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ABSTRACT 

This paper 1 presents a rapid and robust pars- 
ing system currently used to learn from large 
bodies of unedited text. The system contains a 
multivalued part-of-speech disambiguator and 
a novel parser employing bottom-up recogni- 
tion to find the constituent phrases of larger 
structures that might be too difficult to ana- 
lyze. The results of applying the disambiguator 
and parser to large sections of the Lancaster/ 
Oslo-Bergen corpus are presented. 

I N T R O D U C T I O N  
We have implemented and tested a pars- 

ing system which is rapid and robust enough 
to apply to large bodies of unedited text. We 
have used our system to gather data from the 
Lancaster/Oslo-Bergen (LOB) corpus, generat- 
ing parses which conform to a version of current 
Government-Binding theory, and aim to use the 
system to parse 25 million words of text 

The system consists of an interface to the 
LOB corpus, a part of speech disambiguator, 
and a novel parser. The disambiguator uses 
multivaluedness to perform, in conjunction with 
the parser, substantially more accurately than 
current algorithms. The parser employs bottom- 
up recognition to create rules which fire top- 
down, enabling it to rapidly parse the constituent 
phrases of a larger structure that might itself be 
difficult to analyze. The complexity of some of 
the free text in the LOB demands this, and we 
have not sought to parse sentences completely, 
but rather to ensure that our parses are accu- 
rate. The parser output can be modified to con- 
form to any of a number of linguistic theories. 
This paper is divided into sections discussing 
the LOB corpus, statistical disambiguation, the 
parser, and our results. 

1 This paper reports work done at the MIT 
Artificial Intelligence Laboratory. Support for 
this research was provided in part by grants 
from the National Science Foundation (under a 
Presidential Young Investigator award to Prof. 
Robert C. Berwick); the Kapor Family Foun- 
dation; and the Siemens Corporation. 

T H E  L O B  C O R P U S  
The Lancaster/Oslo-Bergen Corpus is an on- 

line collection of more than 1,000,000 words of 
English text taken from a variety of sources, 
broken up into sentences which are often 50 or 
more words long. Approximately 40,000 differ- 
ent words and 50,000 sentences appear in the 
corpus. 

We have used the LOB corpus in a standard 
way to build several statistical tables of part of 
speech usage. Foremost is a dictionary keying 
every word found in the corpus to the number 
of times it is used as a certain part of speech, 
which a/lows us to compute the probability that 
a word takes on a given part of speech. In ad- 
dition, we recorded the number of times each 
part of speech occurred in the corpus, and built 
a digram array, listing the number of times 
one part of speech was followed by another. 
These numbers can be used to compute the 
probability of one category preceding another. 
Some disambiguation schemes require knowing 
the number of trigram occurrences (three spe- 
cific categories in a row). Unfortunately, with 
a 132 category system and only one million 
words of tagged text, the statistical accuracy of 
LOB trigrams would be minima/. Indeed, even 
in the digram table we have built, fewer than 
3100 of the 17,500 digrams occur more than 10 
times. When using the digram table in statisti- 
ca/schemes, we treat each of the 10,500 digrams 
which never occur as if they occur once. 

S T A T I S T I C A L  D I S A M B I G U A T I O N  
Many different schemes have been proposed 

to disambiguate word categories before or dur- 
ing parsing. One common style of disambigua- 
tots, detailed in this paper, rely on statistical 
cooccurance information such as that discussed 
in the section above. Specific statistical disam- 
biguators are described in both DeRose 1988 
and Church 1988. They can be thought of as 
algorithms which maximize a function over the 
possible selections of categories. For instance, 
for each word A-" in a sentence, the DeRose al- 
gorithm takes a set of categories {a~, a~,. . .} as 
input. It outputs a particular category a~z such 
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that  the product  of the probability that  A: is 
the category a~, and the probability that  the 

category a~.. occurs before the category a z+l is 
i . z+l  

maximized. Although such an algori thm might 
seem to be exponential in sentence length since 
there are an exponential number  of combina- 
tions of categories, its limited leftward and right- 
ward dependencies permit  linear t ime dynamic 
programming method.  Applying his algorithm 
to the Brown Corpus 2, DeRose claims the ac- 
curacy rate of 96%. Throughout  this paper we 
will present accuracy figures in terms of how of- 
ten words are incorrectly disambiguated. Thus, 
we write 96% correctness as an accuracy of 25 
(words per error). 

