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Abstract 

The logic behind parsers for categorial grammars  
can be formalized in several different ways. Lam- 
bek Calculus (LC) constitutes an example for a na- 
tural deduction 1 style parsing method. 

In natural  language processing, the task of a 
parser usually consists in finding derivations for all 
different readings of a sentence. The original Lam- 
bek Calculus, when it is used as a parser / theorem 
prover, has the undesirable property of allowing for 
the derivation of more than one proof for a reading 
of a sentence, in the general case. 

In order to overcome this inconvenience and to 
turn Lambek Calculus into a reasonable parsing 
method, we show the existence of "relative" normal 
form proof trees and make use of their properties to 
constrain the proof procedure in the desired way. 

1 Introduction 

Sophisticated techniques have been developed for 
the implementation of parsers for (augmented) con- 
text-free grammars.  [Pereira/Warren 1983] gave a 
characterization of these parsers as being resolu- 
tion based theorem provers. Resolution might be 
taken as an instance of Hilbert-style theorem pro- 
ving, where there is one inference rule (e.g. Modus 
Ponens or some other kind of Cul Rule) which al- 
lows for deriving theorems from a set of axioms. 
In the case of parsing, the grammar  rules and the 
lexicon would be the axioms. 

When categorial grammars  were discovered for 
computat ional  linguistics, the most obvious way 
to design parsers for categorial grammars  seemed 

1 "natural deduction" is used here in its broad sense, i.e. 
natural deduction as opposed to Hilbert-style deduction 

to apply the existing methods: The few combi- 
nation rules and the lexicon constitute the set of 
axioms, from which theorems are derived by a 
resolution rule. However, this s trategy leads to 
unsatisfactory results, in so far as extended ca-  
tegorial grammars,  which make use of combina- 
tion rules like functional composition and type 
raising, provide for a proliferation of derivations 
for the same reading of a sentence. This pheno- 
menon has been dubbed the spurious ambiguity 
problem [Pareschi/Steedman 1987]. One solution 
to this problem is to describe normal forms for 
equivalent derivations and to use this knowledge 
to prune the search space of the parsing process 
[Hepple/Morrill 1989]. 

Other approaches to cope with the problem of 
spurious ambiguity take into account the peculari- 
ties of categorial grammars  compared to grammars  
With "context-free skeleton". One characteristic of 
categorial grammars  is the shift of information from 
the g rammar  rules into the lexicon: g rammar  rules 
are mere combination schemata  whereas syntactic 
categories do not have to be atomic items as in the 
"context-free" formalisms, but can also be structu- 
red objects as well. 

The inference rule of a Hilbert-style deduction 
system does not refer to the internal structure of 
the propositions which it deals with. The alterna- 
tive to Hilbert-style deduction is natural deduction 
(in the broad sense of the word) which is "natural" 
in so far as at least some of the inference rules of 
a natural deduction system describe explicitly how 
logical operators have to be treated. Therefore na- 
tural deduction style proof systems are in principle 
good candidates to function as a framework for ca- 
tegorial g rammar  parsers. If  one considers catego- 
ries as formulae, then a proof system would have 
to refer to the operators which are used in those 
formulae. 
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The natural  deduction approach to parsing with 
categorial grammars  splits up into two general 
mainstreams both of which use the Gentzen se- 
quent representation to state the corresponding 
calculi. The first alternative is to take a general 
purpose calculus and propose an adequate transla- 
tion of categories into formulae of this logic. An 
example for this approach has been carried out 
by Pareschi [Pareschi 1988], [Pareschi 1989]. On 
the other hand, one might use a specialized cal- 
culus. Lambek proposed such a calculus for ca- 
tegorial g rammar  more than three decades ago 
[Lambek 1958]. 

The aim of this paper is to describe how Lam- 
bek Calculus can be implemented in such a way 
that it serves as an efficient parsing mechanism. To 
achieve this goal, the main drawback of the original 
Lambek Calculus, which consists of a version of the 
"spurious ambiguity problem", has to be overcome. 
In Lambek Calculus, this overgeneration of deriva- 
tions is due to the fact that  the calculus itself does 
not giye enough constraints on the order in which 
the inference rules have to be applied. 

