule (state at i)
Let phrases = all phrasess{arting alt location i.
Perforin rule-actions ({]} ,phrases).

Place each item in new-items on Q, rules first.
Let i = 0. Until i = n,

Output longest phrase [cat i 3]. Let, i = j.

T o p e r f o r m rule-actions (rules ,phrases):

For all rules R = (state at i) in rules,
And all phrases P = [cat+features i 3] in phrases,

If there is an action A in the r u l e - a c t i o n - t a b l e with key
(state, cat+features),

If A = (a c c e p t new-state) or (a e e s p t - a n d - c l o s e new-
state new-cat).

Create new rule (new-state a t j).
If A = (c l o s e new-cat) or (a e e e p t - a r t d - c l o s e new-
state new-cat).

Let daughters = the set of all phrases which have been
accepted in the rule chain which led to R, including
the phrase P.
Let l = the lef|mosl starting location of all)' phrase
in daughters. Create new phrase [new-cat l 3] wilh
daughters daughters.
For all phrases p in daughters, perform lowsr (p).
For all phrases p created (via a c c e p t - a n d - c l o s e) by
the rule chair, which led to R. perform lower(p) .

To p e r f o r m paired-phrase-actions (lefts, rights):

For all phrases Pl = [left-cat+features l if in lefts,
And all phrases Pr = [right-cat+features i r] in rights,

If there is an action A in the p a i r e d - p h r a s e - a c t i o n -
t a b l e with key (left-cat+features, right-cat+featureS).

If A = (cormect new-caD,
Create new phrase [new-cat I r] with daughters Pl and
Pr.

If A = (p ro jec t new-cat).
Create new phrase [new-catir] with (laughter Pr.

If A = (stext-new-rule state) .
Create new rule (state at i).

Perform Iower(Pl) and lower(Pr) .

To p e r f o r m s i n g l e - p h r a s e - a c t i o n s ([cat+features i 3"]) :

If there is an action A in the single-phrase-action-table
with key cat+features.

If A = (p ro jec t new-cat).
Create new phrase [new-cat i 3].

If A = (s t a r t - r u l e new-state).
C_'reate new rule (state at i).

To p e r f o r m l o w e r (/) :

If I t s in Q, renmve iT from Q and reiw, erl il at end of Q.
If I is a le×ical level phrase [cat i i+1] created from the dis-
ambiguator outpnl categoric.,,.

For all other lexical level phrases p starting a I i . pertbrm
lo~er (p) .

W h e n c r e a t i n g a n e w r u l e R:

Add R to list of new-items.

W h e n c r e a t i n g a n e w p h r a s e P = [cat+features i .7] w i t h
d a u g h t e r s D:

Add P to list of new-items.
If there is a hook function F in the h o o k - f t m c t i o n - t a b l e
with key' cat+features, perform F(P,D). Hook fnnctious can
add features to P.

A s e c t i o n o f a r u l e - a c t i o n - t a b l e .

Key(State. (:'at) Action
DET0, DET
DET1, JJ
DET1, N +pl
DET1. N
J J0. JJ
VP1, ADV

(accept DET1)
(accept DET1)
(close NP)
(accept-and-close DET2 NP)
(accept-and-close J J0 AP)
(accept. VP1)

A s e c t i o n o f a paired-phrase-action-table.
Key(Cat. Cat) Action

COMP. S (connect CP)
NP +poss, NP (connect NP)
NP. S (project CP)
NP, \ :P exl-np +tense expect-nil (collnecl S)
NP, CMA* (start-rule < ',\IA0)
VP expect-pp. PP (connect VP)

A s e c t i o n o f a s i n g l e - p h r a s e - a c t i o n - t a b l e .
Key(Cat) Aclion K<v Action

D E T + p r o (start-rule DET0) PRO (lu'ojecl NP)
(pro.iect NP) V (start-rule vPa}

N (start-rule DErII) IS (start-rule \ ' P l)
NAME (start-rule NMI) (stuN-rule ISQ])

A s e c t i o n o f a h o o k - f t m c t i o n - t a b l e .

Key(Cat) Hook Function
\"P Get-Subcat egoriz at ion-I nfo

S Check-Agreenlent
CP ('heck-Coml>St ruct ure

Figure 3: A pseudo-code representat ion of the parser algo-

r i thm, omi t t ing implementa t ion details. Included in table

form are representat ive sections from a g rammar .