We have applied the DeRose scheme and 
several variations to the LOB corpus in order 
to find an optimal  disambiguation method,  and 
display our findings below in Figure 1. First, 
we describe the four functions we maximize: 

M e t h o d  A: Method A is also described in 
the DeRose paper. It maximizes the product 
of the probabilities of each category occurring 
before the next,  or 

n - - 1  

IIP (a~zis-flwd-by a'~+l )~+1 
z = l  

M e t h o d  B: Method B is the other half of 
the Dettose scheme, maximizing the product of 
the probabilities of each category occurring for 
its word. Method B simply selects each word's 
most probable category, regardless of context. 

n 

H P ( Azis-cat aZz) 
z----1 

M e t h o d  C" The DeRose scheme, or the 
max imum of 

n n - 1  

IT  P ( A~is-cat a~,) l'-I P (a~ is-flwd-by a~?:~) 
z=l z=l 

M e t h o d  D: No statistical disambiguator 
can perform perfectly if it only returns one part  
of speech per word, because there are words and 
sequences of words which can be truly ambigu- 
ous in certain contexts. Method D addresses 
this problem by on occasion returning more 
than one category per word. 

The DeRose algori thm moves from left to 
right assigning to each category a~ an optimal 
pa th  of categories leading from the start  of the 
sentence to a~, and a corresponding probability. 

2 The Brown Corpus is a large, tagged text 
database quite similar to the LOB. 

It then extends each path  with the categories of 
the word A -'+1 and computes new probabilities 
for the new paths. Call the greatest new prob- 
ability P.  Method D assigns to the word A z 
those categories {a~} which occur in those new 
paths which have a probability within a factor 
F of P.  It remains a linear t ime algorithm. 

Naturally, Method D will re turn several cat- 
egories for some words, and only one for others, 
depending on the particular sentence and the 
factor F.  If F = 1, Method D will re turn  only 
one category per word, but they are not nec- 
essarily the same categories as DeRose would 
return. A more obvious variation of DeRose, 
in which al ternate categories are subst i tuted 
into the DeRose disambiguation and accepted 
if they do not reduce the overall disambigua- 
tion probability significantly, would approach 
DeRose as F went to 1, but turns out not to 
perform as well as Method D. 3 

D i s a m b i g u a t o r  R e s u l t s :  Each me thod  
was applied to the same 64,000 words of the 
LOB corpus. The results were compared to the 
LOB part  of speech pre-tags, and are listed in 
Figure 1. 4 If a word was pre-tagged as being 
a proper noun, the proper noun category was 
included in the dictionary, but no special infor- 
mat ion  such as capitalization was used to dis- 
tinguish that  category from others during dis- 
ambiguation. For that  reason, when judging 
accuracy, we provide two metrics: one simply 
comparing disambiguator output  with the pre- 
tags, and another that  gives the disambiguator 
the benefit of the doubt on proper nouns, under 
the assumption that  an "oracle" pre-processor 
could distinguish proper nouns from contextual  
or capitalization information. Since Method D 
can return several categories for each word, we 
provide the average number of categories per 
word returned, and we also note the setting of 
the parameter  F ,  which determines how m a n y  
categories, on average, are returned. 

The numbers in Figure 1 show that  sim- 
ple statistical schemes can accurately disam- 
biguate parts of speech in normal  text,  con- 
firming DeRose and others. The extraordinary 

3 To be more precise, for a given average 
number  of parts of speech re turned V, the "sub- 
st i tution" method  is about 10% less accurate 
when 1 < V < 1.1 and is almost 50% less ac- 
curate for 1.1 < V < 1.2. 

4 In all figures quoted, punctuat ion marks 
have been counted as words, and are 
t reated as parts of speech by the statistical 
disambiguators. 
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Method: A B C D(1 )D( .3 )  
Accuracy: 7.9 17 23 25 41 
with oracle: 8.8 18 30 31 54 
of Cats: 1 1 1 1 1.04 

Method: D(.1) D(.03) D(.01) D(.003) 
Accuracy: 70 126 265 1340 
with oracle: 105 230 575 1840 
No. of Cats: 1.09 1.14 1.20 1.27 

Figure 1: Accuracy of various disambiguation 
strategies, in number of words per error. On 
average, the dictionary had 2.2 parts of speech 
listed per word. 

accuracy one can achieve by accepting an ad- 
ditional category every several words indicates 
that disambiguators can predict when their an- 
swers are unreliable. 

Readers may worry about correlation result- 
ing from using the same corpus to both learn 
from and disambiguate. We have run tests by 
first learning from half of the LOB (600,000 
words) and then disambiguating 80,000 words 
of random text from the other half. The ac- 
curacy figures varied by less than 5% from the 
ones we present, which, given the size of the 
LOB, is to be expected. We have also applied 
each disambiguation method to several smaller 
(13,000 word) sets of sentences which were se- 
lected at complete random from throughout the 
LOB. Accuracy varied both up and down from 
the figures we present, by up to 20% in terms of 
words per error, but relative accuracy between 
methods remained constant. 