In section 2 of the paper, we present Lambek 
Calculus in more detail. Section 3 consists of the 
proof for the existence of normal form proof trees 
relative to the readings of a sentence. Based on 
this result, the parsing mechanism is described in 
section 4. 

head of a complex category is the head of its value 
category. The category in the succedens of a se- 
quent is called goal category. The category which 
is "decomposed" by an inference rule application is 
called current functor. 

Basic Category: 
a constant 

Rightward Looking Category: 
if value and argument are categories, 
then (value/argument) is a category 

Leftward Looking Category: 
if value and argument are categories, 
then (value\argument) is a category 

Figure h Definition of categories 

axiom scheme 
(axiom) x --* x 

logical rules 
(/:left) r -- ~t U, ~, v -- 

U, (z]y), T, V --* z 

(/:right) T,  y -- 

T-- (~ly) 
(\:left) T --,' y U, z ,  V .--., z 

U, T, (~\v), v -. 
(\:right) v, T - T -- (=\v) 

T non-empty sequence of categories; 
U, V sequences; x, y, z categories. 

Figure 2: Cut-free and product-free LC 

the president of Iceland 
np/n, n, (n\n) /np,  np --* np 

n, (n\n)/np, np --. n np --* np 

2 L a m b e k  C a l c u l u s  

In the following, we restrain ourselves to cut- 
free and product-free Lambek Calculus, a calculus 
which still allows us to infer infinitely many deri- 
ved rules such as Geach-rule, functional composi- 
tion etc. [Zielonka 1981]. The cut-free and product- 
free Lambek Calculus is given in figures 1 and 2. 
Be aware of the fact that we did not adopt Lam- 
bek's representation of complex categories. Proofs 
in Lambek Calculus can be represented as trees 
whose nodes are annotated with sequents. An ex- 
ample is given in figure 3. A lexical lookup step 
which replaces lexemes by their corresponding ca- 
tegories has to precede the actual theorem proving 
process. For this reason, the categories in the an- 
tecedens of the input sequent will also be called le- 
zical categories. We introduce the notions of head, 
goal category, and current fanctor: The head of 
a category is its "innermost" value category: The 
head of a basic category is the category itself. The 

np ~ np n, n\n -.* n 
n ---* n n ---* n 

Figure 3: Sample proof tree 

2 . 1  U n i f i c a t i o n  L a m b e k  C a l c u l u s  

Lambek Calculus, as such, is a propositional cal- 
culus. There is no room to express additional con- 
straints concerning the combination of categories. 
Clearly, some kind of feature handling mechanism 
is needed to enable the grammar  writer to state e.g. 
conditions on the agreement of morpho-syntactic 
features or to describe control phenomena. For 
the reason of linguistic expressiveness and to facili- 
tate the description of the parsing algorithm below, 
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we extend Lambek Calculus to Unification Lambek 
Calculus (ULC). 

First, the definition of basic category must be 
adapted: a basic category consists of an atomic 
category name and feature description. (For the 
definition of feature descriptions or feature terms 
see [Smolka 1988].) For complex categories, the 
same recursive definition applies as before. The 
syntax for categories in ULC is given informally in 
figure 4 which shows the category of a control verb 
like "persuade". We assume that variable names 
for feature descriptions are local to each category 
in a sequent. The (/:left)- and (\:left)-inference 
rules have to take care of the substitutions which 
are involved in handling the variables in the exten- 
ded categories (figure 5). Heed that the substitu- 
tion function o" has scope over a whole sequent, and 
therefore, over a complete subproof, and not only 
over a single category. In this way, correct varia- 
ble bindings for hypothetic categories, which are 
introduced by "right"-rules, are guaranteed. 

