
Conditional Descriptions in
Functional Unification Grammar

Robert T. Kasper
USC/Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292 U.S.A.

A b s t r a c t

A grammatical description often applies to a linguistic object
only when that object has certain features. Such conditional
descriptions can be indirectly modeled in Kay's Functional
Unification Grammar (FUG) using functional descriptions
that are embedded within disjunctive alternatives. An ex-
tension to FUG is proposed that allows for a direct represen-
tation of conditional descriptions. This extension has been
used to model the input conditions on the systems of systemic
grammar. Conditional descriptions are formally defined in
terms of logical implication and negation. This formal defi-
nition enables the use of conditional descriptions as a general
notational extension to any of the unification-based gram°
mar representation systems currently used in computational
linguistics.

1 I n t r o d u c t i o n

Functional Unification Grammar [Kay79] (FUG) and other
grammatical formalisms that use feature structures and uni-
fication provide a general basis for the declarative representa-
tion of natural language grammars. In order to utilize some
of the computational tools available with unification gram-
mars, we have developed a mapping from sVstelnic ¢ram-
mars [Hall76] into FUG notation. This mapping has been
used as the first step in creating a general parsing method
for systemic grammars [Kas87a]. The experience of trans-
lating systemic grammars into FUG has shown several ways
in which the notational resources of FUG may be improved.
In particular, FUG has limited notational resources for ex-
pressing conditional information. In this paper we describe
how FUG has been enhanced by the addition of conditional
descriptions, building on research that has already been re-
ported [Kas87a,Kas86,Kas87b].

Conditional information is stated explicitly in systemic
grammars by the input conditions of systems that specify
when a system must be used. Consider, for example, the two
systems (MoodType and Indicatlve'l~ype) x shown in Figure 1.
The input condition for the MoodType system is the feature

IThis example is extracted from Nigel [Mann83], a large sys-
temic grammar of English that has been developed in text gener-
ation research at USC/ISI.

C/auae, and the input condition for the IndicatlveType sys-
tem ls the feature Indicative. Because the features of a sys-
temic grammar are normally introduced by a unique system,
these input conditions actually express a bidirectional type
of logical implication:

I. If a constituent has the feature(s) specified by a sys-
tem's input condition, then exactly one of the alterna-
tives described by that system must also be yard for
the constituent;

2. If a constituent has one of the feature alternatives de-
scribed by a system, then it must also have the fea-
ture(s) specified by that system's input condition.

Thus the input condition of the Irtd/cative~pe system ex-
presses the following implications:

1. If a clause ha~s the feature Indic,~tive, then it must also
have exactly one of the alternatives from the Zndica-
tive23,/pe system (either Declarative or Interrogative).

2. If a clause has one of the feature alternatives described
by the Indicativs~3ype system (either Declarative o r /n -
terrooaties), then it must also have the feature Indiea-
ties.

While it is theoretically correct to regard the two directions of
implication as exact converses of each other, there is a subtle
difference between them. The consequent of the first type of
implication is the description of the entire system, including
systemic features and their realizations. 2 The antecedent of
the second type of implication can be safely abbreviated by
the systemic features without their realizations, because the
presence of a systemic feature implies that its realizations
also hold. We will return to this distinction when we provide
a formal definition of conditional descriptions in Section 2.

For simple input conditions, the first type of implication
can be expressed in FUG, as it was originally formulated by
Kay [Kay79], by embedding the description of one system in-
side the description of another. For example, we can capture
this implication for the IndicativeType system by embedding
it within the description of the Indicative alternative of the

2A realization is a statement of structural properties that are
required by a feature, such as the statement that SUBJECT pre-
cedes FINITE for the feature declarative.

233

RANK
~ -Clause MOOD

TYPE

~ Imperative
NONFINITIVE!Stem

LIn INDICATIVE
dlcatlve TYPE
SUBJECT:Nominative

Dseclarative
UBJECT ^ FINITE

Llnterrogatlve

Figure 1: The MoodType and Indicat iveType Systems

Rank = Clause
MoodType = Imperative
NONFI~ITIVE---- [Form = Stem] J
MoodType -- Indicative]
SUBJECT ----" [Case = Nominative]

L f F IndicatlveType = Declarative 1
~ pattern = (. . . SUBJECT F I N I T E . . .) j

J L ~ IndicativeType ----- Interrogative]
. 3 IndicatlveType ~ [MoodType -- Indicative] "

Figure 2: The MoodType and Indlcat iveType Systems in F U G

MoodType system, as shown in Figure 2. Note that the sec-
ond type of implication expressed by systemic input condi-
tions has not been expressed by embedding one functional
description inside another. To express the second type of lm-
plicatlon, we have used a different notational device, called a
feature existence condition; it will be defined in Section 2.4.