The fact the Method D with F = 1 (with 
F = 1 Method D returns only one category per 
word) performs as well or even better on the 
LOB than DeKose's algorithm indicates that, 
with exceptions, disambiguation has very lim- 
ited rightward dependence: Method D employs 
a one category lookahead, whereas DeRose's 
looks to the end of the sentence. This sug- 
gests that Church's strategy of using trigrams 
instead of digrams may be wasteful. Church 
manages to achieve results similar or slightly 
better than DeRose's by defining the probabil- 
ity that a category A appears in a sequence 
ABC to be the number of times the sequence 
ABC appears divided by the number of times 
the sequence BC appears. In a 100 category 
system, this scheme requires an enormous ta- 
ble of data, which must be culled from tagged 
text. If the rightward dependence of disam- 

biguation is small, as the data suggests, then 
the extra effort may be for naught. Based on 
our results, it is more efficient to use digrams 
in genera] and only mark special cases for tri- 
grams, which would reduce space and learning 
requirements substantially. 

I n t e g r a t i n g  D i s a m b i g u a t o r  and  Parser:  
As the LOB corpus is pretagged, we could ig- 
nore disambiguation problems altogether, but 
to guarantee that our system can be applied to 
arbitrary texts, we have integrated a variation 
of disambiguation Method D with our parser. 
When a sentence is parsed, the parser is ini- 
tially passed all categories returned by Method 
D with F = .01. The disambiguator substan- 
tially reduces the time and space the parser 
needs for a given parse, and increases the parser's 
accuracy. The parser introduces syntactic con- 
straints that perform the remaining disambigua- 
tion well. 

T H E  P A R S E R  

I n t r o d u c t i o n :  The LOB corpus contains 
unedited English, some of which is quite com- 
plex and some of which is ungrammatical. No 
known parser could produce full parses of all 
the material, and even one powerful enough to 
do so would undoubtably take an impractical 
length of time. To facilitate the analysis of 
the LOB, we have implemented a simple parser 
which is capable of rapidly parsing simple con- 
structs and of "failing gracefully" in more com- 
plicated situations. By trading completeness 
for accuracy, and by utilizing the statistical dis- 
ambiguator, the parser can perform rapidly and 
correctly enough to usefully parse the entire 
LOB in a few hours. Figure 2 presents a sample 
parse from the LOB. 

The parser employs three methods to build 
phrases. CFG-like rules are used to recognize 
lengthy, less structured constructions such as 
NPs, names, dates, and verb systems. Neigh- 
boring phrases can connect to build the higher 
level binary-branching structure found in En- 
glish, and single phrases can be projected into 
new ones. The ability of neighboring phrase 
pairs to initiate the CFG-like rules permits context- 
sensitive parsing. And, to increase the effi- 
ciency of the parser, an innovative system of 
deterministically discarding certain phrases is 
used, called "lowering". 

Some  Parser  Detai ls :  Each word in an 
input sentence is tagged as starting and end- 
ing at a specific numerical location. In the 
sentence "I saw Mary." the parser would in- 
sert the locations 0-4, 0 I 1 SAW 2 MARY 3 
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MR MICHAEL FOOT HAS PUT DOWN A RESOLUTION ON THE 
SUBJECT AND HE IS TO BE HACKED BY ME WILL 
GHIFFITHS , PIP FOR MANCHESTER EXCHANGE . 

> (IP 
(NP (PROP (N MR) (NAME MICHAEL) (NAME FOOT))) 
(I-EAR (I (HAVE HAS) (RP DOWN)) 

(VP (V PUT) (NP (DET A) (N RESOLUTION))))) 
> (PP (P ON) (NP (DET THE) (N SUBJECT))) 
> (CC AND) 
> (IP (NP HE) 

(I-BAR (I) 
(VP (IS IS) 

(I-BAR (I (PP (P BY) (NP (PROP (N MR) 
(NAME WILL) (NAME GRIFFITNS))))) 

(TO TO) (IS BE)) (VP (V BACKED)))))) 
> (*CMA ",") 
> (NP (N MP)) 
> (PP (P FOR) (NP (PROP (NAME MANCHESTER) 

(NAME EXCHANGE) ) ) ) 
> (*PER ".") 

Figure 2: The parse of a sentence taken ver- 
ba t im from the LOB corpus, printed without  
features. Notice that  the grammar does not at- 
tach PP  adjuncts.  

4. A phrase consists of a category, starting 
and ending locations, and a collection of fea- 
ture and tree information. A verb phrase ex- 
tending from 1 to 3 would print as [VP 1 3]. 
Rules consist of a state name and a location. 
If  a verb phrase recognition rule was firing in 
location 1, it would get printed as (VP0 a* 
1) where VP0 is the name of the rule state. 
Phrases and rules which have yet to be pro- 
cessed are placed on a queue. At parse initial- 
ization, phrases are created from each word and 
its category(ies),  and placed on the queue along 
with an end-of-sentence marker. The parse pro- 
ceeds by popping the top rule or phrase off the 
queue and performing actions on it. Figure 3 
contains a detailed specification of the parser 
algorithm, along with parts of a grammar.  It 
should be comprehensible after the following 
overview and parse example. 