((s([<pred>:persuade]) 
<subj>:Subj  
<obj>:Obj  
<vcomp>:VComp])  

\np(Subj)  
)/(s(VComp) 

\np(Obj))  
) /np(Obj) 

Figure 4: Sample category 

I T --* Y2 a(U v z~ V ~ z)  
~J, (=Iv,). T, V --,, a(yl ) = a(y2) 

Figure 5: (/:lefl)-rule in ffLC 

np/n,  n, (n\n)/np,  np -- np 
np ---* np np/n,  n, n\n ~ np 

n ---* n n p / n ,  n --, np 
n ----* n n p  ~ n p  

np/n,  n, (n\n)/np, np ---, np 
. n p - - , n p  np/n, n, n \n  ---* np 

n, n \ n  ~ n np --~ np 
n - - - ~  n n----~ n 

Figure 6: Extra proofs 

3 N o r m a l  P r o o f  T r e e s  

The sentence in figure 3 has two other proofs, which 
are listed in figure 6, although one would like to 
contribute only one syntactic or semantic reading 
to it. In this section, we show that such a set of a 
possibly abundant number of proofs for the same 
reading of a sequent possesses one distinguished 
member which can be regarded as the represen- 
tative or the normal form proof tree for this set. 

In order to be able to use the notion of a "rea- 
ding" more precisely, we undertake the following 
definition of structures which determine readings 
for our purposes. Because of their similarity to syn- 
tax trees as used with context-free grammars, we 
also call them "syntax trees" for the sake of sim- 
plicity. Since, on the semantic level, the use of a 
"left '-rule in Lambek Calculus corresponds to the 
functional application of a functor term to some 
argument and the "right"-rules are equivalent to 
functional abstraction [van Benthem 1986], it is es- 
sential that in a syntax tree, a trace for each of 
these steps in a derivation be represented. Then it 
is guaranteed that the semantic representation of 
a sentence can be constructed from a syntax tree 
which is annotated by the appropriate partial se- 
mantic expressions of whatever semantic represen- 
tation language one chooses. Structurally distinct 
syntax trees amount to different semantic expres- 
sions. 

A syntax tree t condenses the information of a 
proof for a sequent s in the following way: 

1. Labels of single.node trees, are either lexical 
categories or arguments of lexical categories. 

2. The root of a non.trivial tree has either 

(a) one daughter tree whose root is labelled 
with the value category of the root's la- 
bel. This case catches the application of 
a "right'-inference rule; or 

(b) two daughter trees. The label of the root 
node is the value category, the label of the 
root of one daughter is the functor, and 
the label of the root of the other daugh- 
ter is the argument category of an appli- 
cation of a "left"-inference rule. 

Since the size of a proof for a sequent is cor- 
related linearily to the number of operators which 
occur in the sequent, different proof trees for the 
same sequent do not differ in terms of size - they 
are merely structurally distinct. The task of deft- 
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ning those relative normal forms of proofs, which 
we are aiming at, amounts to describing proof trees 
of a certain structure which can be more easily cor- 
related with syntax trees as would possibly be the 
case for other proofs of the same set of proofs. 

The outline of the proof for the existence of nor- 
mal form proof trees in Lambek Calculus is the fol- 
lowing: Each proof tree of the set of proof trees for 
one reading of a sentence, i.e. a sequent, is map- 
ped onto the syntax tree which represents this rea- 
ding. By a proof reconstruction procedure (PR), 
this syntax tree can be mapped onto exactly one 
of the initial proof trees which will be identified as 
being the normal form proof tree for that  set of 
proof trees. 

It is obvious that  the mapping from proof trees 
onto syntax trees (Syntax Tree Construction - SC) 
partitions the set of proof trees for all readings of 
a sentence into a finite number of disjoint subsets, 
i.e. equivalence classes of proof trees. Proof  trees 
of one of these subsets share the property of ha- 
ving the same syntax tree, i.e. reading. Hence, the 
single proof tree which is reconstructed from such a 
syntax tree can be safely taken as a representative 
for the subset which it belongs to. In figure 7, this 
argument is restated more formally. 

proof syntax normal 
trees trees proofs 
Pn } 

: N t, N Pn 

Plm 

Pnl } 
Pn* 

Figure 7: Outline of the proof for normal forms 

We want to prove the following theorem: 

T h e o r e m  1 The set of proofs for a sequent can 
be partitioned into equivalence classes according to 
their corresponding syntax trees. There is exactly 
one proof per equivalence class which can be iden- 
tified as its normal proof. 