247

substantially more accurate the DeRose~s algo-
r i thm only because it can return more than one
category per word. One might guess that if the
parser were to lower all extra categories on the
queue, that nothing would have been gained.
But the top-down nature of the parser is suf-
ficient in most cases to "pick out" the correct
category from the several available (see Milne
1988 for a detailed exposition of this).

A P a r s e in De ta i l : Figure 4 shows a
parse of the sentence "The pastry chef placed
the pie in the oven." In the figure, items to
the left of the vertical line are the phrases and
rules popped off the stack. To the right of each
i tem is a list of all new items created as a result
of it being popped. At the start of the parse,
phrases were created from each word and their
corresponding categories, which were correctly
(and un ique ly)de te rmined by the disambigua-
tor.

The first i tem is popped off the queue, this
being the [DET 0 1] phrase corresponding to
the word "the". The single-phrase action ta-
ble indicates that a DET0 rule should be started
at location 0 and immediately fires on "the",
which is accepted and the rule (DET1 a* 1) is
accordingly created and placed on the queue.
This rule is then popped off the queue, and ac-
cepts the [N 1 2] corresponding to "pastry",
also closing and creating the phrase [NP 0 2].
When this phrase is created, all queued phrases
which contributed to it are lowered in priority,
i.e., "pastry". The rule (DET2 a t 2) is cre-
ated to recognize a possibly longer NP, and is
popped off the queue in line 4. Here much the
same thing happens as in line 3, except that
the [NP 0 2] previously created is lowered as
the phrase [NP 0 3] is created. In line 5, the
rule chain keeps firing, but there are no phrases
start ing at location 3 which can be used by the
rule state DET2.

The next i tem on the queue is the newly
created [NP 0 3], but it neither fires a rule
(which would have to be in location 0), finds
any action in the single-phrase table, or pairs
with any neighboring phrase to fire an action
in the paired-phrase table, so no new phrases
or rules are created. Hence, the verb "placed"
is popped and the single-phrase table indicates
that it should create a rule which then immedi-
ately accepts "placed", creating a VP and plac-
ing the rule (VP4 a* 4) in location 4. The VP
is popped off the stack, but not a t tached to [NP
0 3] to form a sentence, because the paired-
phrase table specifies that for those two phrases
to connect to become an S, the verb phrase
must have the feature (expec't; nil), indi-

0 The 1 pastry 2 chef 3 placed 4 the 5 pie 6 in
? the 8 oven 9 . I0

I. Phrase [DET 0 I]
2. Rule (DETO at O)
3. Rule (DETI at I)

4. Rule (DET2 a t 2)

5. Rule (DET2 at 3)
6. Phrase [NP 0 3]
7. Phrase [V 3 4]
8. Rule (VP3 at 3)
9. Rule (UP4 at 4)
I0. Phrase [VP 3 4]
11. Phrase [DET 4 5]
12. Phrase (DETO at 4)
13. Rule (DETI at 5)

14. Rule (DET2 at 6)
15. Phrase [NP 4 6]
16. Phrase [VP 3 6]
17. Phrase IS 0 6]
18. Phrase [P 6 7]
19. P h r a s e [DET 7 8]
20. Rule (DETO at 7)
21. Rule (DETI at 8)

22. Rule (DET2 at 9)
23. Phrase [NP 7 9]
24. Phrase [PP 6 9]
25. Phrase [*PER 9 I0]

(DETO at O)
(DETI at I)
[NP 0 2] (DETI a t 2)
Lowering: [N 1 2]
[NP 0 3] (DET2 at 3)
Lowering: [NP 0 2]
Lowering: IN 2 3]

(VP3 a t 3)
[VP 3 4] (VP4 a t 4)

(DETO at 4)
(DETI at 5)
[NP 4 6] (DET2 at 6)
Lowering: IN 5 6]

[VP 3 6]
Is 0 6]

(DETO at 7)
(DETI at 8)
[NP 7 9] (DET2 at 9)
Lowering: [N 8 9]

[PP 6 9]

> (IP (NP (DET "The") (N "pastry") (N "chef"))
(I-BAR (I) (UP (V "placed")

(NP (DET "the") (N "pie")))))
> (PP (P "in") (NP (DET "the") (N "oven")))
> (*PER ".")

Phrases left on Queue: [N I 2] IN 2 3] [NP 0 2]
IN s 6] IN 8 9]

Figure 3: A detailed parse of the sentence
"The pastry chef placed the pie in the oven".
Dictionary look-up and disambiguation were
performed prior to the parse.

cating that all of its argument positions have
been filled. However when the VP was cre-
ated, the VP transducer call gave it the feature
(e x p e c t . NP), indicating that it is lacking an
NP argument .