When a phrase is popped off the queue, rules 
are checked to see if they fire on it, a table 
is examined to see if the phrase automatical ly 
projects  to another phrase or creates a rule, 
and neighboring phrases are examined in case 
they can pair with the popped phrase to ei- 
ther connect into a new phrase or create a rule. 
Thus the grammar consists of three tables, the 
"rule-action-table" which specifies what action 
a rule in a certain state should take if it en- 
counters a phrase with a given category and 
features; a "single-phrase-action-table" which 
specifies whether a phrase with a given category 

and features should project  or start  a rule; and 
a "paired-phrase-action-table" which specifies 
possible actions to take if two certain phrases 
abut  each other. 

For a rule to fire on a phrase, the rule must  
be at the starting posit ion of the phrase. Pos- 
sible actions that  can be taken by the rule are: 
accepting the phrase (shift the dot in the rule); 
closing, or creating a phrase from all phrases 
accepted so far; or both,  creating a phrase and 
continuing the rule to recognize a larger phrase 
should it exist. Interestingly, when an enqueued 
phrase is accepted, it is "lowered" to the bot- 
tom of the queue, and when a rule closes to 
create a phrase, all other phrases it may  have 
already created are lowered also. 

As phrases are created, a call is made to 
a set of transducer functions which generate 
more principled interpretat ions of the phrases, 
with appropriate  features and tree relations. 
The representations they build are only for out- 
put,  and do not affect the parse. An exception 
is made to allow the functions to project  and 
modify features, which eases handling of sub- 
categorization and agreement.  The transduc- 
ers can be used to generate a constant  output  
syntax as the internal grammar  varies, and v i c e  
v e r s a .  

New phrases and rules are placed on the 
queue only after all actions resulting from a 
given pop of the queue have been taken. The 
ordering of their placement has a dramatic ef- 
fect on how the parse proceeds. By varying 
the queuing placement and the definition of 
when a parse is finished, the efficiency and ac- 
curacy of the parser can be radically altered. 
The parser orders these new rules and phrases 
by placing rules first, and then pushes all of 
them onto the stack. This means that  new 
rules will always have precedence over newly 
created phrases, and hence will fire in a succes- 
sive "rule chain". If  all i tems were eventually 
popped off the stack, the ordering would be ir- 
relevant. However, since the parse is s topped at 
the end-of-sentence marker,  all phrases which 
have been "lowered" past  the marker  are never 
examined. The part  of speech disambiguator 
can pass in several categories for any one word, 
which are ordered on the stack by likelihood, 
most  probable first. When any lexical phrase 
is lowered to the back of the queue (presum- 
ably because it was accepted by some rule) all 
other lexical phrases associated with the same 
word are also lowered. We have found that  this 
bo th  speeds up parsing and increases accuracy. 
That  this speeds up parsing should be obvi- 
ous. That  it increases accuracy is much less so. 
Remember  that  disambiguation Method  D is 
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The Parser Algorithm 

T o  p a r s e  a s e n t e n c e s  S o f  l e n g t h  n:  

Perform multivalued disambiguation of S. 
Create empty queue Q. Place End-of-Sentence marker on Q. 
Create new phrases from disambiguator output categories, 
and place them on Q. 
Until Q is elnpty, or top(Q) = End-of-Sentence marker. 

Let I =  pop(Q). Let new-items = nil 
If I t s  phrase [cat i 3] 

Let rules = all rules at location i. 
Let lefts = all phrases ending at. location i. 
Lel rights = all-phrases starting a.t location j. 
Perform r u l e - a c t i o n s ( r u l e s , i f } )  
Perform paired-phrase-actions(lefts,{]}) 
Perform p a i r e d - p h r a s e - a c t i o n s ( { ] } ,  rights) 
Perforin single-phrase-actions (D. 

I f / i s  rule (state at  i) 
Let phrases = all phrasess{arting alt location i. 
Perforin rule-actions ({]} ,phrases). 

Place each item in new-items on Q, rules first. 
Let i = 0. Until i = n, 

Output longest phrase [cat i 3]. Let, i = j. 

T o  p e r f o r m  rule-actions (rules ,phrases): 

For all rules R = (state at i) in rules, 
And all phrases P = [cat+features i 3] in phrases, 

If there is an action A in the r u l e - a c t i o n - t a b l e  with key 
(state, cat+features),  

If A = ( a c c e p t  new-state) or ( a e e s p t - a n d - c l o s e  new- 
state new-cat).  

Create new rule (new-state a t  j).  
If A = ( c l o s e  new-cat) or ( a e e e p t - a r t d - c l o s e  new- 
state new-cat).  

