
Multiple Underlying Systems:
Translating User Requests into Programs to Produce Answers

Robert J. Bobrow, Philip Resnik, Ralph M. Weischedel

BBN Systems and Technologies Corporation
10 Moulton Street

Cambridge, MA 02138

ABSTRACT

A user may typically need to combine the
strengths of more than one system in order to perform
a task. In this paper, we describe a component of the
Janus natural language interface that translates inten-
sional logic expressions representing the meaning of
a request into executable code for each application
program, chooses which combination of application
systems to use, and designs the transfer of data
among them in order to provide an answer. The com-
plete Janus natural language system has been ported
to two large command and control decision support
aids.

1. Introduction
The norm in the next generation of user en-

vironments will be distributed, networked applications.
Many problems will be solvable only by use of a corn-
bination of applications. If natural language technol-
ogy is to be applicable in such environments, we must
continue to enable the user to talk to computers about
his/her problem, not about which application(s) to use.

Most current natural language (NL) systems,
whether accepting spoken or typed input, are
designed to interface to a single homogeneous under-
lying system; they have a component geared to
producing code for that single class of application sys-
tems, such as a single relational database[12].
Providing an English interface to the user's data base,
a separate English interface to the same user's plan-
ning system, and a third interface to a simulation
package, for instance, will neither be attractive nor
cost-effective. By contrast, a seamless, multi-modal,
natural language interface will make use of a
heterogeneous environment feasible and, ff done well,
transparent; this can be accomplished by enabling the
user to state information needs without specifying how
to decompose those needs into a program calling the
various underlying systems required to meet those
needs. We believe users who see that NL technology
does insulate them from the underlying impleman-
tation idiosyncrasies of one application will expect that
our models of language and understanding will extend
to simultaneous access of several applications.

Consider an example. In DARPA's Fleet Com-
mand Center Battle Management Program
(FCCBMP), several applications (call them underlying
systems) are involved, including a relational data base
(IDB), two expert systems (CASES and FRESH), and
a decision support system (OSGP). The hardware
platforms include workstations, conventional time-
sharing machines, and parallel mainframes. Suppose
the user asks Which of those submarines has the
greatest probability of locating A within 10 hours?
Answering that question involves subproblems from
several underlying applications: the display facility, to
determine what "those submarines" refers to; FRESH,
to calculate how long each submarine would take to
get to A's vicinity; CASES, for an intensive, paral-
lelizable numerical calculation estimating the
probabilities; and the display facility again, to present
the response.

While acoustic and linguistic processing can
determine what the user wants, the problem of trans-
lating that into an effective program to do what the
user wants is a challenging, but solvable problem. In
order to deal with multiple underlying systems, not
only must our NL interface be able to represent the
meaning of the user's request, but it must also be
capable of organizing the various application
programs at its disposal, choosing which combination
of resources to use, and supervising the transfer of
data among them. We call this the multiple underlying
systems (MUS) problem. This paper provides an
overview of our approach and results on the MUS
problem. The implementation is part of the back end
of the Janus natural language interface and is docu-
mented in [7].

2. Scope of the Problem
Our view of access to multiple underlying sys-

tems is given in Figure 2. As implied in the graphical
representation, the user's request, whatever its
modality, is translated into an internal representation
of the meaning of what the user needs. We initially
explored a first-order logic for this purpose; however,
in Janus [13] we have adopted an intensional logic
[3, 14] to investigate whether intensional logic offers

227

more appropriate representations for applications
more complex than databases, e.g., simulations and
other calculations in hypothetical situations. From the
statement of what the user needs, we next derive a
statement of how to fulfill that need, an execution p/an
composed of abstract commands. The execution plan
takes the form of a limited class of data flow graphs
for a virtual machine that includes the capabilities of
all of the application systems. At the level of that
virtual machine, specific commands to specific under-
lying systems are dispatched, results from those ap-
plication systems are composed, and decisions are
made regarding the appropriate presentation of infor-
mation to the user. Thus, the multiple underlying sys-
tems (MUS) problem is a mapping,

MUS: Semantic representation -- > Program

that is, a mapping from what the user wants to a
program to fulfill those needs, using the
heterogeneous application programs' functionality.