Not all systems have simple input conditions consisting
of single features. Those input conditious which are com-
plex boolea~u expressions over features cannot be expressed
directly by embedding. Consider the BenefactiveVolce s sys-
tem shown in Figure 3 as an example. Its input condition is
the conjunction of two features, Agentive and Benefactive.

One way to express a system with a complex input con-
dition in FUG is to use a disjunction with two alternatives,
as shown in Figure 4. The first alternative corresponds to
what happens when the Benef~ctiveVoice system is entered;
the second alternative corresponds to what happens when the
BenefactlveVoice system is not entered. The first alternative
also includes the features of the input condition. The second
alternative includes the features of the negated input condi-
tion. Notice that the input condition and its negation must
both be stated explicltly, unlike in systemic notation. If the
negation of the input condition was not included in the sec-
ond alternative, it would be possible to use this alternative

3The BenefactivcVoice system iJ also extracted from the Nigel
grammar [Mann83]. It describes the active and passive voice op-
tions that are possible in clauses that have both an agent and
a beneficiary. The active/passive distinction is not primitive in
systemic grammars of English. Instead, it is decomposed into sev-
eral cases depending on which participant roles are present in the
clause. In this case the subject of a passive clause may be conflated
with either beneficiary or medium.

even when the input condition for the system holds. Thus
the description of the system would not always be used when
it should be. Note that this method of encoding systemic in-
put conditions presupposes an adequate treatment of negated
features." A formal definition of negation will be developed
in Section 2.3.

While it is formally possible to encode complex input con-
ditione by disjunction and ne~ t ion , such encoding IS not al-
together satisfactory: It should not be necessary to state the
negated input condition explicitly, since it can always be de-
rived automatically from the unne&-~ted condition. It is also
rather inefficient to mix the features of the input condition
with the other features of the system. The features of the in-
put condition contain exactly the information that is needed
to choose between the two alternatives of the disjunction (Le.,
to choose whether the system is entered or not). It would be
more efficient and less verbose to have a notation in which
the features of the input condition are distlnguished from
the other features of the system, and in which the negation
of the input condition does not need to be stated explicitly.
Therefore, we have developed an extension to FUG that uses
a conditional operator (-~), as illustrated by the encoding of
the BenefactiveVoice system shown in Figure 5. A descrip-
tion corresponding to the input condition appears to the left
of the --~ symbol, and the description to be included when
the input condition is satisfied appears to its right. A formal
definition of what it means for a description to be satisfied
will be given in Section 2.1.

4Some negations of atomic features can be replaced by a finite
disjunction of other pouible values for that feature, but this tech-
nique only works effectively when the set of possible values is small
and can be enumerated.

234

Agentive -
Benefactive -

BENEFACTIVE

VOICE f
'Benefact]veActive

AGENT / SUBJECT
lv[EDIUM / DIRECTCOMP

IvfedloPazslve
MEDIUM / SUBJECT

-BenePsssive
BENEFICIARY / SUBJECT
MEDIUM / DIRECTCOMP

Figure '3: The BenefactiveVoice System.

Rank = Clause
Agentivity = Agentive
Benefaction = Benefacitve

' BenefactiveVoice = BenefactiveActive]
AGENT = <SUBJECT> |

MEDIUM = <DIRECTCOIqP>]

BenefactlveVoice = MedioPassive]
, MEDIUM = <SUBJECT>

BenefactlveVolce = BenePassive |
BENEFICIARY = <SUBJECT> |

, MEDIUM = <DIRECTCOMP> J
'Agentivity = NOT AEentive] ~] '

Benefaction = NOT Benefactive] S /
BenefactlveVolce = NONE J

Figure 4: BenefactiveVoice sys tem in FUG, using disjunction and negation.