Let daughters = the set of all phrases which have been 
accepted in the rule chain which led to R, including 
the phrase P. 
Let l = the lef|mosl starting location of all)' phrase 
in daughters. Create new phrase [new-cat l 3] wilh 
daughters daughters. 
For all phrases p in daughters, perform lowsr (p). 
For all phrases p created (via a c c e p t - a n d - c l o s e )  by 
the rule chair, which led to R. perform lower(p) .  

To p e r f o r m  paired-phrase-actions (lefts,  rights): 

For all phrases Pl = [left-cat+features l if in lefts, 
And all phrases Pr = [right-cat+features i r] in rights, 

If there is an action A in the p a i r e d - p h r a s e - a c t i o n -  
t a b l e  with key (left-cat+features, right-cat+featureS). 

If A = (cormect  new-caD, 
Create new phrase [new-cat I r] with daughters Pl and 
Pr. 

If A = (p ro jec t  new-cat). 
Create new phrase [new-catir]  with (laughter Pr. 

If A = (stext-new-rule state) .  
Create new rule (state at i). 

Perform Iower(Pl) and lower(Pr) .  

To p e r f o r m  s i n g l e - p h r a s e - a c t i o n s  ( [cat+features i 3"] ) : 

If there is an action A in the single-phrase-action-table 
with key cat+features. 

If A = (p ro jec t  new-cat). 
Create new phrase [new-cat i 3]. 

If A = ( s t a r t - r u l e  new-state). 
C_'reate new rule (state at i). 

To p e r f o r m  l o w e r ( / ) :  

If I t s  in Q, renmve iT from Q and reiw, erl il at end of Q. 
If I is a le×ical level phrase [cat i i+1] created from the dis- 
ambiguator outpnl categoric.,,. 

For all other lexical level phrases p starting a I i .  pertbrm 
lo~er (p) .  

W h e n  c r e a t i n g  a n e w  r u l e  R: 

Add R to list of new-items. 

W h e n  c r e a t i n g  a n e w  p h r a s e  P = [cat+features i .7] w i t h  
d a u g h t e r s  D: 

Add P to list of new-items. 
If there is a hook function F in the h o o k - f t m c t i o n - t a b l e  
with key' cat+features, perform F(P,D). Hook fnnctious can 
add features to P. 

A s e c t i o n  o f  a r u l e - a c t i o n - t a b l e .  

Key(State. (:'at) Action 
DET0, DET 
DET1, JJ 
DET1, N +pl 
DET1. N 
J J0. JJ 
VP1, ADV 

(accept DET1 ) 
(accept DET1 ) 
(close NP) 
(accept-and-close DET2 NP) 
(accept-and-close J J0 AP) 
(accept. VP1) 

A s e c t i o n  o f  a paired-phrase-action-table. 
Key(Cat. Cat ) Action 

COMP. S (connect CP) 
NP +poss, NP (connect NP) 
NP. S (project CP) 
NP, \ :P exl-np +tense expect-nil (collnecl S) 
NP, CMA* (start-rule < ',\IA0) 
VP expect-pp. PP (connect VP) 

A s e c t i o n  o f  a s i n g l e - p h r a s e - a c t i o n - t a b l e .  
Key(Cat ) Aclion K<v Action 

D E T + p r o  (start-rule DET0) PRO (lu'ojecl NP) 
(pro.iect NP) V (start-rule vPa} 

N (start-rule DErII) IS (start-rule \ ' P l )  
NAME (start-rule NMI) (stuN-rule ISQ] ) 

A s e c t i o n  o f  a h o o k - f t m c t i o n - t a b l e .  

Key(Cat ) Hook Function 
\"P Get-Subcat egoriz at ion-I nfo 

S Check-Agreenlent 
CP ('heck-Coml>St ruct ure 

Figure 3: A pseudo-code representat ion of the parser algo- 

r i thm, omi t t ing  implementa t ion  details. Included in table 

form are representat ive sections from a g rammar .  
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substantially more accurate the DeRose~s algo- 
r i thm only because it can return more than one 
category per word. One might guess that  if the 
parser were to lower all extra categories on the 
queue, that  nothing would have been gained. 
But the top-down nature  of the parser is suf- 
ficient in most  cases to "pick out" the correct 
category from the several available (see Milne 
1988 for a detailed exposition of this). 

A P a r s e  in  De ta i l :  Figure 4 shows a 
parse of the sentence "The pastry chef placed 
the pie in the oven." In the figure, items to 
the left of the vertical line are the phrases and 
rules popped off the stack. To the right of each 
i tem is a list of all new items created as a result 
of it being popped. At the start  of the parse, 
phrases were created from each word and their 
corresponding categories, which were correctly 
(and un ique ly)de te rmined  by the disambigua- 
tor. 