Though the statement of the problem as
phrased above may at first suggest an extremely dif-
ficult and long-range program of research in automatic
programming (e.g., see [8]), there are several ways
one can narrow the scope of the problem to make
utility achievable. Restricting the input language, as
others have done [4, 6], is certainly one way to narrow
the problem to one that is tractable.

In contrast, we allow a richer input language (an
intensional logic), but assume that the output is a
restricted class of programs: acyclic data flow graphs.
The implication of this restriction is that the programs
generatabla by the MUS component may include only:

• Functions available in the underlying applications
systems

• Routines preprogrammed by the application sys-
tem staff, and

• Operators on those elements, such as functional
composition, if-then-else, operators from the rela-
tional algebra, and mapping over lists (for in-
stance, for universal quantification and cardinality
of sets).

If all the quantifiers are assumed to be restricted to
finite sets with a generator function, then the quan-
tifiers can be converted to simple loops over the ele-
ments of sets, such as the MAPCAR of Lisp, rather
than having to undertake synthesis of arbitrary
program loops. We assume that all primitives of the
logic have at least one transformation which will
rewrite it, potentially in conjunction with other primi-
tives, from the level of the statement of the user's
needs to the level of the executable plan. These
transformations will have been elicited from the ap-
plication system experts, e.g., expert system builders,
database administrators, and systems programming

staff of other application systems. (Some work has
been done on automating this process.)

3. Approach
The problem of multiple systems may be

decomposed into the following issues, as others have
done [4, 9]:

• Representation. It is necessary to represent un-
derlying system capabilities in a uniform way, and
to represent the user request in a form independ-
ent of any particular underlying system. The
input/output constraints for each function of each
underlying system must be specified, thus defining
the services available.

• Formulation. One must choose a combination of
underlying system services that satisfies the user
request. Where more than one alternative exists,
it is preferable to select a solution with low execu-
tion costs and low passing of information between
systems

• Execution. Actual calls to the underlying systems
must be accomplished, information must be
passed among the systems as required, and an
appropriate response must be generated.

3,1. Representation

3.1.1. Representing the semantics of utterances
Since the meaning of an utterance in Janus is

represented as an expression in WML (World Model
Language [3]), an intensional logic., the input to the
MUS component is in WML. For a sentence such as
Display the destroyers within 500 miles of Vinson, the
WML is as follows:

(bring-about
((intension
(exists ?a display
(object-of ?a
(iota ?b (power destroyer)
(exists ?c
(lambda (?d) interval

(& (starts-interval ?d VINSON)
(less-than

(iota ?e length-measure
(interval-length ?d ?e))

(iota ?f length-measure
(& (measure-unit ?f miles)

(measure-quantity ?f 500))))))
(ends-interval ?c ?b))))))

TIME WORLD))

228

3.1.2. Representing Application Capabilities
To represent the functional capabilities of un-

derlying systems, we define services and servers. A
server is a functional module typically corresponding
to an underlying system or a major part of an under-
lying system. Each server offers a number of
services: objects describing a particular piece of
functionality provided by a server. Specifying a ser-
vice in MUS provides the mapping from fragments of
logical form to fragments of underlying system code.
Each service has associated with it the server it is part
of, the input variables, the output variables, the con-
juncta computed, and an estimate of the relative cost
in applying it.