In line 15, such an argument is popped from
the stack and pairs with the VP as specified in
the paired-phrase table, creating a new phrase,
[VP 3 6]. This new VP then pairs with the
subject, forming [S 0 6]. In line 18, the prepo-
sition "in" is popped, but it does not create any
rules or phrases. Only when the NP "the oven"
is popped does it pair to create [PP 6 9]. Al-
though it should be a t tached as an argument

248

to the verb, the subcategorization frames (con-
tained in the expoc'c feature of the VP) do not
allow for a prepositional phrase argument. Af-
ter the period is popped in line 25, the end-of-
sentence marker is popped and the parse stops.
At this time, 5 phrases have been lowered and
remain on the queue. To choose which phrases
to output , the parser picks the longest phrase
starting at location 0, and then the longest
phrase starting where the first ended, etc.

The Reasoning behind the Details: The
parser has a number of salient features to it, in-
cluding the combination of top-down and bot tom-
up methods, the use of transducer functions to
create tree structure, and the system of lower-
ing phrases off the queue. Each was necessary
to achieve sufficient flexibility and efficiency to
parse the LOB corpus.

As we have mentioned, it would be naive of
us to believe that we could completely parse the
more difficult sentences in the corpus. The next
best thing is to recognize smaller phrases in
these sentences. This requires some bo t tom-up
capacity, which the parser achieves through the
single-phrase and paired-phrase action tables.
In order to avoid overgeneration of phrases, the
rules (in conjunction with the "lowering" sys-
tem and method of selecting output phrases)
provide a top-down capability which can pre-
vent some valid smaller phrases from being built.
Although this can stifle some correct parses 5 we
have not found it to do so often.

Keaders may notice that the use of special
mechanisms to project single phrases and to
connect neighboring phrases is unnecessary, since
rules could perform the same task. However,
since projection and binary a t tachment are so
common, the parser's efficiency is greatly im-
proved by the additional methods.

The choice of transducer functions to create
tree structure has roots in our previous expe-
riences with principle-based structures. Mod-
ern linguistic theories have shown themselves
to be valuable constraint systems when applied
to sentence tree-structure, but do not necessar-
ily provide efficient means of initially generat-
ing the structure. By using transducers to map

For instance, the parser always generates
the longest possible phrase it can from a se-
quence of words, a heuristic which can in some
cases fail. We have found that the only situ-
at ion in which this heuristic fails regularly is
in verb argument at tachment; with a more re-
strictive subcategorization system, it would not
be much of a problem.

between surface structure and more principled
trees, we have eliminated much of the compu-
tat ional cost involved in principled representa-
tions.

The mechanism of lowering phrases off the
stack is also intended to reduce computat ional
cost, by introducing determinism into the parser.
The effectiveness of the method can be seen
in the tables of Figure 5, which compare the
parser 's speed with and without lowering.

R E S U L T S
We have used the parser, bo th with and

without the lexical disambiguator, to analyze
large portions of the LOB corpus. Our gram-
mar is small; the three pr imary tables have a
total of 134 actions, and the transducer func-
tions are restricted to (outside of building tree
structure) projecting categories from daughter
phrases upward, checking agreement and case,
and dealing with verb subcategorization fea-
tures. Verb subcategorization information is
obtained from the Oxford Advanced Learner's
Dictionary of Contemporary English (Hornby
et al 1973), which often includes unusual verb
aspects, and consequently the parser tends to
accept too many verb arguments.

The parser identifies phrase boundaries sur-
prisingly well, and usually builds structures up
to the point of major sentence breaks such as
commas or conjunctions. Disambiguation fail-
ure is almost nonexistent. At the end of this pa-
per is a sequence of parses of sentences from the
corpus. The parses illustrate the need for a bet-
ter subcategorization system and some method
for dealing with conjunctions and parentheti-
cals, which tend to break up sentences.