The first i tem is popped off the queue, this 
being the [DET 0 1] phrase corresponding to 
the word "the".  The single-phrase action ta- 
ble indicates that  a DET0 rule should be started 
at location 0 and immediately fires on "the",  
which is accepted and the rule (DET1 a* 1) is 
accordingly created and placed on the queue. 
This rule is then popped off the queue, and ac- 
cepts the [N 1 2] corresponding to "pastry",  
also closing and creating the phrase [NP 0 2]. 
When this phrase is created, all queued phrases 
which contributed to it are lowered in priority, 
i.e., "pastry".  The rule (DET2 a t  2) is cre- 
ated to recognize a possibly longer NP, and is 
popped off the queue in line 4. Here much the 
same thing happens as in line 3, except that  
the [NP 0 2] previously created is lowered as 
the phrase [NP 0 3] is created. In line 5, the 
rule chain keeps firing, but there are no phrases 
start ing at location 3 which can be used by the 
rule state DET2. 

The next i tem on the queue is the newly 
created [NP 0 3], but it neither fires a rule 
(which would have to be in location 0), finds 
any action in the single-phrase table, or pairs 
with any neighboring phrase to fire an action 
in the paired-phrase table, so no new phrases 
or rules are created. Hence, the verb "placed" 
is popped and the single-phrase table indicates 
that  it should create a rule which then immedi- 
ately accepts "placed", creating a VP and plac- 
ing the rule (VP4 a* 4) in location 4. The VP 
is popped off the stack, but not a t tached to [NP 
0 3] to form a sentence, because the paired- 
phrase table specifies that  for those two phrases 
to connect to become an S, the verb phrase 
must  have the feature (expec't; nil), indi- 

0 The 1 pastry 2 chef 3 placed 4 the 5 pie 6 in 
? the 8 oven 9 . I0 

I. Phrase [DET 0 I] 
2. Rule (DETO at O) 
3. Rule (DETI at I) 

4. Rule (DET2 a t  2) 

5. Rule (DET2 at 3) 
6. Phrase [NP 0 3] 
7. Phrase [V 3 4] 
8. Rule (VP3 at 3) 
9. Rule (UP4 at 4) 
I0. Phrase [VP 3 4] 
11. Phrase [DET 4 5] 
12. Phrase (DETO at 4) 
13. Rule (DETI at 5) 

14. Rule (DET2 at 6) 
15.  Phrase [NP 4 6] 
16. Phrase [VP 3 6] 
17. Phrase IS 0 6] 
18. Phrase [P 6 7] 
19.  P h r a s e  [DET 7 8] 
20. Rule (DETO at 7) 
21. Rule (DETI at 8) 

22. Rule (DET2 at 9) 
23. Phrase [NP 7 9] 
24. Phrase [PP 6 9] 
25. Phrase [*PER 9 I0] 

(DETO at O) 
(DETI at I) 
[NP 0 2] (DETI a t  2) 
Lowering: [N 1 2] 
[NP 0 3] (DET2 at 3) 
Lowering: [NP 0 2] 
Lowering: IN 2 3] 

(VP3 a t  3) 
[VP 3 4] (VP4 a t  4) 

(DETO at 4) 
(DETI at 5) 
[NP 4 6] (DET2 at 6) 
Lowering: IN 5 6] 

[VP 3 6] 
Is 0 6] 

(DETO at 7) 
(DETI at 8) 
[NP 7 9] (DET2 at 9) 
Lowering: [N 8 9] 

[PP 6 9] 

> (IP (NP (DET "The") (N "pastry") (N "chef")) 
(I-BAR (I) (UP (V "placed") 

(NP (DET "the") (N "pie"))))) 
> (PP (P "in") (NP (DET "the") (N "oven"))) 
> (*PER ".") 

Phrases left on Queue: [N I 2] IN 2 3] [NP 0 2] 
IN s 6] IN 8 9] 

Figure 3: A detailed parse of the sentence 
"The pastry chef placed the pie in the oven". 
Dictionary look-up and disambiguation were 
performed prior to the parse. 

cating that  all of its argument  positions have 
been filled. However when the VP was cre- 
ated, the VP transducer call gave it the feature 
( e x p e c t  . NP), indicating that  it is lacking an 
NP argument .  

In line 15, such an argument  is popped from 
the stack and pairs with the VP as specified in 
the paired-phrase table, creating a new phrase, 
[VP 3 6]. This new VP then pairs with the 
subject, forming [S 0 6]. In line 18, the prepo- 
sition "in" is popped, but  it does not create any 
rules or phrases. Only when the NP "the oven" 
is popped does it pair to create [PP 6 9]. Al- 
though it should be a t tached as an argument  
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to the verb, the subcategorization frames (con- 
tained in the expoc'c feature of the VP)  do not 
allow for a prepositional phrase argument.  Af- 
ter the period is popped in line 25, the end-of- 
sentence marker is popped and the parse stops. 
At this time, 5 phrases have been lowered and 
remain on the queue. To choose which phrases 
to output ,  the parser picks the longest phrase 
starting at location 0, and then the longest 
phrase starting where the first ended, etc. 