SAMPLE SERVICES:

Land-avoidance-distance:
owner: Expert System 1
inputs: (x y)
locals: (z w)
pattern:
((in-class x vessel)
(in-class y vessel)
(in-class z interval)
(In-class w length-measure)
(starts-interval z x)
(ends-interval z y)
(interval-length z w))

outputs: (w)
method: ((route-distanca (location-of x)

(location-of y))))
cost: 5

Great-circle-distance:
owner: Expert System 1
inputs: (x y)
locals: (z w)
pattern:

((in-class x vessel)
(in-class y vessel)
(in-class z Interval)
(in-class w length-measure)
(starts-interval z x)
(ends-interval z y)
(interval-length z w))

outputs: (w)
method: ((gc-distance (location.of x)

(location-of y))))
cost: 1

In the example above, there are two competing
services for computing distance between two ships:
Great-circle-distance, which simply computes a great
circle route between two points, and Land-avoidance-
distance, which computes the distance of an actual
path avoiding land and sticking to shipping lanes. The
second is far more accurate when near land; both for

calculating delays and in estimating fuel costs;
however, the computation time is greater.

3.1.3. Clause Lists
Typically, the applicability of a service is contin-

gent on several facts, and therefore, several proposi-
tions must all be true for the service to apply. To
facilitate matching the requirements of a given service
against the needs expressed in an utterance, we con-
vert expressions in WML to an extended disjunctive
normal form (DNF), i.e., a disjunction of conjunctions.
We chose DNF because:

• In the simplest case, an expression in disjunctive
normal form is simply a conjunction of clauses, a
particularly easy logical form to cope with,

• Even when there are disjuncts, each can be in-
dividually handled as a conjunction of clauses,
and the results then combined together via union,
and

• In a disjunctive normal form, the information
necessary for a distinct subquery is effectively iso-
lated in one disjunct.

For details of the algorithm for converting an inten-
sional expression to DNF, see [7]; a model-theoretic
semantics has been defined for the DNF. For the
sentence, Display the destroyers within 500 miles of
Vinson, whose WML representation was represented
earlier, the clause list is as follows:

((in-class ?a display)
(object-of ?a ?b)
(in-class ?b destroyer)
(in-class ?c interval)
(in-class ?d interval)
(equal ?c ?d)
(starts-interval ?d VINSON)
(in-class ?s length-measure)
(interval-length ?d ?s)
(in-class ?f length-measure)
(measure-unlt ?f miles)
(measure-quantity ?f 500)
(less-than ?e ?f)
(ends-lnterval ?c ?b))

The normal form in this case is the same as the
standard disjunctive normal form: a simple conjunc-
tion of clauses. However, there ere oases where ex-
tensions to disjunctive normal form are used: in par-
ticular, certain expressions containing embedded sub-
expressions (such as universal quantifications, car-
dinality, and some other set-related operators) are left
in place. In such cases, the embedded subexpres-
sions are themselves normalized; the result is a
context object that compactly represents a necessary
logical constraint but has been normalized as far as
possible. #S(CONTEXT :OPERATOR FORALL

229

:OPERATOR-VAR var :CLASS-EXP expression
:CONSTRAINT expression) states that var is univer-
sally quantified over the CLASS-EXP expression as
var appears in the CONSTRAINT express/on. As an
example, consider the query Are all the displayed car-
tiers c i ? Its WML expression is given below, followed
by its normalized representation.

Note that contexts are defined recursively; thus,
arbitrary embeddings of operators are allowed. The
component that analyzes the DNF to find underlying
application services to carry out the user request calls
itself recursively to correctly process DNF expressions
invovling embedded expr~_ ;ons.

{QUERY
((INTENSION

(PRESENT
(INTENSION
(FORALL ?JX699
(u
(POWER

(SET-TO-PRED
(IOTA ?JX702
(LAMBDA (?JX701)
(POWER AIRCRAFT-CARRIER)
(EXISTS ?JX700 DISPLAY

(OBJECT.OF ?JX700 ?JX701)))
T))))

(OSGP- ENTITY-OVERALL-READINESS-OF
?JX699 C1)))))

TiME WORLD))

(#s
(CONTEXT
:OPERATOR FORALL
:OPERATOR-VAR ?JX6g9
:CLASS-EXP
((IN.CLASS ?JX699 AIRCRAFT.CARRIER)

(IN.CLASS ?JX700 DISPLAY)
(OBJECT.OF ?JX700 ?JX699))

:CONSTRAINTS
((OSGP- ENTITY-OVERALL- READINESS-OF

?JX699 C1))))

3.2. Formulation
For a request consisting only of a conjunction of

literals, finding a set of appropriate services may be
viewed as a kind of set-covering problem. A beam
search is used to find a low cost cover. Queries
containing embedded subqueries (e.g., the quantifier
context in the example above) require recursive calls
to this search procedure.