Rank = Clause

Agentivity = Agentlve] BenefactiveVoice = lvfedioPasslve
---k

Benefaction = Benefactive MEDIUM = <SUBJECT>
BenefactlveVoice = BenePessive
BENEFICIARY = <SUBJECT>
MEDIUM = <DIRECTCOIVIP>

3 BenefactiveVolce - - , [Agentivity = Agentlve]
Benefaction = Benefactlve

BenefactiveVolce = BenefactiveActive]

] AGENT = <SUBJECT>

MEDIUM = <DIRECTCOMP>

Figure 5: BenefactiveVoice sys tem in extended FUG, using two condit ional descriptions.

Note: In systemic notation curly braces represent conjunction and square braces represent disjunction, while in FUG curly
braces represent disjunction and square braces represent conjunction.

235

Note: A and L are

N I L

l : ~

~<p~ > <p. >]

~ ^ ~ or [~ . . . ~.]
~bz V~b~ or {~bz...~b.}

denoting no information;
where a E A, to describe atomic values;
where l E L and ~b E FDL, to describe structures
in which the feature labeled by I has a value described by ~;
where each p; E L ' , to describe an equivalence class
of paths sharing a common value in a feature structure;
where ~i E FDL, denoting conjunction;
where ~; E FDL, denoting disjunction.

sets of symbols which are used to denote atomic values and feature labels, respectively.

Figure 6: Syntax of FDL Formulas.

2 D e f i n i t i o n s

The feature description logic (FDL) of Kasper and
Rounds [Kas86] provides a coherent framework to give a pre-
cise interpretation for conditional descriptions. As in previ-
ous work, we carefully observe the distinction between fea-
ture structures and their descriptions. Feature structures are
represented by directed graphs (DGs), and descriptions of
feature structures are represented by logical formulas. The
syntax for formulas of FDL is given in Figure 6. We define
several new types of formulas for conditional descriptions and
negations, but the domain of feature structures remains DGs,
as before.

2 .1 S a t i s f a c t i o n a n d C o m p a t i b i l i t y

In order to understand how conditional descriptions are used,
it is important to recognize two relations that may hold be-
tween a particular feature structure and a description: satis-
faction and compatibility. Satisfaction implies compatibility,
so there are three possible states that a particular structure
may have with respect to a description: the structure may
fully 8ati~/X/the description, the structure may be i.eompat.
isle with the description, or the structure may be ¢ompatiMe
with (but not satisfy) the description. To define these terms
more precisely, consider the state of an arbitra~ 7 structure,
/~, with respect to an atomic feature description, f : e:

satisfies f : e if f occurs in A with value e;

is i n c o m p a t i b l e w i t h f : e if j ' occurs in g with value
z, for some z ~ ~;

/~ is (mere ly) c o m p a t i b l e w i t h f : e if f does not occur
inA.

Because feature structures are used to represent partial
information, it is possible for a structure that is merely com-
patible wlth a description to be extended (i.e., by adding a
value for some previously nonexistent feature) so that it ei-
ther satisfies or becomes incompatible with the description.
Consider, for example, the structure (~z) shown in Figure 7,
and the three descriptions:

aubj : (perao. : 3 A .umber : ai.g) (I)

subj : (perao. : 1 A .umber : . i . g) (2)

8=by: (case : .ore ^ . t , ,nbe. : s i .g) (3)

subj

~ n d e r

stag neut

Figure 7: Example feature s t ructure (AZ)-

Description (I) is satisfied by Az, because •z is fully iustan-
tiated with all the required feature values. Description (2) is
i,eompatible with Az, because Az has a different value for the
feature aubj : person. Description (3) is merely compatible
with Az (but not satisfied by Az), because Az has no value
for the feature aubj : e~se.

In the following definitions, the notation A ~ ~5 means that
the structure A satisfies the description ~, and the notation
A ~ ~ means that the structure A is compatible toith the
description ~.