This theorem splits up into two lemmata,  the first 
of which is: 

L e m m a  1 For every proof tree, there exists exactly 
one syntax tree. 

The proof for l emma 1 consists of constructing the 
required syntax tree for a given proof tree. 

The preparative step of the syntax tree con- 
struction procedure SC consists of augmenting le- 
xical categories with (partial) syntax trees. Partial 
syntax trees are represented by A-expressions to in- 
dicate which subtrees have to be found in order to 
make the tree complete. The notation for a cate- 
gory c paired with its (partial) syntax tree t is c : t. 

A basic category is associated with the tree con- 
sisting of one node labelled with the name of the 
category. 

Complex categories are mapped onto partial 
binary syntax trees represented by A-expressions. 
We omit the detailed construction procedure for 
partial syntax  trees on the lexical level, and give 
an example (see fig. 8) and an intuitive characte- 
rization instead. Such a partial tree has to be built 
up in such a way that  it is a "nesting" of functional 
applications, i.e. one distinguished leaf is labelled 
with the functor category which this tree is associa- 
ted with, all other leaves are labelled with variables 
bound by A-operators. The list of node labels along 
the path from the distinguished node to the root 
node must show the "unfolding" of the functor ca- 
tegory towards its head category. Such a path is 
dubbed projection line. 

( s \np) /np  : 

Az,Az2 

s ) 
's\np' 

z2 / 
' ( s \ np ) /np '  z l  

Figure 8: Category and its partial syntax tree 

On the basis of these augmented categories, the 
overall syntax tree can be built up together with 
the proof for a sequent. As it has already been 
discussed above, a "left"-rule performs a functio- 
nal application of a function t/ to an argument 
expression to, which we will abbreviate by tf[t~ ]. 
"right"-rules turn an expression tv into a function 
(i.e. partial syntax tree) t/ = Atatv by means of 
A-abstraction over to. However, in order to retain 
the information on the category of the argument 
and on the direction, we use the functor category 
itself as the root node label instead of the afore 
mentioned A-expression. 
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The steps for the construction of a syntax tree 
along with a proof are encoded as annotations of 
the categories in Lambek Calculus (see figure 9). 
An example for a result of Syntax Tree Construc- 
tion is shown in figure 10 where "input" syntax 
trees are listed below the corresponding sequent, 
and "output" syntax trees are displayed above their 
sequents, if shown at all. 

Since there is a one-to-one correspondence bet- 
ween proof steps and syntax tree construction 
steps, exactly one syntax tree is constructed per 
successful proof for a sequent. This leads us to the 
next step of the proof for the existence of normal 
forms, which is paraphrased by lemma 2. 

L e m m a  2 From every syntax tree, a unique proof 
tree can be reconstructed. 

The proof for this l emma is again a constructive 
one: By a recursive traversal of a syntax tree, we 
obtain the normal form proof tree. (The formula- 
tion of the algorithm does not always properly di- 
stinguish between the nodes of a tree and the node 
labels.) 

(axiom) 

(/:left) 

(/ :right) 

(\:left) 

(\:right) 

z : t  - - *  x : t  

T - *  V:~.  ~', z : t t [ t .  ], V -- .  z : t  
U, ( z / y ) : t  1, T, V - -  z:t 

T~ ~ ...* x : t  
T- -  (=/y): '(x/y) '(t)  
T - -  ~:t. ~ ,  =:~/[t.], v - -  z : t  

U,T,  ( ~ \ y ) : t  s ,  V - .  z : t  

T -- (=\~):'(=\v)'(O 
T non-empty sequence of categories; 
U, V sequences; x, y, z categories; 
t, ta, t I partial syntax trees. 