Inherent in the collectio/: of services covering a
DNF expression is the data flow that combines the
services into a program to fulfill the DNF request. The
next step in the formulatior, process is data flow
analysis to extract the data ~low graph corresponding
to an abstract program fulfillin~ the request.

In Figure 1, the data flow graph for Display the
destroyers within 500 miles of Vinson is pictured.
Note that the data base (IDB) is called to identify the
set of all destroyers, their locations, and the location
of Vinson. An expert system is being called to cal-
culate the distance between pairs of locations 1 using
land avoidance routes. A Lisp utility for comparing
measures is called, followed by the display command
in an expert system.

3.3. Execution
In executing the data flow graph, evaluation at a

node corresponds to executing the code in the server
specified. Function composition corresponds to pass-
ing data between systems, Where more than one
data flow path enters a node, the natural join over the
input lists is computed. Aggregating operations (e.g.,
computing the cardinality of a set) correspond to a
mapping over lists.

4. Challenging Cases
Here we present several well-known challeng-

ing classes of problems in translating from logical
form to programs.

4.1. Deriving procedures from descript ions.
The challenge is to find a compromise between

arbitrary program synthesis and a useful class of
program derivation problems. Suppose the user asks
for the square root of a value, when the system does
not know the meaning of square root, as in Find the
square root of the sum of the squares of the residuals.
Various knowledge acquisition techniques, such as
KNACQ [15], would allow a user to provide syntactic
and semantic information for the unknown phrase to
be defined. Square root could be defined as a func-
tion that computes the number that when multiplied
times itseff is the same as the input. However, that is
a descriptive definition of square root without any in-
dication of how to compute it. One still must syn-
thesize a program that computes square root; in fact,
in early literature on automatic programming and
rigorous approaches to developing programs, deriving
a program to compute square root was often used as
an example problem.

Rather than expecting the system to perform
such complex examples of automatic programming,
we assume the system need not derive programs for
terms that it does not already know. For the example

'The distance function takes any physical objects as its arguments
and looks up their location.

230

above, the system should b e expected to respond I
don't know how to compute square root.

By making that assumption, we know that all
concepts and relations in the domain model, that is,
all primitives appearing in WML as input to the MUS
component, have a translation specified by the ap-
plications programmer to a composition of underlying
services. As stated in Section 2, we further restrict
the goals of the MUS component to synthesize
programs of a simple structure: acyclic data flow
graphs of services where one of the services is apply-
ing a function to every element in a finite list. There-
fore, the arbitrary program synthesis problem includ-
ing arbitrary loops and/or recursions is avoided, limit-
ing the scope of inputs handleable but allowing solu-
tion of a large class of problems.

To our knowledge, no NL interface allows ar-
bitrary program synthesis. Most assume equivalence
at the abstract program level to synthesis of composi-
tions of the select, project, and join operations of rela-
tional algebra. Our component goes beyond previous
work in that the programs it generates include more
than just the relational algebra.

4.2. Side-ef fects.
It is well-known that generating a program with

side-effects is substantially harder than generating a
program that is side-effect free. If there are no side
effects, transformations of program expressions can
be freely applied, preserving the value(s) computed.
Nevertheless, side-effects are critical to many inter-
face tasks, for example, changing a display, updating
a data base, and setting a value of a variable.

Our component produces acyclic data flow
graphs. The only node that can have side-effects is
the final node in the graph. This keeps the MUS
processing simple, while still allowing for side-effects
at the final stage, such as producing output, updating
data in the underlying systems, or running an applica-
tion program having side-effects. All three of those
cases have been handled in demonstrations of Janus.