Logical combinations of feature descriptions are evaluated
with their usual semantics to determine whether they are
satisfied by a structure. Thus, a conjunction is satisfied only
when every conjunct is satisfied, and a disjunction is satls-
fied if any disjunct is satisfied. The formal semantics of the
satisfaction relation has been specified in our previous work
describing FDL [Kas86]. The semantics of the compatibility
relation is given by the following conditions:

I. ~ -- N I L always;

2. A .~ • ¢=¢. /~ is the atomic structure ~;

3. A ~ [< Pz >,-.-,< P. >] ~=~ all DGs in the
set {~q/ < Pz > 4/ < p. >} can be unified (any
member of this set may be undefined; such members
are equivalent to null DGs);

4. /~ ~ I : ~ ¢=~ /~/! is undefined or ~/1 ~ ~;

5. A ~ ~ V ~ ¢=~ ~ ~ ~ o r ~ ~ ~ 0 ;

6. ~ N ~bA~, ¢ffiffi~ . ~ , canonical form of~bA~.

Unlike satisfaction, the semantics of compatibility cannot be
defined by simple induction over conjunctive formulas, be-
cause of a subtle interaction between path equivalences and

236

nonexistent features. For example, consider whether A,,
shown LU Figure 7, is compatible with the description:

nurnber: pl A |< ~*~mber >, < aubj number >].

A, is compatible with r~urnber : pl, and d , k also compat-
ible with ~< nurnber > , < subj n~mber >l, but #~, is not
compatible with the conjunction of these two descriptions,
because it requires aub] : r~mber : pl and ,~, has si~,g as the
value of that feature.

Thus, in order to determine whether a structure is compat-
ible wlth a conjunctive description, it is generally necessary
to unify all conjuncts, putt ing the description into the canon-
ical form described in [Kas87c]. This canonical form (i.e. the
feature.description data structure) contains definite and in-
definite components. The definite component contains no
disjunction, and is represented by a DG structure that satis-
fies all non-disjunctive parts of a description. The indefinite
component is a list of disjunctions. A structure is compatible
with a description in canonical form if and only if it is unifi-
able with the definite component and it is compa!;ible wlth
each disjunction of the indefinite component.

2 . 2 C o n d i t i o n a l D e s c r i p t i o n

We augment FDL with a new type of formula to represent
conditional descriptions, using the notation, n - . ~, and the
standard interpretation given for material implication:

AI = ~ -~ p ~ A I = ~ a v # . C4)

This Luterpretatlon of conditionals presupposes an interpre-
tation of negation over feature descriptions, which is given
below. To simpLify the interpretation of negations, we ex-
clude formulas contaiuing path equivalences and path values
from the antecedents of conditlonak.

2 . 3 N e g a t i o n

We use the classical interpretation of negation, where
/~ ~ -~b ¢=~ /~ ~: #. Negated descriptions are defined for
the following types of formulas:

1. A ~ - ~ ¢=~ A is not the atom ~;

2. A ~ -~(l : ~) ~ Jl ~= l : "-~ or .~/! is not defined;

3. ,~ ~ -~(~ v ,/,) ~ : ~ A ~ -,~ ^ -,,p;

4. ,~ M -,(~ ^ ,p) ~ ,~ M -,~ v -,,p.
Note that we have not defined negation for formulas contain-
ing path equivalences or path values. Thls restriction makes
it possible to reduce all occurrences of negation to a boolean
combLuatlon of a fiuite number of negative constraints on
atomic values. While the classical interpretation of negation
is not strictly monotonic with respect to the normal sub-
sumptlon ordering on feature structures, the restricted type
of negation proposed here does not suffer from the ineffi-
ciencies and order-dependent uuificaticn properties of gen-
eral negation or intuiticnistic negation [Mosh87,Per87]. The
reason for this is that we have restricted negation so that
all negative information can be specified as local constraLuts

on single atomic feature values. Thus, these constraints only
come into play when specific atomic values are proposed for
a feature, and they can be checked as efficiently as positive
atomic value constraints.

2 .4 F e a t u r e E x i s t e n c e C o n d i t i o n s

A special type of conditional description k needed when the
antecedent of a conditional is an existence predicate for a
particular feature, and not a regular feature description. We
call this type of conditional a [eature ezistence condition, and
use the notation:

B/ -+ ~, where A ~ 3 [4==~ A / [is defined.

Thk use of B / i s essentially equivalent to the use of f = ANY
in Kay's FUG, where ANY lsa place-holder for any substan-
tive (i.e., non-NIL) value.