Figure 5 presents some plots of parser speed
on a random 624 sentence subset of the LOB,
and compares parser performance with and with-
out lowering, and with and without disambigua-
tion. Graphs 1 and 2 (2 is a zoom of 1) illustrate
the speed of the parser, and Graph 3 plots the
number of phrases the parser returns for a sen-
tence of a given length, which is a measure of
how much coverage the grammar has and how
much the parser accomplishes. Graph 4 plots
the number of phrases the parser builds during
an entire parse, a good measure of the work
it performs. Not surprisingly, there is a very
smooth curve relating the number of phrases
built and parse time. Graphs 5 and 6 are in-
cluded to show the necessity of disambiguation
and lowering, and indicate a substantial reduc-
tion in speed if either is absent. There is also a
substantial reduction in accuracy. In the no dis-
ambiguat ion case, the parser is passed all cate-

249

(seconds)
20
1 8

1 6

14 °
12 o °°

m

10
m ° m

8 ° [] m

- 6 ° ° ° ° o
[] ° ~ D ° o m

- - A o a [] l ~ ° 0 0 0 I~ g 0
° u [] °0 o

-2
"f i I

Graph 1: # of words in sentence
t (seconds)
- 4 o [] °

m

- 3 . 5 " °
° o []

o °

" 3 []
o g o o [] ° o o

0 ° o

° B
°

[] ° .= °

o o
° ° •m m

a
aag " 2 . 5 ~° ° = ° =° °

° DO IO - O B ° 0

2 0. o oOoo%=.
[] [] [] Dm [~ a s ° =

S • ° O 0 ~ ° O
° H I [] ° I• ° 1.5 00 _ e - ° o °

a ° 2 R° OaOH= oB 0 °
4 o ° ° u ° | ° B=HBB • a g e = =°
/ Bm° a = a

° ° ' , . • B ° m ' ! i n U ' , | o °
o ° % ° ° " " ° B B" =° . ° , , h U l l , , , • • °

) 3,o 3; ,,o 45
I

Graph 2: # of words in sentence
of phrases returned

- 30
o

°

°

m

° o

°

7O
I

0

O

5O
I

- 2 5

o
°

- 2 0 ° ° [] °
° °

o []

15 " ~ o °• "=
o o ~ = . ?. .=?. . .=. .= ° ° []

° o ° °moo ° mm °

= =,==== =.= =-o ~,,~ [] 10
o ¢D °o~m0 m m

® ~ ==%===~°=~=. %
-5 ~ m

I =
o

~ = $ 0 4 0 50 60 7 0 80
. ~ ° I a i o I I I I I

Graph 3: # of words in sentence

Figure 4: Performance graphs of parser on
subset of LOB. See text for explanations.

of phrases built
- 2 0 0

18O

160

1 4 0

- 1 2 0 =
o ° []

a

°

°
a ° []

=== = =° D

o ° o ° [] m

°
- 1 0 0

/ ~ - - ° = a aa~ [] aaa R a

~ u o , , ,B = ° _E~6. ~ ~ ,

, 0 oo

Graph 4: ~ o/words in sentence
(seconds)

60 =
o

50 =

70
I

40 []

[] [] m °

30 ° ° m
o o

°

u

° | o o 20 °° °° ° []

,0 °°,: :;:oi ° :°'.== o °

° ° ° H I ; I g B g = § ° o o ~ ° °
, o N , | 8 1 1 1 B ' I " 2C~ 30 4 0 50

f 1 I

Graph 5[No Dis.]: # of words in sentence
(seconds)

- 6 0 °

° °

- 5 0 °

6 0
I

-40 ° m

a O o o

- 3 0 ° ° m

m 0 a
[] O D

- 2 0 = []= = °B =
° ~ ~ °° °°o

° D ° ° o o o a

D O a Q ° o o o ° B °

" 1 0 a . = ° % ° = =° = °= e ° " = ° o
g 01~ -= § " a ° " B 0 ° oo . ° ; _l===°°gliil ailBgaal , l e O = a S e 5 0 6 0

I I

Graph 6[No Lowering]: # of words in sentence

Figure 5: Performance graphs of parser on
subset of LOB. See text for explanations.

gories every word can take, in random order.

Parser accuracy is a difficult statistic to mea-
sure. We have carefully analyzed the parses
• assigned to many hundreds of LOB sentences,
and are quite pleased with the results. A1-

though there are many sentences where the parser
is unable to build substantial structure, it rarely
builds incorrect phrases. A pointed exception
is the propensity for verbs to take too many
arguments. To get a feel for the parser's ac-

250

curacy, examine the Appendix, which contains
unedited parses from the LOB.

BIBLIOGRAPHY
Church, K. W. 1988 A Stochastic Parts Pro-

gram and Noun Phrase Parser for Unrestricted
Text. Proceedings of the Second Conference on
Applied Natural Language Processing, 136-143

DeRose, S. J. 1988 Grammatical Category
Disambiguation by Statistical Optimization. Com-
putational Linguistics 14:31-39

Oxford Advanced Learner's Dictionary of Con-
temporary English, eds. Hornby, A.S., and Covie,
A. P. (Oxford University Press, 1973)

Milne, 1%. Lexical Ambiguity Resolution in a
Deterministic Parser, in Le~.icaI Ambiguity Res-
olution, ed. by S. Small et al (Morgan Kauf-
mann, 1988)

APPENDIX: Sample Parses

The following are several sentences from the
beginning of the LOB, parsed with our system.
Because of space considerations, indenting does
not necessarily reflect tree structure.