The Reasoning behind the Details: The 
parser has a number of salient features to it, in- 
cluding the combination of top-down and bot tom-  
up methods,  the use of transducer functions to 
create tree structure, and the system of lower- 
ing phrases off the queue. Each was necessary 
to achieve sufficient flexibility and efficiency to 
parse the LOB corpus. 

As we have mentioned, it would be naive of 
us to believe that  we could completely parse the 
more difficult sentences in the corpus. The next 
best thing is to recognize smaller phrases in 
these sentences. This requires some bo t tom-up  
capacity, which the parser achieves through the 
single-phrase and paired-phrase action tables. 
In order to avoid overgeneration of phrases, the 
rules (in conjunction with the "lowering" sys- 
tem and method of selecting output  phrases) 
provide a top-down capability which can pre- 
vent some valid smaller phrases from being built. 
Although this can stifle some correct parses 5 we 
have not found it to do so often. 

Keaders may notice that  the use of special 
mechanisms to project single phrases and to 
connect neighboring phrases is unnecessary, since 
rules could perform the same task. However, 
since projection and binary a t tachment  are so 
common, the parser's efficiency is greatly im- 
proved by the additional methods.  

The choice of transducer functions to create 
tree structure has roots in our previous expe- 
riences with principle-based structures. Mod- 
ern linguistic theories have shown themselves 
to be valuable constraint systems when applied 
to sentence tree-structure, but  do not necessar- 
ily provide efficient means of initially generat- 
ing the structure. By using transducers to map 

For instance, the parser always generates 
the longest possible phrase it can from a se- 
quence of words, a heuristic which can in some 
cases fail. We have found that the only situ- 
at ion in which this heuristic fails regularly is 
in verb argument at tachment;  with a more re- 
strictive subcategorization system, it would not 
be much of a problem. 

between surface structure and more  principled 
trees, we have eliminated much of the compu- 
tat ional  cost involved in principled representa- 
tions. 

The mechanism of lowering phrases off the 
stack is also intended to reduce computat ional  
cost, by introducing determinism into the parser. 
The effectiveness of the method  can be seen 
in the tables of Figure 5, which compare the 
parser 's speed with and without lowering. 

R E S U L T S  
We have used the parser, bo th  with and 

without  the lexical disambiguator,  to analyze 
large portions of the LOB corpus. Our gram- 
mar  is small; the three pr imary tables have a 
total  of 134 actions, and the transducer func- 
tions are restricted to (outside of building tree 
structure) projecting categories from daughter 
phrases upward,  checking agreement and case, 
and dealing with verb subcategorization fea- 
tures. Verb subcategorization information is 
obtained from the Oxford Advanced Learner's 
Dictionary of Contemporary  English (Hornby 
et al 1973), which often includes unusual verb 
aspects, and consequently the parser tends to 
accept too many verb arguments.  

The parser identifies phrase boundaries sur- 
prisingly well, and usually builds structures up 
to the point of major  sentence breaks such as 
commas or conjunctions. Disambiguation fail- 
ure is almost nonexistent.  At the end of this pa- 
per is a sequence of parses of sentences from the 
corpus. The parses illustrate the need for a bet- 
ter subcategorization system and some method 
for dealing with conjunctions and parentheti- 
cals, which tend to break up sentences. 

Figure 5 presents some plots of parser speed 
on a random 624 sentence subset of the LOB, 
and compares parser performance with and with- 
out lowering, and with and without  disambigua- 
tion. Graphs 1 and 2 (2 is a zoom of 1) illustrate 
the speed of the parser, and Graph 3 plots the 
number  of phrases the parser returns for a sen- 
tence of a given length, which is a measure of 
how much coverage the grammar has and how 
much the parser accomplishes. Graph 4 plots 
the number  of phrases the parser builds during 
an entire parse, a good measure of the work 
it performs. Not surprisingly, there is a very 
smooth  curve relating the number  of phrases 
built and parse time. Graphs 5 and 6 are in- 
cluded to show the necessity of disambiguation 
and lowering, and indicate a substantial  reduc- 
tion in speed if either is absent. There is also a 
substantial  reduction in accuracy. In the no dis- 
ambiguat ion case, the parser is passed all cate- 
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Figure 5: Performance graphs of parser on 
subset of LOB. See text for explanations. 

gories every word can take, in random order. 