The primary effect of a feature existence condition, such as
3 f --, ~, is that the consequent is asserted whenever a sub-
stantive value is introduced for a feature labeled by f . The
treatment of feature existence conditions differs slightly from
other conditional descriptions in the way that an uusatisfiable
consequent is handled. In order to negate the antecedent of
3 f --~ #, we need to state that f may never have any sub-
stantive value. This is accomplished by unifying a special
atomic value, such as NONE, with the value of f . This spe-
cial atomic value is incompatible with any other real value
that might be proposed as a value for f .

Feature existence conditions are needed to model the sec-
ond type of implication expressed by systemic input condi-
tions - namely, when a constituent has one of the feature
alternatives described by a system, it must also have the fea-
ture(s) specified by that system's input condition. Generally,
a system named f with input condition a and alternatives
described by/~, can be represented by two conditional de-
scriptlons:

1. a .--. p;

2. B f -* a.

For example, recall the BenfactiveVoice system, which is rep-
resented by the two conditionals shown in Figure 5.

It is important to note that feature existence conditions
are used for systems with simple input conditions as well as
for those with complex input conditions. The use of feature
existence conditions is essential in both cases to encode the
bidirectional dependency between systems that is implicit in
a systemic network.

3 U n i f i c a t i o n w i t h C o n d i t i o n a l

D e s c r i p t i o n s

The unification operation, which is commonly used to corn-
blue feature structures (i.e., non-disjunctive, non-conditional
DGs), can be generalised to define an operation for combLuLug
the information of two feature descriptions (i.e., formulas of
FDL). In FDL, the unification of two descriptions is equiva-
lent to their logical conjunction, as discussed in [Kas87b]. We

237

have shown in previous work [Kas87c] how unification can be
accomplished for disjunctive descriptions without expanding
to disjunctive normal form.

This unification method factors descriptions into a canon-
ical form conslstlng of definite and indefinite components.
The definite component contains no dlsjunctlon, and is rep-
resented by a DG structure that satisfies all non-disjunctive
parts of a description. The indefinite component of a de-
scription k a list of disjunctions. When two descriptions
are unified, the first step is to unlfy their definite compo-
nents. Then the indefinite components of each description
are checked for compatlbility with the resulting definite com-
ponent. Dlsjuncts are eliminated from the description when
they are inconsistent with deflnlte information. When only
one alternative of a disjunction remains, it is unified with the
definite component of the description.

This section details how thls unification method can be
extended to handle conditional descriptions. Conditionals
may be regarded as another type of indefinite information in
the description of a feature structure. They are indefinite]n
the sense that they impose constraints tha t can be satisfied
by several alternatives, depending on the values of features
already present in a structure.

3.1 How to Satisfy a Condit ional
Description

The constraints imposed on a feature structure by a condi-
tional description can usually be determined most emclently
by first examining the antecedent of the conditional, because
it generally con t~n l a smaller amount of information than
the consequent. F, xamining the antecedent k often sufficient
to determine whether the consequent is to be included or
discarded.

Given a conditional description, C ---- ~ -+ ~, we can
define the coustralnts that it imposes on a feature structure
(A) as follows. When:

~ ct, then A ~ ~;6

~ or, then ¢ imposes no further constraint on A, and can
therefore be elhnJnated;

A ~, c~, then check whether ~ ls compatible wlth A.
If compatible, then C must be retained in the descrip-
tion of ~.
If incompatible, then ~ ~ -~a (and ¢ can be elimio
nated).

These constraints follow directly from the interpretation (4)
that we have given for conditional descriptions. These con-
straiuts are logically equivalent to those that would be im-
posed on A by the disjunction - ~ V ~, as required. However,
the constraints of the conditional can often be imposed more
ef~ciently than those of the equivalent dJsjunctlon, because
examlnlng the antecedent of the conditional carries the same
cost as examining only one of the dkjuncts. When the con-
straints of a disjunction are imposed, both of the disjuncts
must be examined in all cases.

6Read this constraint as: Umake sure that .4 satisfies ~.t

3.2 Extending the Unification
Algorithm

The unification algorithm for dlsjunctlve feature descrip-
tions [Kas87c] can be extended to handle conditionals by
recognizing two types of indefinite ~uformatlon in a descrip-
tion: disjunctions and conditionals. The extended feature-
descriptlon data structure has the components:

def ini te : a DG structure;

d i s junc t ions : a llst of disjunctions;

cond i t iona l s , a list of conditional descriptions.