Though this issue has not been discussed in
other NL publications to our knowledge, we believe
this restriction to be typical in NL systems.

4.3. Co l lapse of information.
It has long been noted [5] that a complex rela-

tion may be represented in a boolean field in a data
base, such as the boolean field of the Navy Blue file
which for a given vessel was T/F depending on
whether there was a doctor onboard the vessel.
There was no information about doctors in the data
base, except for that field. In a medical data base, a

similar phenomenon was noticed [11]; patient records
contained a T/F field depending on whether the
patient's mother had had melanoma, though there
was no other information on the patient's mother or
her case of melanoma.

The challenge for such fields is mapping from
the many ways that may occur linguistically to the
appropriate field without having to write arbitrarily
many patterns mapping from logical form to the data
base. Just a few examples of the way the melanoma
field might be referenced follow:

Did Smith's mother ever have melanoma ?
How many patients had a mother suffering from

melanoma ?
Was me/anoma diagnosed for any of the patients'

mothers?

Our approach to this problem has been to adopt
disjunctive normal form (clause form) as the basis for
matching services against requirements in the user
request. No matter what the form of user request,
transforming it to disjunctive normal form means that
the information necessary for a disjunct is effectively
isolated in one disjunct. The service represented by
the field corresponding to "patient's mother had
melanoma" covers two conjoined forms: (MOTHER x
y) (HAD-MELANOMA y). All of the examples above,
given appropriate definitions of suffer and diagnose,
will have the two relations as conjuncts in the disjunc-
tive normal form for the input, and therefore, will map
to the required data base service.

4.4. Hidden jo ins.
In data bases, a relation in English may require

a join to be inferred, given the model in the underlying
system. Suppose that a university data base as-
sociates an office with every faculty member and a
phone number with every office. Additionally, some
faculty members may be associated with a lab facility;
labs have telphones as well. Then to answer the
query, What is Dr. Ramehaw's phone number?, the
relation between faculty members and phone num-
bers must be determined. There are two possibilities:
the office phone number or the lab phone number.

Most approaches treat this as an inference
problem. It can be visualized as finding a relation
between two nominal notions faculty member and
phone number [1,2]. One such path uses the relation
OFFICE(PERSON, ROOM) followed by the relation
PHONE(ROOM,PHONE-NUMBER). A general
heuristic is to use the shortest path. Computing hid-
den joins complicates the search space in searching
for a solution among the underlying services, as can
be seen in the architectures proposed, e.g., [1,4, 9].

In contrast to the typical approach where one

231

infers the hidden join as needed, we believe such
joins are normally anticipatable, and provide support
in our lexical definition tools (KNACQ) for specifying
them. In KNACQ [15], a knowledge engineer, data
base administrator, or other person familiar with the
domain and with frame representation specifies for
each frame (concept in KL-ONE terminology) and
each slot (role in KL-ONE terminology) one or more
words denoting that concept or role. In addition, the
KNACQ user identifies role chains (sequences of role
relations), such as RI(A, B) and R2(B, C), having
special linguistic representation. In the example
above, KNACQ would prompt the user to select from
six possibilities for nominal compounds, possessives,
and prepositional connectives relating PERSON to
PHONE-NUMBER. In this way, the search space is
substantially simplified, since hidden joins have been

elicited ahead of time as part of the knowledge ac-
quisition and installation process.

4.5. Data coerc ion.
At times, the type required by the underlying

functions is not directly stated in the input (English)
expression but must be derived. One procedure may
produce the measure of an angle in degrees, whereas
another may require the measure of an angle in
radians. Differing application systems may assume a
person is referred to by differing attributes, e.g., by
social security number in one, but by employee num-
ber in another. In How far is Vinson from Pear/
Harbor?, one must not only infer that the positions of
Vinson and Pearl Harbor must be looked up, but also
make sure that the coordinates are of the type re-
quired by the particular distance function chosen.