Figure 9: Syntax Tree Construction in LC 

Proof Reconstruction (P R)  

Input: A syntax tree t with root node label g. 

Output:  A proof tree p whose root sequent s with 
antecedens A and goal category g, and whose i 
daughter proofs pi (i = 0, 1, 2) are determined by 
the following method: 

Method: 

• I f  t consists of the single node g, p consists 
of an s which is an instantiation of the axiom 
scheme with g --~ g. s has no daughters. 

• I f  g is a complex category z / y  reap. z \ y  and 
has one daughter tree tl ,  the antecedens A is 
the list of all leaves of t without the leftmost 
resp. the rightmost leaf., s has one daughter 

proof which is determined by applying Proof 
Reconstruction to the daughter tree of g. 

• I f  g is a basic category and has two daughter 
trees t t  and t~_, then A is the list of all leaves 
of t. s has two daughter proof trees Pt and 
P2- C is the label of the leaf whose projection 
line ends at the root g. t l  is the sister tree 
of this leaf. Pl is obtained by applying P R  to 
t l .  P2 is the result of applying P R  to t2 which 
remains after cutting off the two subtrees C 
and t t  from t. 

Thus, all proofs of an equivalence class are map- 
ped onto one single proof by a composition of the 
two functions Syntax Tree Construction and Proof 
Reconstruction. [:] 

4 T h e  P a r s e r  

We showed the existence of relative normal form 
proof trees by the detour on syntax trees, assu- 
ming that  all possible proof trees have been gene- 
rated beforehand. This is obviously not the way 
one wants to take when parsing a sentence. The 
goal is to construct the normal form proof directly. 
For this purpose, a description of the properties 
which distinguish normal form proofs from non- 
normal form proofs is required. 

The essence of a proof tree is its nesting of cur- 
rent functors which can be regarded as a partial or- 
der on the set of current functors occuring in this 
specific proof tree. Since the current functors of 
two different rule applications might, coincidently, 
be the same form of category, obviously some kind 
of information is missing which would make all cur- 
rent functors of a proof tree (and hence of a syntax 
tree) pairwise distinct. This happens by stating 
which subsequence the head of the current functor 
spans over. As for information on a subsequence, 
it is sufficient to know where it starts and where it 
ends. 

Here is the point where we make use of the ex- 
pressiveness of ULC. We do not only add the start  
and end position information to the head of a com- 
plex category but also to its other basic subcate- 
gories, since this information will be used e.g. for 
making up subgoals. We make use of obvious con- 
straints among the positional indices of subcatego- 
ries of the same category. The category in figure 11 
spans from position 2 to 3, its head spans from 1 
to 3 if its argument category spans from 1 to 2. 
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whom mary loves ' tel '( ' re l / (s /np) ' ,  's/n/( ' s ' ( ' n / ,  ' s \np ' (  ' ( s \np) lnp ' ,  'np' )))) 
re l / (s /np) ,  np, ( s \np) /np  ---, rel 
Az 'tel '(  x ), 'np', AzlAz2 ' s ' (  z2, ' s \np ' (  ' ( s \np) /np ' ,  z l  )) 

's/n/( 's'( 'rip', ' s\np'( '(s\np)/np', 'rip' ))) 
n p ,  (s\np)/np ---* slnP 
'.p', ~ 1 ~ 2  's'( x2, 's\np'('(s\np)/np',  xl )) 
np, (s\np)/np, np --* s 
'np', AxQ~z2 's'( x2, 's\np'( '(s\np)/np', X 1 )), tllp! 
np ~ np 
'np '  

np, s \np --* s 
'rip',  x2's'(x2,' s\np'('(s\ .p)/ .p',  '.p')) 
n p ~ n p  s---*s 
'nit/ ' s ' ( ' n / / ,  ' s \np ' (  ' ( s \np) /np ' ,  'np' )) " 

rel --*rel 

Figure 10: Sample syntax tree construction 

The augmentation of categories by their positional 
indices is done most efficiently during the lexical 
lookup step. 