A MOVE TO STOP MR GAITSKELL FROM NOMINATING ANY
MORE LABOUR LIFE PEERS IS TO BE MADE AT A
MEETING OF LABOURMPS TOMORROW .

> (NF (DET A) (N MOVE))
> (I-BAR (I (TO TO)) (VP (V STOP)

(NP (PROP (N MR) (NAME GAITSKELL)))
(P FROM)))

> (I-BAR (I) (VP (V NOMINATING)
(NP (DET ANY) (AP MORE) (N LABOUR)

(N LIFE) (N PEERS))))
> (I-EAR (I) (UP (IS IS)

(I-BAR (I (NP (N TOMORROW))
(TO TO) (IS BE))

(V MADE) (P AT)
(NP (NF (DET A) (N MEETING))

(PP (P OF)
(NP (N LABOUR) (N PIPS))))))))

> (*PER .)

THOUGH THEY MAY GATHER SOME LEFT-WING SUPPORT ,
A LARGE MAJORITY OF LABOURMPS ARE LIKELY TO
TURN DOWN THE F00T-GRIFFITHS RESOLUTION .

> (CP (C-BAR (COMP THOUGH))
(IP (NP THEY)

(I-BAR (I (MD MAY))
(VP (V GATHER)

(NP (DET SOME) (3J LEFT-WING)
(N SUPPORT))))))

> (*CMA ,)

> (IP (NP (NP (DET A) (JJ LARGE) (N MAJORITY))
(PP (P OF) (NP (N LABOUR) (N MPS))))

(I-BAR (I) (VP (IS ARE) (AP (JJ LIKELY)))))
> (I-BAR (I (TO TO) (RP DOWN))

(uP (v TURN)
(NP (DET THE)

(PROP (NAME F00T-GRIFFITHS))

(N RESOLUTION))))
> (*PER .)

MR F00T'S LINE WILL BE THAT AS LABOUR MPS OPPOSED
THE GOVERNMENT BILL WHICH BROUGHT LIFE PEERS INT0
EXISTENCE , THEY SHOULD H0T NOW PUT FORWARD

NOMINEES .

> (IP (NP (NP (PROP (N MR) (NAME FOOT)))
(NP (N LINE)))

(I-EAR (I (MD WILL)) (VP (IS HE) (NP THAT))))
> (CP (C-EAR (COMP AS))

(IP (NP (N LABOUR) (N MPS))
(I-BAR (I) (VP (V OPPOSED)

(NP (NP (DET THE) (N GOVERNMENT) (N BILL))
(CP (C-BAR (COMP WHICH))

(IP (NP)
(I-BAR (I) (VP (V BROUGHT)

(NP (N LIFE) (N PEERS)))))))
(F INT0) (NP (N EXISTENCE))))))

> (*CMA ,)
> (IP (NP THEY)

(I-BAR (I (ADV FORWARD) (MD SHOULD) (XNOT NOT)

(ADV NOW))
(VP (V PUT) (NP (N NOMINEES)))))

> (*PER .)

THE TWO RIVAL AFRICAN NATIONALIST PARTIES OF
NORTHERN RHODESIA HAVE AGREED TO GET TOGETHER
TO FACE THE CHALLENGE FROM SIR ROY WELENSKY ,

THE FEDERAL PREMIER .

> (IP (NP (NP (DET THE) (NUM (CD TWO)) (JJ RIVAL)
(ffff AFRICAN) (3ff NATIONALIST)
(N PARTIES))

(PP (P OF) (NP (PROP (NAME NORTHERN)
(NAME RHODESIA)))))

(I-BAR (I (HAVE HAVE)) (VP (V AGREED)
(I-BAR (I (ADV TOGETHER) (TO TO))

(VP (V GET)
(I-BAR (I (TO TO))

(up (v FACE)
(NP (DET THE) (N CHALLENGE))
(P FROM)
(NP (NP (PROP (N SIR) (NAME ROY)

(NAME WELENSKY)))
(*CMA ,)
(NP (DET THE) (JJ FEDERAL)

(N+++ PREMIER))))))))))
> (*PER .)

251