In our approach, we assume that there are ser-
vices available for translati~,g between each mismatch
in data type. For the examples above, we assume
that there is a translation from degrees to radians and
vice versa; that there is a translation from person
identified by social security number to person with
employee number, and vice versa; that there is a
translation function from ships and ports to their loca-
tion in latitude and longitude. Such translations may
already exist in the applications or may be added as a
new application. If there are n different ways to iden-
tify the same entity (the measure of an angle, a per-
son, the position of a vessel or port, etc.), there need
not be (n*'2)/2 translation functions of course; a
canonical representation may be chosen if as few as
2n translation functions are available to provide inter-
translatability to the canonical form.

In constructing the data flow graph, we assume
that the canonical representation is used throughout.
Then translation functions are inserted on arcs of the
data flow graph wherever the output/input assump-
tions are not met by the canonical form. Of the five

challenging problems, this is the only one we have not
yet implemented.

5. Related Work
Most previous work applying natural language

interfaces provided access to a single system: e.g., a
relational data base. Two earlier efforts (at Honeywell
[4, 9] and at USC/Information Sciences Institute [6])

dealt with multiple systems. We will focus on com-
parison with their work.

A limitation common to those two approaches is
the minimal expressiveness of the input language:
user requests must be expressed as a conjunction of
simple relations (literals), equivalent to the
select/project/join operations of a relational algebra.
This restriction is relaxed in Janus, allowing requests
to contain negation of elementary predicates, existen-
tial and universal quantification, cardinality and other
aggregates, a limited form of disjunction (sufficient for
the most common cases), and of course simple con-
junction. Wh-questions (who, what, etc.), commands,
and yes/no queries are handled, and some classes of
helpful responses are produced.

All three efforts employ a search procedure. In
the Honeywell effort, graph matching is at the heart of
the search; in the USC/ISI effort, the NIKL classifier
[10] is at the heart of the search; in our effort, a beam

search with a cost function is used.

Only our effort has been tested on applications
with a potentially large search space (800 services);
the other efforts have thus far been tested on applica-
tions with relatively few services.

6. Experience in Applying the System
The MUS component has been applied in the

domain of the Reet Command Center Battle Manage-
ment Program (FCCBMP), using an internal version of
the Integrated Database (IDB) -- a relational database
-- as one underlying resource, and a set of LISP func-
tions providing mathematical modeling of a Navy
problem as another. The system includes more than
800 services.

An earlier version of the system described here
was also applied to provide natural language access
to data in Intellicorp's KEE knowledge-base system,
to objects representing hypothetical world-states in an
object-oriented simulation system, and to LISP func-
tions capable of manipulating this data~

We have begun integrating the MUS com-
ponent with BBN's Spoken Language System HARC.

232

7. Conclusions
The work offers highly desirable utility along the

following two dimensions:

• It frees the user from having to identify for each
term (word) pieces of program that would carry out
their meaning.

• It improves the modularity of the interface, insulat-
ing the presentation of information, such as table
i/o, from details of the underlying application(s).

We have found the general approach depicted
in Figure 2 quite flexible. The approach was
developed in work on natural language processing;
however, it seems to be valuable for other types of I/O
modalities. Some preliminary work has suggested its
utility for table input and output in managing data base
update, data base retrieval, and a directly manipulable
image of tabular data. Our prototype module
generates code from forms in the intensional logic;
then the components originally developed for the
natural language processor provide the translation
mechanism to and from intensional logic and under-
lying systems that actually store the data.

Acknowledgments

This research was supported by the Advanced
Research Projects Agency of the Department of
Defense and was monitored by ONR under Contracts
N00014-85-C-0079 and N00014-85-C-0016. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessarily representing the official policies, either ex-
pressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

The current address for Philip Resnik is Com-
puter & Information Sciences Department, University
of Pennsylvania, Philadelphia, PA 19104.

We gratefully acknowledge the comments and
assistance of Lance Ramshaw in drafts of this paper.

REFERENCES
1. Carberry, M.S. Using Inferred Knowledge to Un-
derstand Pragmatically Ill-Formed Queries. In
R. Reilly, Ed., Communication Failure in Dialogue,
North-Holland, 1987.