The part of the unification algorithm that checks the compat-
ibility of indefinite components of a description with its def-
inite component is defined by the function CHECK-INDEF,
shown in Figure 8. Thk algorithm checks the disjunctions of
a description before conditionals, but an equally correct ver-
sion of thk algorithm might check conditionals before disjunc-
tions. In our application of parsing with a systemic grammar
it is generally more et~cient to check disjunctions first, but

• other applications might be made more efBclent by varylng
this order.

4 P o t e n t i a l R e f i n e m e n t s

Several topics merit further investlgatlon regarding condi-
tional descrlptions. The implementation we describe has the
constraints of conditionals and dkjunctions imposed in an ar-
bitrary order. Chang|ng the order has no effect on the final
result, but it is likely that the el~clency of unification could
be improved by ordering the conditionals of a grammar in
a deliberate way. Another way to improve the efficiency of
unification with condltiona~ would involve indexing them by
the features that they contain. Then a conditional would
not need to be checked against a structure until some feature
value of the structure might determine the manner in which
it k eat|s fled. The amount of efficiency gained by such tech-
niques clearly depends largely on the nature of the particular
grammar being used in an appllcatlon.

A slightly different type of conditional might be used as a
way to speed up unification with binary disjunctive descrip-
tions. If it k known that the values of a relatively small
number of features can be used to discrimlnate between two
alternative descriptions, then those features can be factored
into a separate condition in a description such as

IF cor, ditioa THEN alt~ ELSE air2.

When the condition is satisfied by a structure, then altl is
selected. When the condition is incompatible with a struc-
ture, then air2 is selected. Otherwise both alternatives must
remain under consideration. As it often requires a consider-
able amount of time to check which alternatives of a dkjunc-
tion are applicable, this technlque might offer a significant
improvement in an application where large dlsjunctlve de-
scriptions are used.

Remember that we have restricted conditionals by requir-
ing that their antecedents do not contain path equivalences.

238

Function CHECK-INDEF (desc) Returns feature-description:
where desc is a featur~description.

Let P = desc.deflnite (a DG).
Let disjunctions = desc.disjunctions.
Let conditionals = desc.conditionals.
Let unchecked-parts ---- true.

While unchecked-parts, do:
unchecked-parts := false.

Cheek eomp~h'~/ty oj' d/~nct/onm ~ P (omited, see [Kas87c]).

O~ek eomp~'t~U of ¢ o ~ o ~ b ~ P:
Let new-condit ionals ---- ~.
For each ~, -- . /9 in condit ionals:

test whether D satisfies or is compat ib le w i t h , - :

SATISFIES: 9 := UNIFY-DGS (9, ~.deflnite),
disjunctions := disjunctions U ~.dlsjunctions,
unchecked-parts := true;

COMPATIBLE: If ~) is compatible with ~,
then new-conditionals := new-conditionals U {a --, ~},
else let neg-ante = -~e.

D := UNIFY-DGS (P, neg-ante.deflnite),
disjunctions :---- disjunctions u neg-ante.disjunctions,
unchecked-parts := true;

INCOMPATIBLE: t ~ eoad~/on,d imposem no]urO~ee coaa~v~/nt.
end (for loop).

conditionals :---- new-conditionals.
end (while loop).

Let nd ---- make feature-description with:
nd.deflnite -~ P, nd.disjunctions = disjunctions, nd.conditionals ---- conditionals.

Return (nd).

F igu re 8: C H E C K - I N D E F : A l g o r i t h m for checking c o m p a t i b i l i t y of indef in i te pa r t s of a f ea tu r e -desc r ip t i on w i t h its
def in i te c o m p o n e n t .

This restriction has been acceptable in our use of condi-
t ional descriptions to model systemic grammars. It k unclear
whether a t rea tment of conditional descriptions without thls
restriction will be needed in o ther applications. If this restric-
tion is lifted, then further work will be necessary to define the
behavior of negation over path equivalences, and to handle
such negations in a reasonably e~c ien t manner .