Parser accuracy is a difficult statistic to mea- 
sure. We have carefully analyzed the parses 
• assigned to many hundreds of LOB sentences, 
and are quite pleased with the results. A1- 

though there are many sentences where the parser 
is unable to build substantial  structure, it rarely 
builds incorrect phrases. A pointed exception 
is the propensity for verbs to take too many 
arguments.  To get a feel for the parser's ac- 

250 



curacy, examine the Appendix, which contains 
unedited parses from the LOB. 
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APPENDIX: Sample Parses 

The following are several sentences from the 
beginning of the LOB, parsed with our system. 
Because of space considerations, indenting does 
not necessarily reflect tree structure. 

A MOVE TO STOP MR GAITSKELL FROM NOMINATING ANY 
MORE LABOUR LIFE PEERS IS TO BE MADE AT A 
MEETING OF LABOURMPS TOMORROW . 

> (NF (DET A) (N MOVE)) 
> (I-BAR (I (TO TO)) (VP (V STOP) 

(NP (PROP (N MR) (NAME GAITSKELL))) 
(P FROM))) 

> (I-BAR (I)  (VP (V NOMINATING) 
(NP (DET ANY) (AP MORE) (N LABOUR) 

(N LIFE) (N PEERS)))) 
> (I-EAR (I) (UP (IS IS) 

(I-BAR (I (NP (N TOMORROW)) 
(TO TO) (IS BE)) 

(V MADE) (P AT) 
(NP (NF (DET A) (N MEETING)) 

(PP (P OF) 
(NP (N LABOUR) (N PIPS)))))))) 

> (*PER .) 

THOUGH THEY MAY GATHER SOME LEFT-WING SUPPORT , 
A LARGE MAJORITY OF LABOURMPS ARE LIKELY TO 
TURN DOWN THE F00T-GRIFFITHS RESOLUTION . 

> (CP (C-BAR (COMP THOUGH)) 
(IP (NP THEY) 

(I-BAR (I (MD MAY)) 
(VP (V GATHER) 

(NP (DET SOME) (3J LEFT-WING) 
(N SUPPORT)))))) 

> (*CMA ,) 

> (IP (NP (NP (DET A) (JJ LARGE) (N MAJORITY)) 
(PP (P OF) (NP (N LABOUR) (N MPS)))) 

(I-BAR (I) (VP (IS ARE) (AP (JJ LIKELY))))) 
> (I-BAR (I (TO TO) (RP DOWN)) 

(uP (v TURN) 
(NP (DET THE) 

(PROP (NAME F00T-GRIFFITHS)) 

(N RESOLUTION)))) 
> (*PER .) 

MR F00T'S LINE WILL BE THAT AS LABOUR MPS OPPOSED 
THE GOVERNMENT BILL WHICH BROUGHT LIFE PEERS INT0 
EXISTENCE , THEY SHOULD H0T NOW PUT FORWARD 

NOMINEES . 

> (IP (NP (NP (PROP (N MR) (NAME FOOT))) 
(NP (N LINE))) 

(I-EAR ( I  (MD WILL)) (VP (IS HE) (NP THAT)))) 
> (CP (C-EAR (COMP AS)) 

(IP (NP (N LABOUR) (N MPS)) 
(I-BAR (I) (VP (V OPPOSED) 

(NP (NP (DET THE) (N GOVERNMENT) (N BILL)) 
(CP (C-BAR (COMP WHICH)) 

(IP (NP) 
(I-BAR (I) (VP (V BROUGHT) 

(NP (N LIFE) (N PEERS))))))) 
(F INT0) (NP (N EXISTENCE)))))) 

> (*CMA ,) 
> (IP (NP THEY) 

(I-BAR (I (ADV FORWARD) (MD SHOULD) (XNOT NOT) 

(ADV NOW)) 
(VP (V PUT) (NP (N NOMINEES))))) 

> (*PER .) 

THE TWO RIVAL AFRICAN NATIONALIST PARTIES OF 
NORTHERN RHODESIA HAVE AGREED TO GET TOGETHER 
TO FACE THE CHALLENGE FROM SIR ROY WELENSKY , 

THE FEDERAL PREMIER . 

> (IP (NP (NP (DET THE) (NUM (CD TWO)) (JJ RIVAL) 
(ffff AFRICAN) (3ff NATIONALIST) 
(N PARTIES)) 

(PP (P OF) (NP (PROP (NAME NORTHERN) 
(NAME RHODESIA))))) 

(I-BAR (I (HAVE HAVE)) (VP (V AGREED) 
(I-BAR (I (ADV TOGETHER) (TO TO)) 

(VP (V GET) 
(I-BAR (I (TO TO)) 

(up (v FACE) 
(NP (DET THE) (N CHALLENGE)) 
(P FROM) 
(NP (NP (PROP (N SIR) (NAME ROY) 

(NAME WELENSKY))) 
(*CMA ,) 
(NP (DET THE) (JJ FEDERAL) 

(N+++ PREMIER)))))))))) 
> (*PER .) 
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