s ( [<s ta r t>  : 1, <end> : 3 ]) 
\ np ( [<s t a r t>  : 1, <end>  : 2 ]) 

Figure 11: Category with position features 

We can now formulate what we have learned 
from the Proof Reconstruction (PR)  procedure. 
Since it works top-down on a syntax tree, the cha- 
racteristics of the partial order on current functors 
given by their nesting in a proof tree are the follo- 
wing 

Nesting Constraints: 

1. Right.Rule Preference: Complex categories on 
th.e righthand side of the arrow become cur- 
rent functors before complex categories on the 
lefthand side. 

2. Current Functor Unfolding: Once a lefthand 
side category is chosen for current functor it 
has to be "unfolded" completely, i.e. in the 
next inference step, its value category has to 
become current functor unless it is a basic ca- 
tegory. 

3. Goal Criter~um: A lefthand side functor ca- 
tegory can only become current functor if its 
head category is unifiable with the goal cate- 
gory of the sequent where it occurs. 

Condition 3 is too weak if it is stated on the 
background of propositional Lambek Calculus only. 
It would allow for proof trees whose nesting of cur- 
rent functors does not coincide with the nesting of 

current functors in the corresponding syntax tree 
(see figure 12). 

S/S, S / S ,  S, S\S, S\S -"* S 

S "-* S S / 8 ,  S~ S\S, S\S ""+ S 
s ---, s s, s\s, s\s  --* s 

S " +  S S, $ \ 8  - '* S 

S "-*S S ' " *  S 
S 

sis / \ 
S S\8  

Figure 12: Non.normal form proof 

The outline of the parsing/ theorem proving al- 
gorithm P is: 

• A" sequent is proved if it is an instance of the 
axiom scheme. 

• Otherwise, choose an inference rule by obey- 
ing the nesting constraints and try to prove 
the premises of the rule. 

Algorithm P is sound with respect to LC be- 
cause it has been derived from LC by adding re- 
strictions, and not by relaxing original constraints. 
It is also complete with regard to LC, because the 
restrictions are just as many as needed to rule out 
proof trees of the "spurious ambiguity" kind accor- 
ding to theorem 1. 
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4 .1  F u r t h e r  I m p r o v e m e n t s  

The performance of the parser/theorem prover can 
be improved further by adding at least the two fol- 
lowing ingredients: 

The positional indices can help to decide where 
sequences in the "left"-rules have to be split up to 
form the appropriate subsequences of the premises. 

In [van Benthem 1986], it was observed that 
theorems in LC possess a so-called count invariant, 
which can be used to filter out unpromising sugge- 
stions for (sub-)proofs during the inference process. 

5 Conclus ion  

The cut-free and product-free part of Lambek Cal- 
culus has been augmented by certain constraints in 
order to yield only normal form proofs, i.e. only one 
proof per "reading" of a sentence. Thus, theorem 
provers for Larnbek Calculus become realistic tools 
to be employed as parsers for categorial grammar. 

General efficiency considerations would be of in- 
terest. Unconstrained Lambek Calculus seems to 
be absolutely inefficient, i.e. exponential. So far, no 
results are known as to how the use of the nesting 
constraints and the count invariant filter systema- 
tically affect the complexity. At least intuitively, 
it seems clear that their effects are drastic, because 
due to the former, considerably fewer proofs are ge- 
nerated at all, and due to the latter, substantially 
fewer irrelevant sub-proofs are pursued. 

From a linguistic standpoint, for example, the 
following questions have to be discussed: How does 
Lambek Calculus interact with a sophisticated le- 
xicon containing e.g. lexical rules? Which would 
be linguistically desirable extensions of the infe- 
rence rule system that would not throw over the 
properties (e.g. normal form proof) of the original 
Lambek Calculus? 

An implementation of the normal form theorem 
prover is currently being used for experimentation 
concerning these questions. 
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