5 Summary

We have shown how the notat ional resources of FUG can be
extended to include descriptions of conditional information
about feature structures. Condit ional descriptions have been
given a precise logical definition in terms of the feature de-
scription logic of Kasper and Rounds, and we have shown
how a unification method for feature descriptions can be ex-
tended to use conditional descriptions. We have implemented
this unification method and tested it in a parser for systemic
grammars, using several hundred conditional descriptions.
The definition of conditional descriptions and the unifica-
tion method should be generaily applicable as an extension
to other unificatlon-based g rammar frameworks, as well as to
F U G and the modeling of systemic grammars. In fact, the

implementat ion described has been carried out by extending
PATI~I I [Shie84], a general representat ional framework for
unificatlon-based grammars.

While it is theoretically possible to represent the informa-
tion of conditional descriptions indirectly using notat ional
devices already present in Kay 's F U G , there are practical
advantages to representing conditional descriptions directly.
The indirect encoding of condit ional descriptions by dlsjunc-
tions and negations entails approximately doubling the size of
a description, adding many explicit nonexistence constraints
on features (NONE values), and slowing the unification pro-
cess. In our experiments, unification wlth conditional de-
scriptions requires approximately 50~ of the t ime required
by unification with an indirect encoding of the same descrip-
tions. By adding conditional descriptions as a notat ional
resource to F U G , we have not changed the theoretical limits
of what FUG can do, but we have developed a representation
that is more perspicuous, less verbose, and computat ionaily
more e/~clent.

A c k n o w l e d g e m e n t s

I would like to thank Bill Rounds for suggesting tha t it might
be worthwhile to clarify ideas about conditional descriptions

239

that were only partially formulated in my dissertation at the /Per87]
University of Michigan. Helpful comments on earlier versions
of this paper were provided by Bill Mann, Ed Hovy and John
Bateman.

This research was sponsored by the United States Air [Shie84]
Force Office of Scientific Research under contract F49620-
87-C-0005; the opinions expressed here are solely those of
the author.

References

/Hall76] Gunther R. Kress, editor. IIallidap: System and
Function in Language. Oxford University Press,
London, England, 1976.

[Kas87a I Robert T. Kasper. Systemic Grammar and Func-
tional Unification Grammar. In J. Benson and W.
Greaves, editors, SVstemic Functional Approaches
to Discourse, Norwood, New Jersey: Ablex (in
press). Also available as USC/information Sci-
ences Institute, Technical Report RS-87-179, May
1987.

[Kas86] Robert.T. Kasper and William C. Rounds. A Log-
ical Semantics for Feature Structures. In Proceed-
ings of the 24 ta Annual Meeting of the Association
for Computational Linguistics, Columbia Unlver-
slty, New York, 1~/', June 10-13, 1986.

[Kas87b] Robert T. Kasper. Feature Structures: A Lo~cal
7'heorv ~dth Application to Language Analpds. Phi)
dlssertation, University of Mlchlgan, 1987.

[Kas87c] Robert T. Kasper. A Unification Method for DIS-
junctive Feature Descriptions. In Proceed/ng8 o/the
25 ta Annual Meeting of the Association for Compu-
tational Linguistica, Stanford University, Stanford,
CA, July 6-9, 1987.

/Kay79] Martin Kay. Functional Grammar. In Proceeding8
o/the Fifth Annual Meeting of the Bsrkclsp Lingui~-
tica Societp, Berkeley Linguistics Society, Berkeley,
Ca2ifornia, February 17-19, 1979.

[Mmm83] Wi]fiam C. Mann and Christian Matthiemen.
Nigel: A Systemic Grammar for Text Generation.
USC / Information Sciences Institute, RR-83-105.
Also appears in R. Benson and J. Greaves, editors,
Spatemie Perapectivs~ on Diacourss: Selected Pa-
per, Paper8 from the Ninth International Spstsmics
WorkJhop, Ablex, London, England, 1985.

[Mosh87] ~ Drew Moshier and William C. Rounds. A Logic
for Partially Specified Data Structures. In Proceed-
ing8 of the ACM Spmposium on PrinciplcJ of Pro-
graraming Languages, 1987.

Fernando C.N. Perelra. Grammars and Logics of
Partial Information. In Proceedings of the Inter-
national Conference on Logic Programming, Mel-
bourne, AustraLia, May 1987.

Stuart M. Shieber. The design of a computer lan-
guage for lingu]stic information. In Proceedings of
the Tenth International Conference on Computa-
tional Linguistics: COLING 84, Stanford Unlver-
sity, Stanford, California, July 2-7, 1984.

240