2. Chang, C.L. Finding missing joins for incomplete
in Relational Data Bases. Research Report RJ2145,
IBM Research Laboratory, 1978. San Jose, CA.

3. Hinrichs, E.W., Ayuso, D.M., and Scha, R. The
Syntax and Semantics of the JANUS Semantic Inter-
pretation Language. In Research and Development in
Natural Language Understanding as Part of the
Strategic Computing Program, Annual Technical
Report December 1985- December 1986,
BBN Laboratories, Report No. 6522, 1987, pp. 27-31.

4. Kaemmerer, W. and Larson, J. A graph-oriented
knowledge representation and unification technique
for automatically selecting and invoking software func-
tions. Proceedings AAAI-86 Fifth National Con-
ference on Artificial Intelligence, American Association
for Artificial Intelligence, 1986, pp. 825-830.

5. Moore, R.C. Natural Language Access to
Databases - Theoretical/Technical Issues. Proceed-
ings of the 20th Annual Meeting of the Association for
Computational Linguistics, Association for Computa-
tional Linguistics, June, 1982, pp. 44-45.

6. Pavlin, J. and Bates, R. SIMS: single interface to
multiple systems. Tech. Rept. ISI/RR-88-200, Univer-
sity of Southern California Information Sciences In-
stitute, February, 1988.

7. Resnik, P. Access to Multiple Underlying Systems
in Janus. BBN Report 7142, Bolt Beranek and New-
man Inc., September, 1989.

8. Rich, C. and Waters, R.C. Automatic Program-
ming: Myths and Prospects.

9. Ryan, K. R. and Larson, J. A.. The use of E-R
Data Models in Capability Schemas. In Spaccapietra,
S., Ed., Entity-Relationship Approach, Elsevier
Science Publishers, 1987.

10. Schmolze, J.G., Lipkis, T.A. Classification in the
KL-ONE Knowledge Representation System.
Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence, 1983.

11. Stallard, D.G. A Terminological Simplification
Transformation for Natural Language Question-
Answering Systems. Proceedings of the 24th Annual
Meeting of the Association for Computational Linguis-
tics, New York, June, 1986, pp. 241-246.

12. Stallard, David. Answering Questions Posed in
an Intensional Logic: A Multilevel Semantics Ap-
proach. In Research and Development in Natural
Language Understanding as Part of the Strategic
Computing Program, R. Weischedel, D.Ayuso,
A. Haas, E. Hinrichs, R. Scha, V. Shaked, D. Stallard,
Eds., BBN Laboratories, Cambridge, Mass., 1987, ch.
4, pp. 35-47. Report No. 6522.

13. Weischedel, R., Ayuso, D., Haas, A., Hinrichs, E.,
Scha. R., Shaked, V., Stallard, D. Research and
Development in Natural Language Understanding as
Part of the Strategic Computing Program. BBN

233

Laboratories, Cambridge, Mass., 1987. Report No.
6522.

14. Weischedel, R.M. A Hybrid Approach to
Representation in the Janus Natural Language
Processor. Proceedings of the 27th Annual Meeting
of the Association for Computational Linguistics,
1989, pp. 193-202.

15. Weischedel, R.M., Bobrow, R., Ayuso, D.M., and
Ramshaw, L. Portability in the Janus Natural Lan-
guage Interface. Speech and Natural Language, San
Mateo, CA, 1989, pp. 112-117.

S E N T E N C E :
"DIsplay the destroyers within 500 miles of Vlnaon."

DATA FLOW GRAPH:

EXPERT EXPERT
lOB I SYSTEM I L ISP I SYSTEM

Figure 1 : Data Row Graph for "Display the destroyers within 500 miles of Vinson'"

Figure 2:

MULTd-MODAL INPUT

TEXT MENU GRAPHIC8 SPEECH

I I O EV . I . ,SES I I S ' s ' s u s

MULTIPLE UNDERLYING SYSTEMS

BBN's Approach to Simultaneous Access to Multiple Systems

234

